Topological Objects Near Tc: Instanton-dyons in Theory and on Lattice

Rasmus Larsen

University of Stavanger

September 9. 2021

Overview

- Topological objects:
 - Why are topological objects interesting
 - How does topological objects look like
 - Why do we need Instanton-dyons
 - How does Instanton-dyons look like
- Topological objects on the Lattice:
 - How do we see topological object on the lattice
 - The overlap Dirac operator
 - Expected temperature dependence of Topological objects
- Comparison between lattice and theory:
 - How does the shape of zero-modes compare
 - Results from fits to lattice data
- Ensembles of dyons
 - Effective interactions
 - Temperature dependence of Polyakov loop and Chiral Condensate

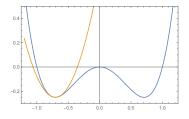
Topological objects

Path Integrals

We want to describe a system governed by a path integral

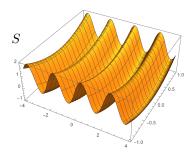
$$Z = \int D\psi D\bar{\psi} DA_{\mu} \exp(-S(\psi, \bar{\psi}, A_{\mu})) \tag{1}$$

- Tough integral, with many different minimas contributing
- \bullet Perturbative results expands around minimum $A_\mu=0$



Why are topological objects interesting

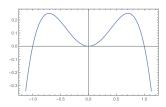
 Topological objects correspond to real time transition between different minima



- True state of system, like energy, changed by transitions, like in the double well potential
 - Important to include effect of transitions in order to understand the system
 - Perturbative calculation that expands around 1 minima will not see full picture

Why are topological objects interesting 2

- In complex time, topological objects are local minimas
- In the below example the instanton is the path that start at one maximum and just barely reaches the other maximum



Why are topological objects interesting 3

- In QCD in complex time, action is always positive
- Action bounded by ([Dmitri Diakonov Arxiv:hep-ph/0906.2456]):

$$0 \leq \int dx^4 Tr \left(F_{\mu\nu} - \tilde{F}_{\mu\nu} \right)^2 \tag{2}$$

$$\tilde{F_{\mu\nu}^a} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta}^a \tag{3}$$

Minimum is found when action S

$$S = \frac{8\pi^2}{g^2}|Q_t| \tag{4}$$

$$Q_t = \frac{1}{16\pi^2} \int dx^4 Tr[F_{\mu\nu} \tilde{F_{\mu\nu}}]$$
 (5)

- ullet Q_t is the 4-dimensional topological charge number
- QCD in complex time therefore contains several minimums with an action proportional to $\frac{8\pi^2}{a^2}$
- Contribution of each local minimum has to be included

Semi-classical description

- Expand around local minimum as $A_{\mu} = A_{\mu,top} + a_{\mu}$
- Integrate out a_{μ}

$$Z \approx \int DA_{\mu} \exp[-S(A_{\mu,top}) - a_{\mu}(x)M(x,x')a_{\mu}(x')]$$
 (6)

$$= \frac{1}{\sqrt{Det(M)}} e^{-\frac{8\pi^2}{g^2}|Q_t|} \tag{7}$$

- \bullet Certain directions in phase space does not change the action \to eigenvalue of M is 0
- Zero-mode contribution proportional to Volume they move in

$$Z = C(g)e^{-\frac{8\pi^2}{g^2}|Q_t|}V\tag{8}$$

Semi-classical description 2

- Well separated $Q_t = 2$ the same as 2 $Q_t = 1$ solutions
- Sum over all possible minimums

$$Z = \sum_{n} \frac{(C(g)e^{-\frac{8\pi^2}{g^2}}V)^n}{n!}$$
 (9)

- ullet Largest contribution not necessary around n=0 due to large factor of volume
- \bullet Depend on coupling constant g which is small at large temperature and large at small temperature
- n! is to remove double counting

Semi-classical description 3

Topological objects affect the interactions of the fermions

$$D_{\mu} = \partial_{\mu} + igA_{\mu} \tag{10}$$

$$Z \propto \int DA_{\mu}Det(D+m)\exp(-S(A_{\mu}))$$
 (11)

- Contribution of Dirac operator given by $\Pi_i(m+i\lambda_i)$
- ullet The amount of zero modes $(\lambda_i=0)$ are equal to $|Q_t|$
- · Objects like Chiral condensate depends on inverse of Dirac operator

Anti-Instantons and Chiral Condendate

- Anti-topological solutions are anti-selfdual $(F^a_{\mu
 u} = \tilde{F^a_{\mu
 u}})$
- Cannot be self-dual and anti-selfdual at the same time
- Breaks fermionic zero-modes
- Models of weakly interacting Instantons and anti-instantons has shown to create a region of small eigenvalues due to the breaking of the zero mode, creating a chiral condensate
- · Chiral condensate given by eigenvalue density at zero
- Banks-Casher relation

$$\Sigma = \pi \lim_{\lambda \to 0} \lim_{m \to 0} \lim_{V \to \infty} \rho(\lambda)$$
 (12)

How does topological objects look like

- The simplest solution one can construct is the $Q_t = 1$ configuration at zero temperature. The instanton
- One way to find the instanton is to find a selfdual $(F^a_{\mu\nu}=\tilde{F^a_{\mu\nu}})$ object that is a local minima
- [Dmitri Diakonov Arxiv:hep-ph/0906.2456]

$$A^{a}_{\mu} = \frac{2\bar{\eta}^{a}_{\mu\nu}x_{\nu}\rho^{2}}{x^{2}(x^{2} + \rho^{2})}$$
 (13)

$$A^{a}_{\mu} = \frac{2\bar{\eta}^{a}_{\mu\nu}x_{\nu}\rho^{2}}{x^{2}(x^{2}+\rho^{2})}$$

$$F^{a}_{\mu\nu}F^{a}_{\mu\nu} \propto \frac{\rho^{4}}{(x^{2}+\rho^{2})^{4}}$$
(13)

- This is a local object with a maximum at the origin, with a size defined by ρ
- The Dirac operator in the presence of this field has 1 zero mode, that sit also at the origin
- η 't Hooft symbol

Why do we need Instanton-dyons

- Instantons need to be generalized to finite temperature
 - This is called the Caloron
 - ullet Caloron is an infinity sum of Instantons separated by 1/T
- Instantons have Polyakov loop expectation value 1

$$P = Tr(Path(\exp(i\int_0^{1/T} A_4 dt)))$$
 (15)

- In pure gauge, the Polyakov loop is related to confinement
- With fermions, the connections is not as clear, but the topological object still need to follow the behavior of the Polyakov loop (chicken or egg question)

How does Instanton-dyons look like

- The generalized Caloron is constructed through ADHM construction, by requiring the Polyakov loop to be able to take any value [Thomas C. Kraan and Pierre van Baal arXiv:hep-th/9805168v1]
- \bullet This is introduced through N_c angles μ_i that correspond to the eigenvalues of the Polyakov loop

$$P = \exp(2\pi i * diag(\mu_1, \mu_2, ..., \mu_{Nc})) \Big|_{\phi = \pi}$$

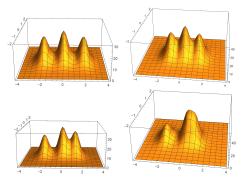
$$\psi(\tau + 1/T) = \exp(i\phi)\psi(\tau)$$

$$\psi(\tau + 1/T) = \exp(i\phi)\psi(\tau)$$

- These angles are periodic, and therefore live on a circle
- Each region depends on individual coordinates that can be interpreted as a position of an object
- \bullet Caloron therefore can be seen as being composed of N_c objects, which we call Instanton-dyons

How does Instanton-dyons look like 2

- ullet We therefore get a picture of N_c object inside one Caloron Solution
- Figures: Density of the instanton-dyons in x-y plane



- The sum of Instanton-dyons Add up to 1 Caloron
 - $Q_t = 1$
 - $S = 8\pi^2/g^2$
 - 1 fermionic zero mode
 - When well separated, each dyon holds a fraction proportional to

$$\nu_i = \mu_{i+1} - \mu_i$$

Topological objects on the Lattice

How do we see topological object on the lattice

- Direct:
 - Measure $F\tilde{F}$ on lattice
 - Pros:
 - See all Topological objects
 - Problem:
 - No simply way to use Link
 - UV noise needs to be removed with cooling
 - · Cooling affects topological objects
- Indirect:
 - Find fermionic zero-modes
 - Compare shape from lattice with zero-modes from analytic formula
 - Pros:
 - No need for cooling
 - Problem:
 - Only see some topological objects

The overlap Dirac operator

Needs exact zero-modes − > overlap Dirac operator

$$D_{ov} = 1 - \gamma_5 sign(H_W) , H_W = \gamma_5 (M - aD_W)$$
 (16)

ullet Obey the Ginsparg-Wilson relation within numerical precision (10^{-9})

$$\gamma_5 D_{ov}^{-1} + D_{ov}^{-1} \gamma_5 = \gamma_5 \tag{17}$$

- Operator is not local
- Expensive due to having to calculate the sign
- · Can make boundary condition anything we want

Expected temperature dependence of Topological objects

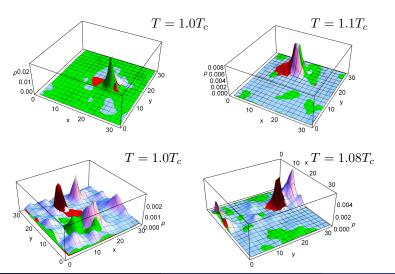
- Low temperature
 - Polyakov loop small
 - Polyakov loop eigenvalues close to 0, 1/3, 2/3
 - Coupling g large
 - Many dyons expected
- High temperature
 - Polyakov loop close to 1
 - Polyakov loop eigenvalues close to 0, 0, 0
 - Standard Caloron should work
 - Coupling g small
 - Few dyons expected

The overlap Dirac operator 2

- We explore the range $T = 1 1.2T_c$
- Configurations was generated with Physical masses using domain wall fermions
- Size: $N_s = 32$ and $N_\tau = 8$
- We find the zero-modes using the overlap operator with zero fermion mass
- Zero-modes appear alone
- near zero-modes (λ around 10^{-6}) appears in pairs
- $N_c = 3$
- Will explore 3 boundary conditions:
 - $\phi/(2\pi) = 1/2$, 1/6, 5/6
 - ullet Each value of ϕ centered in region of suspected dyon
 - L, M_1, M_2

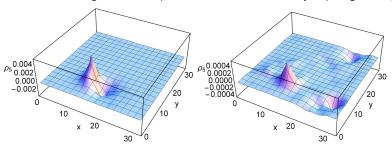
Zero-modes of the overlap Dirac operator

- Zero-mode density ρ examples (sum over t)
- Boundary condition is, red $\phi=1/2$, blue $\phi=1/6$, green $\phi=-1/6$



Near-zero-modes of the overlap Dirac operator

- We can also look at near-zero-modes
- Chiral density ρ_5
- Smallest eigenvalues expected to be dominated by topological objects



- Left: $\phi = 1/2$, right $\phi = 1/6$
- $T = 1.1T_c$
- Shows difference in distribution of different dyons
- Rasmus Larsen, Sayantan Sharma, Edward Shuryak, arxiv:hep-lat/1912.09141

Comparison between lattice and theory

Analytic fitted to lattice zero-modes

- \bullet Fit analytic formula to the lattice calculated zero-modes by minimizing χ^2
- Error bars assumed to be same for all data (Since there are no error bars from the modes)
- Fitted with $9^3 * 8$ points (entire t direction)
- Fit are only done on cases where individual peaks are observed
- Configurations have $|Q_t| \leq 3$
 - Even though Q_t is 1, the zero-modes can (and most is) comprised of several peaks, though often far away from each other (we fit around largest peak)
 - Even though Q_t is 1, we expect many more dyons in the system, but difference in number of dyons and anti-dyons to be 1 (for each type of dyon)

Analytic density of dyon zero-modes

- Need to calculate zero-modes of Dirac operator from Instanton-dyons and from Lattice
- We will look at density of zero-modes, since it is gauge invariant
- Instanton-dyon zero-mode found from solving:

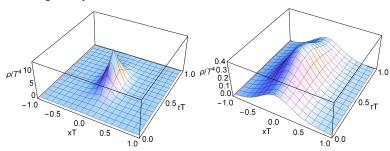
$$\rho(x) = -\frac{1}{4\pi^2} \partial_\mu^2 f_x(\phi, \phi) , \qquad (18)$$

- [Pierre van Baal Arxiv:hep-lat/9907001]
- ullet f_x lives on the circle, and constants are dependent on the dyon positions

$$\left(D_{\phi}^{2} + r^{2}(x,\phi) + \sum_{m=1}^{N_{c}} \delta_{m}(\phi)\right) f_{x}(\phi,\phi') = \delta(\phi - \phi') .$$
(19)

Zero-modes of Instanton-dyons

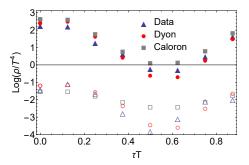
- zero-mode: Short range behavior dependent on distance between dyons
- ullet zero-mode: Long range behavior dependent on $\mu-\phi$
- Left: Dyons close
- Right: Dyons Far



• Periodic in τ direction

How does the Shape of zero-modes compare

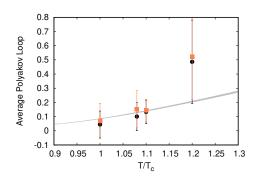
- ullet We fit the analytic formula to the lattice **data** zero-modes by minimizing χ^2
- ullet Figure: 1D slice along au direction of 4D density fit
- Filled points: (x,y,z) at the center of the zero-mode
- Open points: (x,y,z) far away from the center of the zero-mode



- Short distance (upper): Dyon and Caloron able to explain reasonably
- Long distance (lower): Dyon describes behavior around minimum better

How is the predicted Polyakov Loop

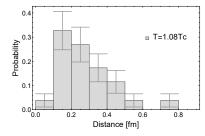
- \bullet From the χ^2 fit we obtain position of dyons and eigenvalue of Polyakov loop for the specific configuration
- Can recreate Polyakov loop expectation value from fit
- Low statistics for $T = 1.2T_c$
- Different points are for different starting conditions in χ^2 fit

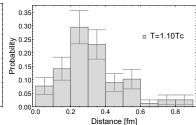


Grev line is lattice results

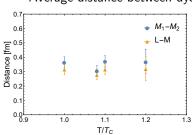
Other results from fits

Distance distribution to other dyons inside the caloron





Average distance between dyons inside the caloron



Ensembles of dyons

Ensembles of dyons

 Describe the possible combinations of dyons and their contributions to the path integral

$$Z = \sum_{n_{L},n_{M1},n_{M2}} \frac{(C(g,\nu_{L})e^{-\nu_{L}\frac{8\pi^{2}}{g^{2}}}V_{3})^{n_{L}}}{n_{L}!}$$

$$* \frac{(C(g,\nu_{M1})e^{-\nu_{M1}\frac{8\pi^{2}}{g^{2}}}V_{3})^{n_{M1}}}{n_{M1}!} * \frac{(C(g,\nu_{M2})e^{-\nu_{M2}\frac{8\pi^{2}}{g^{2}}}V_{3})^{n_{M2}}}{n_{M2}!}$$

$$* (Anti-dyon-contributions) * Exp[-\Delta S]$$

$$(20)$$

- ullet ΔS are corrections from interactions of all dyons and anti-dyons
- Typically assumes that amount of dyons and anti-dyon are the same
- Amount of L, M_1 and M_2 dyons not necessarily the same

Interactions

 A dyon and anti-dyon is not a self-dual solution, creates difference compared to action of dyon

$$\Delta S_{class}^{d\bar{d}} = -\frac{S_0 C_{d\bar{d}}}{2\pi} \left(\frac{1}{rT} - 2.75\pi \sqrt{\nu_i \nu_j} e^{-1.408\pi \sqrt{\nu_i \nu_j} rT} \right)$$
 (21)

A repulsive core is used for all types of dyons

$$\Delta S_{class}^{core} = \frac{\nu V_0}{1 + e^{2\pi\nu T(r - r_0)}} \tag{22}$$

- Introducing holonomy cost action
- Assumed $\nu = \nu_{M1} = \nu_{M2}$

$$\Delta S_{\nu} = \frac{4\pi^2}{3} (2[\nu(1-\nu)]^2 + [2\nu(1-2\nu)]^2) - N_f \frac{4\pi^2}{3} (2\nu^4 - \nu^2)$$
 (23)

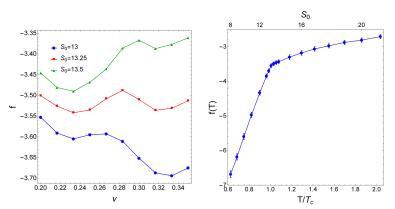
Simulation

- ullet Simulation of ΔS done using Monte-Carlo simulation with 120 dyons
- Input:
 - Holonomy $\nu = \nu_{M1} = \nu_{M2}$
 - Density of dyons n_L and n_M
 - Action of one instanton $S_0 = \frac{8\pi^2}{g^2}$
- Temperature found from running of coupling constant g
- Dominating configuration has smallest free energy density f = -ln(Z)/V

Pure Gauge Ensemble

- 2 minimums exist, one at P=0, $\nu=0.33$ and one away from this
- At specific Temperature/Action of instantons, dominating minimum changes

•
$$S_0 = \frac{8\pi^2}{g^2}$$
, $f = -\ln(Z)/V$, $\nu = \nu_{M1} = \nu_{M2}$

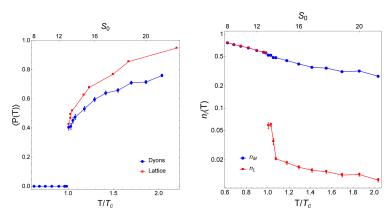


Dallas DeMartini and Edward Shuryak: arxiv:2102.11321

Pure Gauge: Polyakov loop and density

- 1.st order transition from jump in u
- Density of L dyons much smaller at deconfined phase, as it becomes heavier

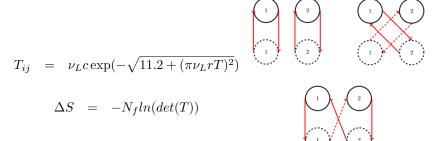
•
$$S_0 = \frac{8\pi^2}{g^2}$$



Dallas DeMartini and Edward Shuryak: arxiv:2102.11321

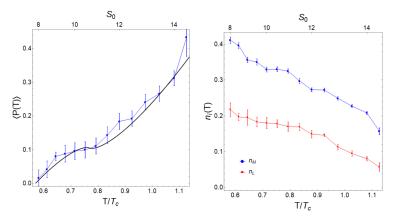
Quarks in the ensemble

- Quarks included through the zero-mode contribution to the Dirac operator
- Introduces a jump from dyon to anti-dyon
- ullet Amplitude to jump is described by matrix T_{ij}



Polyakov loop and density

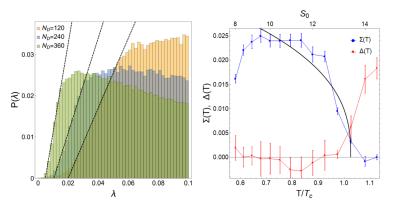
- Transition with quarks are smooth
- Density of L dyons always smaller, due to quarks-zero-modes on L dyons



Dallas DeMartini and Edward Shuryak: arxiv:2108.06353

Chiral condensate and mass Gap

Chiral condensate goes to zero and Mass gap appears



Dallas DeMartini and Edward Shuryak: arxiv:2108.06353

Summary

- Topological objects represent tunneling between real time vacuum states
- Need to include all (important) minima for precise description
- Instanton-dyons comes from the need to generalize to finite temperature and Polyakov loop different from 1
- Instanton split into N_c fractions, each fraction is a dyon
- Zero-modes shape depend on dyon position and Polyakov loop
- Lattice zero-modes are in good agreement with dyon description
 - \bullet Shape well described, no obvious differences, though fluctuation of size 20% observed
 - Polyakov loop reproduced, more statistics needed, especially at higher temperature
- A semi-classical ensemble of dyons in SU(3) done
 - Dominating minimum with smallest free energy changes with temperature
 - Correctly predicts the behavior of the chiral condensate and Polyakov loop