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» Empirical measure at time t
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» 1" is a Markov process on M;(Z) with infinitesimal generator

LA = Y NE@ e (6) [f (f + % - (/;\7> B f(g)] ’
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» Under suitable conditions, LV possesses a unique invariant
probability measure p".

» Goal: study a large deviation principle (LDP) for the family
{p". N >1}.
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Example: Medium access control (MAC) algorithms

» N nodes accessing a common wireless medium. Interaction
among nodes via the distributed MAC protocol.

> State XV(t) represents aggressiveness of packet transmission.
> £={(z,z+1),z >0} U{(z,0),z > 1}.

» State evolution:

» Becomes less aggressive after a collision.
»> Moves to the most aggressive state after a successful packet
transmission.

» Transition rates:
>\z,0(§) = ¢ exp{—(c, §>}7
Azz+1(§) = (1 — exp{—(c,&)}).
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» Empirical measure process pN is a D([0, T], M1(Z))-valued
random element.

» Typical behaviour of N (mean-field limit):
Let uN(0) — v as N — oo.
Assume that )\, ./ are Lipschitz continuous.
Then {(1V(t),0 < t < T)} converges in probability to the
solution to the McKean-Vlasov equation:

/:Lt:/\;tutv tZO) Mo = V.

[Oelschlager (1984), Bordenave et al. (2010)].
» u": a random perturbation of the above ODE.
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> Let S be a complete and separable metric space. Let
{XN N > 1} be a sequence of S-valued random variables.

» Roughly, P(XN € A) ~ exp{—Ninf,ca l(x)}.

> Definition: {XN N > 1} is said to satisfy the LDP on S with
rate function / if

¢ (Compactness of level sets). For any s > 0,
®(s) :={x € S:/(x) < s} is a compact subset of S;

O (LDP lower bound). For any v >0, >0, and x € S, there
exists Ny > 1 such that

P(dist(XN, x) < §) > exp{—N(I(x) +7)}
for any N > Np;
O (LDP upper bound). For any v >0, § > 0, and s > 0, there
exists Ny > 1 such that

P(dist(X", &(s)) > §) < exp{~N(s — 7)}

for any N > Nj.
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McKean-Vlasov trajectory

Another path p.
Prob &~ e NSo.n(ul),




Alternative representation for Sy 77(14|v)
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» Assume that the McKean-Vlasov equation has a unique
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» Consider the Freidlin-Wentzell quasipotential

V(&) = inf{Sjo,11(#l€7) s po =& o7 =&, T >0}, § € Mi(Z).
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> V is a natural candidate rate function for the family
{p", N =1}

» Small noise diffusions (Freidlin and Wentzell (1984)),
finite-state mean-field models (Borkar and Sundaresan
(2012)), reaction-diffusion equations (Sowers (1992), Cerrai
and Rockner (2004)), stochastic wave equation (Martirosyan
(2017)).
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» Take fx to be an approximation of 9J.
Note that ¥(2') — ¥(z) <1+ log(z + 1).
Then:

S, 1y(1lv) > (&, fie) — (€%, ) — C.

Now let fx — 9 to get V(§) = 0.

» There are barriers to moving from £* to £ which are crossed in
the stationary regime, but not in any finite time.
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> There exist positive constants A and ) such that
A ) (§)<L and A < A\, 0(6) <X
z+1 - z,z+1 _z+17 A XS Az0 = /\,

for each £ € My(Z).

» The functions (z + 1)A; .11(), z € Z, and A, 0("),
z € Z\ {0}, are uniformly Lipschitz continuous on M;(Z2).

» There is a unique globally asymptotically stable equilibrium £*
for the McKean-Vlasov equation

fre = A:,t,uta Mo = V.

Theorem
Under the above assumptions, the family {o", N > 1} satisfies the
LDP on My(Z) with rate function V.
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Main difficulty: For any £ € My(Z) with V(§) < oo, we can
produce a sequence &, — £ in Mi(Z) as n — oo, but
(&€n, V) = 00, so that V/(&,) = oo for all n.

Earlier, we could not restrict attention to
M= {E € Mi(Z):(£,9) < oo}
But under the stated conditions, now, we can.

We transfer the process-level uniform LDP for iV to the
stationary regime (Sowers (1992)).
Main ingredients in the proof:
> Exponential tightness of {p"}:
eV ({€: (€,9) < M}€) < exp{—NM'} for all N.
> The process-level uniform LDP for {uN} over compact subsets
of My(2).
» A continuity property of V: If £, — & in My(Z) and
(€n,0) — (£,9) as n — oo, then V(&,) — V(§) as n — .
» The strong Markov property of ;.
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