
Turbulence and multifractality in some models for
active fluids

Rahul Pandit

Centre for Condensed Matter Theory, Department of Physics
Indian Institute of Science, Bangalore, India.

06 November 2023
Active Matter and Beyond, ICTS, Bangalore.



Felicitations

Sriram: Congratulations and best wishes!



Acknowledgements

Support: SERB, CSIR, UGC, NSM, and SERC (IISc).



References

▶ Irreversibility in bacterial turbulence: Insights from the mean-bacterial-velocity
model, Kolluru Venkata Kiran, Anupam Gupta, Akhilesh Kumar Verma, and
Rahul Pandit, Phys. Rev. Fluids 8, 023102 (2023).

▶ Activity-induced droplet propulsion and multifractality, Nadia Bihari Padhan and
Rahul Pandit, Physical Review Research, 5, L032013 (2023).

▶ Active-turbulence-induced coarsening arrest in the active
Cahn-Hilliard-Navier-Stokes model, Nadia Bihari Padhan and Rahul Pandit,
(Manuscript in preparation).

▶ An analytical and computational study of the incompressible Toner-Tu
Equations, John D Gibbon, Kolluru Venkata Kiran, Nadia Bihari Padhan, and
Rahul Pandit - Physica D: Nonlinear Phenomena, 2022.



Outline

▶ Introduction to active fluids.

▶ Models for active fluids
▶ Illustrative results.

▶ Irreversibiity in bacterial turbulence.
▶ Active coarsening arrest and turbulence.
▶ Self-propelled droplets.
▶ Regularity criteria for the incompressible Toner-Tu equations.

▶ Conclusions.



Active Fluid Flows: Examples



Confined Active Fluids: Examples

(left: Movie) A droplet of Bacillus subtilis (Formation of a single
spiral vortex)
(right: Movie) Dense suspension of Escherichia coli inside a
spherical droplet (Random walk)

(left): Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex, R Goldstein et al., PRL, 2013.

(right): Bacteria driving droplets, Rodrigo Soto et al., Soft Matter, 2020



Direct Numerical Simulation (DNS)

To calculate the relevant fields:

▶ Simulation domain: periodic box of length 2π.

▶ N grid points in each direction.

▶ We solve the nonlinear equations by using a pseudospectral method
(evaluate derivatives in Fourier space and products in physical space).

▶ We do not have to impose boundary conditions on a moving droplet
boundary.

▶ Time marching: Semi-implicit exponential time differencing with RK2
method (ETD2RK).

▶ Computers with Graphics Processing Units (e.g., the NVIDIA A100,
V100), which we program in CUDA.

▶ Massively Parallel pseudospectral FORTRAN and C codes.



Irreversiblity in Bacterial Turbulence



Mean-Bacterial-Velocity Model

▶ Mean-bacterial-velocity model [H.H. Wensink, et al., PNAS,
109, 14308 (2012)]or the Toner-Tu-Swift-Hohenberg (TTSH)
model [Alert et al., op. cit.] for the velocity field u(x, t).

▶ This model has been employed to study turbulence in dense
suspensions of Bacilis subtilis:

∂u

∂t
+ λ0u.∇u = −∇P − (α+ β|u|2)u

+ Γ0∇2u− Γ2∇4u;

∇ · u = 0. (1)

▶ P(x, t): pressure; the constant density ρ = 1.

▶ This equation is not Galilean invariant; it reduces to the
Navier-Stokes equation with friction for
Γ0 > 0, α > 0, Γ2 = 0, λ0 = 1, and β = 0.



Mean-Bacterial-Velocity Model

▶ We use periodic boundary conditions because we study statistically
homogeneous and isotropic bacterial turbulence.

▶ We restrict ourselves to two dimensions (2D) as most experiments in this field
have been conducted in quasi-2D systems.

▶ Γ0 < 0 and Γ2 < 0; a spatial Fourier transform of the equation, followed by a
linear-stability analysis about the spatially uniform state, yields the wave vectors
k, with magnitude k, for which there are linearly unstable modes.

▶ Characteristic length, velocity, and time scales:

Λ = 2π

√
2Γ2

Γ0
; v0 =

√
|Γ0|3

Γ2
; θ =

Λ

v0
. (2)

▶ These unstable modes inject energy into the system.

▶ This energy is dissipated by (a) the linearly stable modes, (b) the cubic term
with the coefficient β > 0, and (c) the linear term with the coefficient α, if
α > 0.



Mean-Bacterial-Velocity Model

▶ Moreover, there is energy injection, or activity, if α < 0.

▶ Γ0 < 0 and λ0 ̸= 1 also induce activity.

▶ λ0 > 1 for pusher swimmers like B. subtilis.

▶ We hold λ0, β, and Γ0 fixed, and we tune the activity principally by varying α.

▶ The interplay between these energy-injection and dissipation terms leads to
self-sustained, turbulence-type patterns. The effective viscosity

k2νeff (k) =
(
α + 2βu2rms + Γ0k

2 + Γ2k
4
)

(3)

can be used to rewrite Eq. (1) in a Navier-Stokes form.

▶ Clearly, the wave numbers k at which energy is injected (dissipated) are those
with νeff (k) < 0 (> 0); the root-mean-square velocity urms must be obtained
from a calculation.

▶ We solve this equation by a pseudospectral direct numerical simulation (DNS)
with N2 = 10242 collocation points (for parameters see K.V. Kiran op. cit.); we
have checked in representative cases that our results are unchanged if we use
N2 = 20482 collocation points.



Vorticity and Energy Spectra

Filled contour plots of the vorticity, with some tracers (black points), and energy
spectrta for illustrative values of α.; the gray-shaded areas indicate the ranges of k for
which νeff (k) < 0.



Flux and Scales

Flux and scales for illustrative values of α.; the gray-shaded areas indicate the ranges
of k for which νeff (k) < 0.



Irreversibility: Fluid Turbulence

▶ Irreversibility: not easily apparent if we look at movies, played forward or
backward in time, of Lagrangian or inertial particles that are advected by
turbulent flows.

▶ However, the statistics of such particles in turbulent flows yields signatures of
this irreversibility [see, e.g., H. Xu, et al. Flight–crash events in turbulence,
PNAS111, 7558 (2014); and A. Bhatnagar, et al., Heavy inertial particles in
turbulent flows gain energy slowly but lose it rapidly, Phys. Rev. E 97, 033102
(2018)].

▶ We analyse (a) the increments

W (t, τ) ≡ E (t + τ) − E (t) (4)

of the particle energy E at time t or (b) the power

pL(t) ≡
dE

dt
= aLvL, (5)

with vL the magnitude of the tracer velocity and aL the component of its
acceleration along its trajectory.

▶ It has been found that probability distribution functions (PDFs) of W and pL, i
obtained by averaging over t and the trajectories of all tracers, are negatively
skewed, i.e., on average, such particles lose energy faster than they gain it.



Irreversibility: Bacterial Turbulence

▶ We characterise irreversibility in bacterial turbulence in the
mean-bacterial-velocity model..

▶ We uncover an important, qualitative way in which irreversibility in bacterial
turbulence is different from its fluid-turbulence counterpart:

▶ For large positive (or large but negative) values of the friction (or activity)
parameter α, the PDFs of W (τ) or pL are positively skewed. We quantify this
asymmetry by computing the skewnesses:

PSk =
⟨p3L⟩

⟨p2L⟩
3
2

and WSk (τ) =
⟨W 3(τ)⟩

⟨W 2(τ)⟩
3
2

. (6)

▶ Thus, irreversibility in bacterial turbulence can lead, on average, to particles
gaining energy faster than they lose it, for certain ranges of values of α.



Energy and Skewness

Top panel: Energy vs time. Bottom panel: (e) the skewness PSk and (f) WSk (τ) for
τ/θ = 0.025; blue and pink shading indicate, respectively, ranges of α in which the
skewnesses are positive and negative.



Probability Distribution Functions (PDFs)

(a) Semi-log plot of the normalized PDFs (a) P(pL) and (b) P(W (τ)), with τ/θ going
from 0.025, 0.08, 0.13, 0.25, 0.38, to 0.50, as we move from the outermost to the
innermost curve; in (a) negative values of pL (dashed) are reflected about the vertical
axis to highlight the asymmetry of P(pL). (c) Log-Log (base 10) plot versus τ/θ of
the skewness WSk (τ). Inset: for the same range of τ/θ, a log-log plot versus τ/θ of
⟨W 3(τ)⟩/⟨E⟩3; the dashed black line is a fit to ⟨W 3(τ)⟩/⟨E⟩3 ∼ (τ/θ)3.



Probability Distribution Functions (PDFs)

Okubo-Weiss parameter: QL(t) =
ω2−σ2

4

∣∣∣∣
xL(t)

:

(a) Semi-log plots of P(QL) for runs A1 (blue) and A13 (green). Inset gives the plot
versus α of skewness, QSk , for P(QL). (b) Log-log plot of C(Q+

L ) for run A1; the
shaded region shows a power-law and the solid black line gives the fit
C(Q+

L ) ∼ [Q+
L ]−ϑ, with ϑ = 0.37± 0.04. (c) Plots versus α of PSk for the conditioned

PDFs (see text) P(pL|Q
+
L ) (violet) and P(pL|Q

−
L ) (maroon).



Conclusions I

▶ We have shown how to use the mean-bacterial-flow model to study irreversibility
of bacterial turbulence.

▶ Quasi-2D experiments on dense suspension of aerobic bacteria, e.g., B. subtilis,
show that the average speed of bacterial flow increases with the oxygen
concentration.

▶ We can increase the activity by making α large and negative; in experiments, the
activity can be increased by enhancing the oxygen, because the polar-ordered

velocity scale vp =
√

|α|

β
is a measure of the swimming speed of bacteria;

urms ∝ α (cf. C. P. Sanjay and A. Joy, Phys. Rev. Fluids 5, 024302 (2020)).

▶ In the frictional or α > 0 regime, the value of α can be tuned in experiments by
changing the bottom friction or the air-drag-induced friction.

▶ Therefore, experiments on dense bacterial suspensions should be able to
examine irreversibility in bacterial turbulence as a function of the activity as we
have done above.



Active coarsening arrest and turbulence



Active coarsening arrest and turbulence

▶ Motivation: To study the active coarsening arrest and
turbulence in active model H in the presence of inertia.

▶ The model studies the motility-induced phase separation
(MIPS) in the presence of hydrodynamic interactions.

▶ Order parameter: ψ→ active microswimmers field.

F [ψ,∇ψ]/Ω =
3

16

σ

ϵ
(ψ2 − 1)2 +

3

4
σϵ|∇ψ|2

▶ ψ ≃ +1 → High density; ψ ≃ −1 → Low density

Active Model H: Scalar Active Matter in a Momentum-Conserving Fluid, A. Tiribocchi, R. Wittkowski, D,

Marenduzzo, and M.E. Cates, Phys. Rev. Lett. 115, 188302 (2015).



Active CHNS model

∂tψ+ (u · ∇)ψ = M∇2

(
δF
δψ

)
∂tω+ (u · ∇)ω = ν∇2ω− αω+ [∇×Sψ]

∇ · u = 0 ω = (∇× u)
Sψ = −(3/2)ζϵ∇2ψ∇ψ

▶ Important: σ ̸= ζ
ζ > 0 → Extensile swimmers ζ < 0 → Contractile swimmers

▶ We consider ζ < 0 to study turbulence.

Active Model H: Scalar Active Matter in a Momentum-Conserving Fluid, A. Tiribocchi, et al., op. cit.



Active coarsening arrest

(c) (d)

(a) (b)

Figure: Pseudo-gray-scale plots of the ψ field [at representative times in
the nonequilibrium statistically steady state (NESS)] for the activity
parameter (a) |ζ| = 0.01 and (b) |ζ| = 1.5. Pseudocolor plots of the
vorticity field, normalized by the maximum of |ω|, are shown in (c) and
(d) for the parameters in (a) and (b), respectively.



Active coarsening arrest
▶ Coarsening length scale, L(t) =

∑
k Λ(k,t)∑
k Λ(k,t)

▶ Λ(k , t) ≡
∑

k≤k ′<k+1

|ψ̂(k ′, t)|2

(a) (b)

Figure: (a) Plot of L(t) versus time t for various values of |ζ|; the plot
for ζ = 0 shows growth that is consistent with the Lifshitz-Slyozov form
L(t) ∼ t1/3 (dashed line); L(t) saturates to a finite value for |ζ| > 0.
(b) Log-linear plots of the mean coarsening-arrest scale Lc = ⟨L(t)⟩t (red
curve) and the integral-scale Reynolds number ReLI

(blue curve) versus
|ζ|.



Active CHNS: Spectra and Budget

▶ Energy spectrum: E(k)
▶ Inertial energy transfer [T (k)], the energy dissipations arising

from the friction [Dα(k)] and the viscosity [Dν(k)], and the
energy transfer via the active stress [Sϕ(k)].

Figure: Left panel: Log-log plot of E(k) versus k . Energy budget for low
(middle panel) and high (right panel) |ζ|.



Conclusions II

▶ We have shown that active turbulence arrests phase separation [cf., its
fluid-turbulence counterpart in P. Perlekar, N. Pal, and R. Pandit, Scientific
Reports 7, 44589 (2017) and references therein].

▶ We quantify this suppression by showing how the coarsening-arrest length L(t).
▶ We characterise the statistical properties of this active-scalar turbulence by

employing spectra and fluxes that are used in fluid turbulence and domain
growth.

▶ Our results are of potential relevance to systems of contractile swimmers, e.g.,
Chlamydomonas reinhardtii and synthetic active colloids.



Self-propelled Droplets



Self-propelled Droplets

▶ Motivation: Self-organization of microswimmers (extensile
and contractile) confined to a droplet.

▶ Two order parameters: ϕ→ binary emulsion droplet;
ψ→ active microswimmers field.

F [ϕ,∇ϕ,ψ,∇ψ]/Ω =
3

16

(
σ1

ϵ1
(ϕ2 − 1)2 +

σ2

ϵ2
(ψ2 − 1)2

)
−βϕψ

+
3

4

(
σ1ϵ1|∇ϕ|2 + σ2ϵ2|∇ψ|2

)
▶ ϕ ≃ +1 → Fluid-A; ϕ ≃ −1 → Fluid-B.

▶ ψ ≃ +1 → High density; ψ ≃ −1 → Low density

▶ β > 0 → Attractive coupling.



Self-propelled droplet: Active CHNS model

∂tϕ+ (u · ∇)ϕ = M1∇2

(
δF
δϕ

)
∂tψ+ (u · ∇)ψ = M2∇2

(
δF
δψ

)
∂tω+ (u · ∇)ω = ν∇2ω− αω+ [∇× (Sϕ +Sψ)]

∇ · u = 0 ω = (∇× u)
Sϕ = −(3/2)σ1ϵ1∇2ϕ∇ϕ
Sψ = −(3/2)σ̃2ϵ2∇2ψ∇ψ

▶ Important: σ2 ̸= σ̃2
σ̃2 > 0 → Extensile swimmers
σ̃2 < 0 → Contractile swimmers

▶ Activity parameter: A = σ̃2/σ2



Self-propelled droplet: Dynamics for different A

Figure: Illustrative pseudocolor plots of ψ, with the ϕ = 0 contour shown in
magenta, at different representative times (increasing from left to right) for (a) A = 0
(no droplet propulsion), (b) A = 0.15 (rectilinear droplet propulsion), and (d) A = 1
(turbulent droplet propulsion). In (c) we show, for A = 0.15, vector plots of the
velocity field u, with the ϕ = 0 contour line (magenta), overlaid on a pseudocolor plot
of the vorticity ω normalised by its maximal value; the lengths of velocity vectors are
proportional to their magnitudes.



Self-propelled droplets: Animations



Self-propelled droplet: MSD

(a) Plots of the integral length scale L(t)/R0 versus (t − t0)ν/R
2
0 for A = 0 (red curve), A = 0.15 (magenta

curve), A = 0.5 (green curve), and and A = 1 (blue curve), with t0 is a non-universal offset that depends on A.
(b) Illustrative trajectories of the droplet’s CM for A = 0.15 (orange) and A = 1 (blue-purple), with colorbars

indicating the simulation time. (c) Log-log plots of the mean-square-displacement M(t) versus tν/R2
0 (after the

removal of initial transients) for droplet-CM trajectories: A = 0.15 (red), A = 0.5 (green), A = 1 (blue), A = 1.5
(dark orange), and A = 2 (magenta); initially these plots show ballistic regimes, but, at large times, we see

M(t) ∼ tζ, with ζ = 2 (rectilinear motion for A = 0.15), and superdiffusive regimes with
ζ = 1.67 ± 0.02 ≃ 5/3 (for A = 0.5) and ζ = 1.28 ± 0.05 ≃ 4/3 (for A = 2) via local-slope analysis (the inset

shows plots of ζ versus t); plots for different values of A are displaced vertically for ease of visualization.



Multifractal interface fluctuations

Figure: (a) Plots versus the non-dimensionalized time tν/R2
0 of the scaled

droplet-CM speed UCM/U0 for A = 0.15 (magenta curve, which has been moved up to
aid visualization), A = 0.5 (green) and A = 1 (blue). (b) Semilog plots of the PDF
P(UCM/U0) for A = 0.5 (red), A = 0.75 (green), A = 1 (blue), and A = 1.5
(magenta). (c) Semilog plot of U0 versus A. (d) Plots versus tν/R2

0 of the normalised
droplet perimeter Γ(t) for A = 0.5 (green), A = 1 (red), and A = 1.5 (blue). (e)
Semilog plots of the PDF of PΓ (Γ) for A = 0.5 (green), A = 0.75 (magenta), A = 1
(red), and A = 1.5 (blue). (f) Plots of the multifractal D(h) versus the Hurst
exponent h, obtained from Γ(t), for A = 1.5.



Conclusions III

▶ We have developed a minimal model for assemblies of contractile swimmers,
without alignment interactions, en- capsulated in a droplet of a binary-fluid
emulsion.

▶ Our model captures the droplet interface (via the ϕ = 0 contour) and its
multifractal fluctuations.

▶ Our model also leads to droplet self-propulsion, which is rectilinear at low
A(≃ 0.15) and chaotic for large values of A, at which the CM of the droplet
shows superdiffusive motion.

▶ Our results are of potential relevance to systems of contractile swimmers, e.g.,
Chlamydomonas reinhardtii.



Incompressible Toner-Tu (ITT) Model



Incompressible Toner-Tu (ITT) Model

(∂t + λu · ∇)u +∇p = αu + ν∆u − βu |u |2 . (7)

Introduce a typical velocity field U0 for which we have two
definitions:

U0 =
√
α/β ; U0 = ν/L . (8)

Then primed dimensionless variables are defined thus :

x ′ = L−1x ; t ′ = U0L
−1t ;

u ′ = λU−1
0 u ; p ′ = λU−2

0 p . (9)



Non-Dimensional ITT

With the primed variables defined as above, we have the following
dimensionless form for ITT:

(∂t + u · ∇)u +∇p = α0u + Re−1
ν ∆u − Reβ u |u |2, (10)

,together with the incompressibility condition divu = 0. These
operate on the unit periodic box Vd = [0, 1]d . The
non-dimensional parameters are defined as follows :

Reν =
U0L

ν
, Reβ =

βU0L

λ2
, α0 = LαU−1

0 . (11)



An invariant scaling for ITT and NSE

The incompressible NSEs and the ITT equations possess the
following powerful invariant scaling property involving an arbitrary
parameter ℓ:

x ′ = ℓ−1x ; t ′ = ℓ−2t ; u = ℓ−1u ′; (12)

which means that these equations are valid at every scale. The
effect of this invariance is to scale the norms ∥∇nu∥2m defined by

∥∇nu∥2m =

(∫
Vd

|∇nu |2mdVd

)1/2m

(13)

in the following way:

∥∇nu∥2m = ℓ−1/αm,n,d∥∇ ′nu ′∥2m; αn,m,d =
2m

2m(n + 1) − d
.(14)



An invariant scaling for ITT and NSE

The αn,m,d are a product of the invariance property (12). A
dimensionless version of the norms defined in (14) is given by

Fn,m,d := ν−1L1/αn,m,d∥∇nu∥2m . (15)

It has been shown that, for d = 2, 3, and for n ≥ 1 and
1 ≤ m ≤ ∞, weak solutions of the incompressible NSEs obey〈

F
(4−d)αn,m,d

n,m,d

〉
T
<∞ . (16)

The angular brackets ⟨·⟩T represent the time average up to a time
T , i.e.,

⟨·⟩T =
1

T

∫T
0
· dτ . (17)



An invariant scaling for ITT and NSE

The parallel scaling properties of the ITT equations and the NSEs
suggest that the exponents αn,m,d in (14) should be the same in
both cases. Therefore, taking into account the factor of 4− d in
the exponent, we define the following for ITT :

▶ d=2

Pn,m = ∥∇nu∥2αn,m,2
2m ; αn,m,2 =

m

m(n + 1) − 1
. (18)

▶ d=3

Qn,m = ∥∇nu∥αn,m,3
2m ; αn,m,3 =

2m

2m(n + 1) − 3
. (19)



Weak solutions for ITT, d=2

We prove analytically the following inequalities for d=2:

▶ With the definition ⟨P0,m⟩T =

〈
∥u∥

2m
m−1
2m

〉
T

, for m > 2 ,

⟨P0,m⟩T ≤ c A
m

m−1
0 (α0Reν)

m−2
m−1 . (20)

▶ n = 1 and m = 1

⟨P1,1⟩T ≤ α0A0Reν , (21)

▶ n = 1

⟨P1,m⟩T ≤ cm (α0Reν)
3m−2
2m−1 A

m
2m−1
0 . (22)

▶ n ≥ 2,

⟨Pn,m⟩T ≤ cn,mα
2m

m(n+1)−1

0

(
α0A0Re

3
ν

) mn−1
m(n+1)−1 . (23)

In all the above inequalities, cn,m are constants and
A0 ≡ α0Re

−1
β



Computational results, d=2

Figure: Illustrative plots for U0 =
√
α/β for various runs in d=2. First

row: plots versus Reν of ⟨P1,1⟩T ( solid black line). Second row: Plots
versus Reν of ⟨P0,m⟩T and ⟨P1,m⟩T . Curves for m = 2, 3, 4, 5, 6, 7, 8, 9,
and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange,
and yellow, respectively. Dashed blacked lines gives us the analytical
upper bound.



Global regularity of ITT for d=2
Defining n derivatives of u in L2(Vd) as

Hn =

∫
Vd

|∇nu |2dVd . (24)

We can first establish a full ladder theorem:

1
2
Ḣn ≤ α0Hn − Re−1

ν Hn+1 + cn,1H
1/2
n+1H

1/2
n ∥u∥∞

+ cn,2ReβHn∥u∥2∞ ; (25)

and subsequently show:

H1(T ) ≤ H1(0) exp

{∫T
0

(
α0 + c Re2βReν∥u∥44

)
dτ

}
≤ H1(0) exp

{
α0

(
1+ c Re2βReνA2

0

)
T
}
, (26)

which is finite for every finite T . Control over the H1-norm
establishes global regularity in this 2d case but not a global
attractor, which requires a uniform bound for all t.



Weak solutions for ITT, d=3

We prove analytically the following inequalities for d=3:

▶ With the definition Q0,m = |u |
2m

2m−3
2m , for m > 2,

⟨Q0,m⟩T ≤ c A
2(m+3)
5(2m−3)

0

(
α0Re

2
ν

) 9(m−2)
5(2m−3) . (27)

▶ For m = 1 and n = 1 and n = 1

⟨Q1,1⟩T ≤ α0A0Reν; ⟨Q2,1⟩T ≤ c α0Re
2
ν. (28)

▶ For n ≥ 2 and m ≥ 1,

⟨Qn,m⟩T <∞ (29)



Computational results, d=3

Figure: Illustrative plots for U0 =
√
α/β for various runs in d=3. First

row: plots versus Reν of ⟨Q1,1⟩T ( solid black line). Second row: Plots
versus Reν of ⟨Q0,m⟩T and ⟨Q1,m⟩T . Curves for m = 2, 3, 4, 5, 6, 7, 8, 9,
and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange,
and yellow, respectively. Dashed blacked lines gives us the analytical
upper bound.



Conclusions IV

▶ The incompressible Toner–Tu (ITT) partial differential equations (PDEs) are an
important example of a set of active-fluid PDEs. They share certain properties
with the Navier–Stokes equations (NSEs), such as the same scaling invariance,
but there are also important differences.

▶ The ITT equations have no additive forcing; instead, they include a linear,
activity term αu which pumps energy into the system, but also a negative
∝ u |u |2 that provides a platform for either frozen or statistically steady states.

▶ In the d = 2 ITT, we have not only established global regularity of solutions, but
we have also shown the existence of bounded hierarchies of weighted,
time-averaged norms of both higher derivatives and higher moments of the
velocity field.

▶ We have obtained similar bounded hierarchies for Leray-type weak solutions for
the d = 3 ITT.

▶ We have presented results for these norms from our d = 2 and d = 3 DNSs and
contrasted them with their Navier–Stokes counterparts.



Thank you for your attention.


