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¾Conclusion and outlook

Marco Radici 
INFN - Pavia

?



Pedagogical QCD    II     Marco Radici - INFN Pavia

Useful references

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

• Lecture notes & Handbooks
• R. Jaffe - Erice School   https://arxiv.org/pdf/hep-ph/9602236.pdf

• Books

• Collins - Foundations of perturbative QCD

• Devenish-CooperSarkar - Deep Inelastic Scattering

• Muta - Foundations of Quantum Chromodynamics

• Papers

• Aitchison-Hey - Gauge Theories in Particle Physics

• Ellis-Stirling-Webber - QCD and Collider Physics

• Field - Applications of Perturbative QCD

• Peskin-Schroeder - Quantum Field Theory

• Roberts - The structure of the proton

Books

25

● Barone, Ratcliffe: Transverse Spin Physics

● Collins: Foundations of perturbative QCD 

● Devenish, Cooper-Sarkar: Deep Inelastic Scattering

● Muta: Foundations of Quantum Chromodynamics

● … 

Books

25

● Barone, Ratcliffe: Transverse Spin Physics

● Collins: Foundations of perturbative QCD 

● Devenish, Cooper-Sarkar: Deep Inelastic Scattering

● Muta: Foundations of Quantum Chromodynamics

● … 
Books

25

● Barone, Ratcliffe: Transverse Spin Physics

● Collins: Foundations of perturbative QCD 

● Devenish, Cooper-Sarkar: Deep Inelastic Scattering

● Muta: Foundations of Quantum Chromodynamics

● … 

• CTEQ Handbook of perturbative QCD  https://www.physics.smu.edu/scalise/cteq/handbook/v1.1/handbook.pdf

• references added to slide when needed
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Outline

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

1.  the Standard Model: why is Quantum ChromoDynamics so “exotic” ?

                                                          ( QCD )

2.  Factorization Theorems,  evolution equations and all that

3.  open problems

- beyond the collinear approximation

- chiral-odd structures

- nuclear matter effects

- saturation: a new state of matter ?

❷

❸ - where do the Nucleon mass and spin come from? 

❶
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Outline

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

1.  the Standard Model: why is QCD so “exotic” ?❶



Pedagogical QCD   ❶-2   Marco Radici - INFN Pavia

the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Una teoria quasi perfetta
Fermions Bosons 

elementary particles force carriers
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the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Fermions Bosons 

elementary particles force carriersUna teoria quasi perfettaUna teoria quasi perfettaUna teoria quasi perfetta

electromagnetic 
interactions
massless, neutral 
photon



Pedagogical QCD   ❶-2   Marco Radici - INFN Pavia

the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Fermions Bosons 

elementary particles force carriersUna teoria quasi perfettaUna teoria quasi perfetta

strong interactions

massless, neutral 
but colored gluon



Pedagogical QCD   ❶-2   Marco Radici - INFN Pavia

the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Una teoria quasi perfetta
Fermions Bosons 

elementary particles force carriersUna teoria quasi perfetta

weak interactions

massive bosons 
neutral Z0

charged W±
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the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Fermions Bosons 

elementary particles force carriersUna teoria quasi perfettaUna teoria quasi perfettaUna teoria quasi perfetta

all particles (except ν) 
take their mass from 

interaction with 
Higgs boson through 
spontaneous breaking 
of a local symmetry

μ > 0 
φ=0 stable 
unbroken 
symmetry

μ < 0 
φ=0 instable 

broken 
symmetry
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the Standard Model
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Una teoria quasi perfetta
Fermions Bosons 

elementary particles force carriers

incomplete theory:
- quantum gravity?
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the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Una teoria quasi perfetta
Fermions Bosons 

elementary particles force carriers

mHiggs < mtop ?

incomplete theory:
- quantum gravity?

- why 3 generations?

- hierarchy? SM masses

- origin of ν masses?

Il problema della gerarchia

Il Modello Standard è meno ordinato di quanto sembri:

● Perché l’intensità delle interazioni è così diversa?
● Perché la massa delle particelle è così diversa?
● Perché la massa del bosone di Higgs è minore di 

quella del quark top?

Interazione Mediatore Range Intensità

Gravitazionale ?!? ∞ 1

Debole W e Z 10-18 1025

Elettromagnetica Fotone ∞ 1036

Forte Gluone 10-15 1038
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the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Una teoria quasi perfetta
Fermions Bosons 

elementary particles force carriers

- origin of ν masses?

incomplete theory:
- quantum gravity?

- why 3 generations?

- hierarchy?

- matter-antimatter 
  asymmetry?

- dark matter & energy?

- muon g-2 anomaly?

- why is Physics so difficult?

….

Il problema della gerarchia

Il Modello Standard è meno ordinato di quanto sembri:

● Perché l’intensità delle interazioni è così diversa?
● Perché la massa delle particelle è così diversa?
● Perché la massa del bosone di Higgs è minore di 

quella del quark top?

Interazione Mediatore Range Intensità

Gravitazionale ?!? ∞ 1

Debole W e Z 10-18 1025

Elettromagnetica Fotone ∞ 1036

Forte Gluone 10-15 1038

mHiggs < mtop ?

SM masses
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the Standard Model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Fermions Bosons 

elementary particles force carriersUna teoria quasi perfettaUna teoria quasi perfetta

strong interactions

massless, neutral 
but colored gluon



the QCD Lagrangian

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Pedagogical QCD   ❶-3   Marco Radici - INFN Pavia

Theory of Strong Interactions: Quantum ChromoDynamics (QCD)
A renormalizable non-abelian gauge theory

The QCD Lagrangian

ψ = Dirac quark field (particle)        Aμ  = vector gluon field (force carrier)

with         a, b, c  color indices 
          (others understood)         

ℒQCD = ψ̄(x) [i γμ Dμ − m] ψ(x) −
1
4 (Fa

μν)
2

+ ℒgauge−fixing

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μ Ac
ν
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Theory of Strong Interactions: Quantum ChromoDynamics (QCD)
A renormalizable non-abelian gauge theory

The QCD Lagrangian

ψ = Dirac quark field (particle)        Aμ  = vector gluon field (force carrier)

with         a, b, c  color indices 
          (others understood)         

Dμ ≡ ∂μ − i g Aa
μ ta covariant derivative:   makes   locally gauge-invariant

                                identifies ψ - Α  interaction 

ℒQCD

[ta, tb] = i f abc tc t  = generators of gauge transformations
f  = fine structure constant (fully antisymmetric in color indices)     

ℒQCD = ψ̄(x) [i γμ Dμ − m] ψ(x) −
1
4 (Fa

μν)
2

+ ℒgauge−fixing

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μ Ac
ν

⇒ Fa
μν = − Fa

νμ
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trilinear                       quadrilinear        couplings         

ℒQCD = ψ̄(x) [i γμ Dμ − m] ψ(x) −
1
4 (Fa

μν)
2

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μ Ac
ν

gluons are colored
can self-interact     

the “Maxwell” equations



aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Pedagogical QCD   ❶-4   Marco Radici - INFN Pavia

trilinear                       quadrilinear        couplings         

“Maxwell”  equations for the vector field A       

ℒQCD = ψ̄(x) [i γμ Dμ − m] ψ(x) −
1
4 (Fa

μν)
2

∂ℒQCD

∂Aa
μ

= ∂ν
∂ℒQCD

∂ ∂νAa
μ

∂μ Fμνa + g f abc Ab
μ Fμνc = − gψ̄ γν ta ψ

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μ Ac
ν

gluons are colored
can self-interact     

the “Maxwell” equations



the “Gauss” law
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“Maxwell” equations for 
vector field A 

∂μ Fμνa + g f abc Ab
μ Fμνc = − gψ̄ γν ta ψ

take ν = 0 ∂i Fi 0 a
⏟

− g f abc Ab
i Fi 0 c = − g ψ† ψ ta
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“Maxwell” equations for 
vector field A 

∂μ Fμνa + g f abc Ab
μ Fμνc = − gψ̄ γν ta ψ

take ν = 0 ∂i Fi 0 a
⏟

− g f abc Ab
i Fi 0 c = − g ψ† ψ ta

color electric field Ea
i = F0 i a

∂i Ea
i − g f abc Ab

i Ec
i = g ρa

density of color charge a ρa
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“Maxwell” equations for 
vector field A 

∂μ Fμνa + g f abc Ab
μ Fμνc = − gψ̄ γν ta ψ

take ν = 0 ∂i Fi 0 a
⏟

− g f abc Ab
i Fi 0 c = − g ψ† ψ ta

color electric field Ea
i = F0 i a

∂i Ea
i − g f abc Ab

i Ec
i = g ρa

density of color charge a ρa

in Coulomb gauge  , the 
Coulomb color potential generated by  ;
then 
is the “Gauss” law for 
color charge a

∇i Aa
i = 0

Aa
0

Di Ea
i = g ρa



effect of the “Gauss” law
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point-like color charge a=1 
creates color electric field E1

i
∂iE1

i = g δ( ⃗x) δa 1

then vacuum fluctuation 
with color charge 2

A2
i

∂i Ea
i − g f abc Ab

i Ec
i = g ρa
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point-like color charge a=1 
creates color electric field E1

i
∂iE1

i = g δ( ⃗x) δa 1

then vacuum fluctuation 
with color charge 2

A2
i

∂i E3
i = g f321 A2

i E1
i

fluctuation  and field 
create a “sink” of color 
electric field with charge 3

A2
i E1

i

= − g f123 A2
i E1

i

∂i Ea
i − g f abc Ab

i Ec
i = g ρa
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point-like color charge a=1 
creates color electric field E1

i
∂iE1

i = g δ( ⃗x) δa 1

then vacuum fluctuation 
with color charge 2

A2
i

∂i E3
i = g f321 A2

i E1
i

fluctuation  and field 
create a “sink” of color 
electric field with charge 3

A2
i E1

i

= − g f123 A2
i E1

i

field  contributes to field E3
i E1

i

∂iE1
i = g δ( ⃗x) δa 1 + g f123 A2

i E3
i

> 0 ⃗A 2 ∥ ⃗E 3

< 0 ⃗A 2 ∥−1 ⃗E 3

creates gradient of field  
pointing toward charge a=1

E1
i

∂i Ea
i − g f abc Ab

i Ec
i = g ρa



effect of the “Gauss” law

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Pedagogical QCD   ❶-6   Marco Radici - INFN Pavia

point-like color charge a=1 
creates color electric field E1

i
∂iE1

i = g δ( ⃗x) δa 1

then vacuum fluctuation 
with color charge 2

A2
i

∂i E3
i = g f321 A2

i E1
i

fluctuation  and field 
create a “sink” of color 
electric field with charge 3

A2
i E1

i

= − g f123 A2
i E1

i

field  contributes to field E3
i E1

i

∂iE1
i = g δ( ⃗x) δa 1 + g f123 A2

i E3
i

> 0 ⃗A 2 ∥ ⃗E 3

< 0 ⃗A 2 ∥−1 ⃗E 3

creates gradient of field  
pointing toward charge a=1

E1
i

getting away from source, the 
color charge a=1 looks stronger!

antiscreening

∂i Ea
i − g f abc Ab

i Ec
i = g ρa
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Q (GeV)10 210 310

(Q
)

S
α

0.05

0.1

0.15

0.2

0.25
 7 TeV : EPJC 73:2604 (2013)  32CMS R

CMS 3-Jet mass 7TeV : EPJC 15:186 (2015)
CMS incl. jets 7 TeV : EPJC 15:288 (2015)
CMS incl. jets 8 TeV : JHEP 03:156 (2017)
ATLAS TEEC 8 TeV : EPJC 77:872(2017)

 8 TeV : PRD 98:092004 (2018)Φ∆ATLAS R
 13 TeV  Φ∆CMS R

0.0009   ±) = 0.1179
Z

(MSαPDG 2022:  

D0 : Phys. ReV. D 80:111107 (2009)
D0 : PLB 718:56 (2012)
H1 : EPJC 75:65 (2015) 
ZEUS : Nucl. Phys. B 864:1 (2012)

Theory at NLO

CMS Preliminary

Available on the CERN CDS information server CMS PAS SMP-22-005

CMS Physics Analysis Summary

Contact: cms-pag-conveners-smp@cern.ch 2023/08/24

Measurement of azimuthal correlations among jets and
determination of the strong coupling in pp collisions atp

s = 13 TeV

The CMS Collaboration

Abstract

A measurement is presented of the ratio observable RDf(pT) that provides a mea-
sure of the azimuthal correlations among jets with large transverse momentum pT.
The RDf(pT) variable is defined as the ratio of the number of neighbouring jets in
events with a 3-jet topology, enforced through an azimuthal angular separation of
2p/3 < Df < 7p/8, over the number of inclusive jets within the same jet pT
bin. The RDf(pT) variable is measured over the pT ⇡ 360�3200 GeV range based
on data collected by the CMS experiment in proton-proton collisions at a centre-
of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb�1.
The results are compared to predictions from Monte Carlo event generator simu-
lations that include parton showers, hadronisation, and multiparton interactions.
Fixed-order predictions of perturbative quantum chromodynamics (pQCD) at next-
to-leading-order (NLO) accuracy obtained with the NNPDF3.1 NLO parton densi-
ties, corrected for nonperturbative and electroweak effects, are also compared to the
measurement. Within uncertainties, data and theory are in agreement. From this
comparison, the strong coupling constant at the Z boson mass scale is determined to
be aS(MZ) = 0.1177 ± 0.0013 (exp)+0.0116

�0.0073 (th) = 0.1177+0.0117
�0.0074, where the total uncer-

tainty is dominated by the scale dependence of the fixed-order predictions. A test of
the running of aS(Q) in the TeV region shows no deviation from the expected pQCD
behaviour.

c� 2023 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
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Theory at NLO

CMS Preliminary

antiscreening overwhelms screening at
larger distances  smaller momenta→
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QED QCD

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

running of coupling constant

dimensionless coupling g  renormalizable field theory→
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QED QCD

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

g → αem =
e2

4π

βQED =
e3

12π2
> 0

running of coupling constant

dimensionless coupling g  renormalizable field theory→

αem

2 2log( GeV )Q
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QED QCD

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

g → αem =
e2

4π
g → αs =

g2

4π
βQCD = − α2

s (β0 + β1 αs + …)
β0 =

1
4π (11 −

2nf

3 )
αs(Q2) =

1
β0 log(Q2 /Λ2) (1 −

β1

β0

log log(Q2 /Λ2)
log(Q2 /Λ2) )

running of coupling constant

βQED =
e3

12π2
> 0

dimensionless coupling g  renormalizable field theory→

αem

2 2log( GeV )Q
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QED QCD

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

g → αem =
e2

4π
g → αs =

g2

4π
βQCD = − α2

s (β0 + β1 αs + …)
β0 =

1
4π (11 −

2nf

3 )
αs(Q2) =

1
β0 log(Q2 /Λ2) (1 −

β1

β0

log log(Q2 /Λ2)
log(Q2 /Λ2) )

running of coupling constant

βQED =
e3

12π2
> 0

< 0 

dimensionless coupling g  renormalizable field theory→

αem

2 2log( GeV )Q
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2 2log( GeV )Q

αem
QED QCD

αs

2 2log( GeV )Q

asymtotic 
freedom

exclusive feature of 
4-dim renormalizable 
non-abelian gauge 
field theories

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

g → αem =
e2

4π
g → αs =

g2

4π
βQCD = − α2

s (β0 + β1 αs + …)
β0 =

1
4π (11 −

2nf

3 )
αs(Q2) =

1
β0 log(Q2 /Λ2) (1 −

β1

β0

log log(Q2 /Λ2)
log(Q2 /Λ2) )

running of coupling constant

βQED =
e3

12π2
> 0

< 0 
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2 2log( GeV )Q

αem
QED QCD

αs

2 2log( GeV )Q

∼ ΛQCD

asymtotic 
freedom

exclusive feature of 
4-dim renormalizable 
non-abelian gauge 
field theories

confinement ?

invariance of physics from renormalisation scale   Callan-Symanzik equationsμR →

d g(t)
d t

= β(g(t))

t = log
Q2

μ2
R

g → αem =
e2

4π
g → αs =

g2

4π
βQCD = − α2

s (β0 + β1 αs + …)
β0 =

1
4π (11 −

2nf

3 )
αs(Q2) =

1
β0 log(Q2 /Λ2) (1 −

β1

β0

log log(Q2 /Λ2)
log(Q2 /Λ2) )

running of coupling constant

βQED =
e3

12π2
> 0

< 0 
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Outline

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

2. Factorization Theorems,  
evolution equations and all that

❷
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Factorization Theorems

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron target 
(J=1/2)

Q2

Example of probe - target  interaction:  
anelastic scattering of electron on a spin-1/2 target

E

E’=E-ν
Q2 = q2 − ν2

θe
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Factorization Theorems

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron target 
(J=1/2)

Q2

Example of probe - target  interaction:  
anelastic scattering of electron on a spin-1/2 target

cross section differential in the solid angle Ω of the scattered electron: 

E

E’=E-ν
Q2 = q2 − ν2

dσ
dΩ

= σMott [W2(ν, Q2) + 2 W1(ν, Q2) tan2 θe

2 ]
internal structure of targetσMott =

4Z2α2

Q4

E′￼3

E
cos2 θe

2

Coulomb elastic scattering 
from pointlike charge

θe

Rosenbluth formula
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Factorization Theorems
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Q2
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anelastic scattering of electron on a spin-1/2 target

cross section differential in the solid angle Ω of the scattered electron: 
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Q2 = q2 − ν2
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= σMott [W2(ν, Q2) + 2 W1(ν, Q2) tan2 θe

2 ]
internal structure of targetσMott =

4Z2α2

Q4
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E
cos2 θe

2

Coulomb elastic scattering 
from pointlike charge

θe

Factorization between target structure and interaction with probe

Rosenbluth formula
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Factorization Theorems

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron target 
(J=1/2)

Q2

Example of probe - target  interaction:  
anelastic scattering of electron on a spin-1/2 target

cross section differential in the solid angle Ω of the scattered electron: 

E

E’=E-ν
Q2 = q2 − ν2

ν =
Q2

2M

dσ
dΩ

= σMott [W2(ν, Q2) + 2 W1(ν, Q2) tan2 θe

2 ]
internal structure of targetσMott =

4Z2α2

Q4

E′￼3

E
cos2 θe

2

Coulomb elastic scattering 
from pointlike charge

θe

Factorization between target structure and interaction with probe

Rosenbluth formula
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The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Consider now the deep-inelastic regime:  the basics of the parton model

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed
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The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron

target P

Consider now the deep-inelastic regime:  the basics of the parton model

E

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed

parton 
xP

target = ensemble of partons 
carrying fraction 0< x <1 of P
moving collinear with target
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The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron

target P

1/Q

Consider now the deep-inelastic regime:  the basics of the parton model

E E’

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed

parton 
xP

interaction electron-parton 
only if impact parameter < 1/Q

target = ensemble of partons 
carrying fraction 0< x <1 of P
moving collinear with target
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The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron

target P

1/Q

Consider now the deep-inelastic regime:  the basics of the parton model

E E’

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed

parton 
xP

interaction electron-parton 
only if impact parameter < 1/Q

- in c.m. frame, electron sees a Lorentz-contracted target; parton virtual life time Lorentz-dilatated

- in DIS  , electron crosses target in time  : it sees partons “frozen” on ~ mass shellQ2 → ∞ t → 0

target = ensemble of partons 
carrying fraction 0< x <1 of P
moving collinear with target
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The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron

target P

1/Q

Consider now the deep-inelastic regime:  the basics of the parton model

E E’

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed

parton 
xP

interaction electron-parton 
only if impact parameter < 1/Q

- in c.m. frame, electron sees a Lorentz-contracted target; parton virtual life time Lorentz-dilatated

- in DIS  , electron crosses target in time  : it sees partons “frozen” on ~ mass shellQ2 → ∞ t → 0

- hard electron-parton scattering happens on much shorter time scale than hadronization of 
   target remnants into the unobserved hadronic final state

target = ensemble of partons 
carrying fraction 0< x <1 of P
moving collinear with target



Pedagogical QCD    ❷-3    Marco Radici - INFN Pavia

The Parton model

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

electron

target P

1/Q

Consider now the deep-inelastic regime:  the basics of the parton model

target = ensemble of partons 
carrying fraction 0< x <1 of P
moving collinear with target

E E’

Q2 = − q2 → ∞ ( ≫ M)

x =
Q2

2P ⋅ q
fixed

parton 
xP

interaction electron-parton 
only if impact parameter < 1/Q

- in c.m. frame, electron sees a Lorentz-contracted target; parton virtual life time Lorentz-dilatated

- in DIS  , electron crosses target in time  : it sees partons “frozen” on ~ mass shellQ2 → ∞ t → 0

- probability of finding another parton
   close to the struck parton

area of hard scattering 
target impact surface 

1/Q2

πR2
⟶ 0

Q2 → ∞

- hard electron-parton scattering happens on much shorter time scale than hadronization of 
   target remnants into the unobserved hadronic final state

~



Pedagogical QCD    ❷-4    Marco Radici - INFN Pavia

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

differential cross section: 

dσ
dx dQ2

= ∑
f

( d ̂σ
dQ2 )

f
e2

f ϕf(x)

incoherent sum of hard 
electron-parton scatterings

The Parton model
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

differential cross section: 

dσ
dx dQ2

= ∑
f

( d ̂σ
dQ2 )

f
e2

f ϕf(x)

incoherent sum of hard 
electron-parton scatterings

elastic electron scattering 
on almost free parton
(calculable in QED; mimics 
asymptotic freedom)

The Parton model
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

differential cross section: 

dσ
dx dQ2

= ∑
f

( d ̂σ
dQ2 )

f
e2

f ϕf(x)

incoherent sum of hard 
electron-parton scatterings

elastic electron scattering 
on almost free parton
(calculable in QED; mimics 
asymptotic freedom)

probability density of
finding a parton f with 
fractional momentum x
(“structure”).

Sum rule ∑
f

∫
1

0
dx x ϕf (x) = 1

The Parton model
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Factorization between target “structure” (parton density) and 
elementary interaction of partons with electron probe

differential cross section: 

dσ
dx dQ2

= ∑
f

( d ̂σ
dQ2 )

f
e2

f ϕf(x)

incoherent sum of hard 
electron-parton scatterings

elastic electron scattering 
on almost free parton
(calculable in QED; mimics 
asymptotic freedom)

probability density of
finding a parton f with 
fractional momentum x
(“structure”).

Sum rule ∑
f

∫
1

0
dx x ϕf (x) = 1

The Parton model
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model F2(x) = 2x F1(x)Callan-Gross relation (= spin-1/2 quarks absorb only 

    T-polarized γ* )

Rosenbluth formula:  2 structure functions
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Callan-Gross relation

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Scattering in the Breit frame
c.m. frame with 
no energy transfer

electromagnetic interaction conserves helicity along ̂z

parton

̂z



Pedagogical QCD    ❷-5a    Marco Radici - INFN Pavia

Callan-Gross relation

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

Scattering in the Breit frame
c.m. frame with 
no energy transfer

Lz

electromagnetic interaction conserves helicity along ̂z

transverse polarization of γ* compensates the 
helicity variation Δh=+1 

longitudinal polarization of γ* does not
 FL = F2 - 2xF1 = 0⇒

parton

̂z
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model

dσ
dx dQ2

=
2πα2

xQ4
A(y) F2(x) F2(x) = ∑

f

e2
f x ϕf(x)

 = electron inelasticityy ∼
ν
E

A(y) = 1 + (1 − y)2

F2(x) = 2x F1(x)Callan-Gross relation (= spin-1/2 quarks absorb only 
    T-polarized γ* )

Rosenbluth formula:  2 structure functions

scaling:  F2 ≠ F2(Q2)
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model

dσ
dx dQ2

=
2πα2

xQ4
A(y) F2(x) F2(x) = ∑

f

e2
f x ϕf(x)

 = electron inelasticityy ∼
ν
E

A(y) = 1 + (1 − y)2

F2(x) = 2x F1(x)Callan-Gross relation (= spin-1/2 quarks absorb only 
    T-polarized γ* )

∑
f

∫
1

0
dx x ϕf (x) ∼ 0.5- measured violations of sum rule

Rosenbluth formula:  2 structure functions

Problems
scaling:  F2 ≠ F2(Q2)
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Momentum sum rule

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

SLAC-MIT measurement of DIS on proton and effective neutron targets (~ 1969-72)
1
2 ∫ dx [Fp

2 (x) + Fn
2(x)] = 0.14 ± 0.005∫ dx ≈ discrete sum
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Momentum sum rule

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

F2(x) = ∑
f

e2
f x ϕf(x)

1
2 ∫ dx [Fp

2 (x) + Fn
2(x)] = 0.14 ± 0.005

proton: Fp
2 (x) ≈

1
9

x [4 (u(x) + ū(x)) + d(x) + d̄(x)]
neutron:  isospin symmetry of strong interaction  →

Fn
2(x) ≈

1
9

x [4 (d(x) + d̄(x)) + u(x) + ū(x)]

∫ dx ≈ discrete sum

up ↔ dn
dp ↔ un

{

SLAC-MIT measurement of DIS on proton and effective neutron targets (~ 1969-72)
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Momentum sum rule

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

F2(x) = ∑
f

e2
f x ϕf(x)

1
2 ∫ dx [Fp

2 (x) + Fn
2(x)] = 0.14 ± 0.005

proton: Fp
2 (x) ≈

1
9

x [4 (u(x) + ū(x)) + d(x) + d̄(x)]
neutron:  isospin symmetry of strong interaction  →

Fn
2(x) ≈

1
9

x [4 (d(x) + d̄(x)) + u(x) + ū(x)]
Then,

1
2 ∫

1

0
dx [Fp

2 (x) + Fn
2(x)] =

1
2

5
9 ∫

1

0
dx x [u(x) + ū(x) + d(x) + d̄(x)] ≈ 0.28 ∑

f
∫

1

0
dx x ϕf(x)

∫ dx ≈ discrete sum

up ↔ dn
dp ↔ un

{

SLAC-MIT measurement of DIS on proton and effective neutron targets (~ 1969-72)
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Momentum sum rule

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

F2(x) = ∑
f

e2
f x ϕf(x)

1
2 ∫ dx [Fp

2 (x) + Fn
2(x)] = 0.14 ± 0.005

proton: Fp
2 (x) ≈

1
9

x [4 (u(x) + ū(x)) + d(x) + d̄(x)]
neutron:  isospin symmetry of strong interaction  →

Fn
2(x) ≈

1
9

x [4 (d(x) + d̄(x)) + u(x) + ū(x)]
Then,

1
2 ∫

1

0
dx [Fp

2 (x) + Fn
2(x)] =

1
2

5
9 ∫

1

0
dx x [u(x) + ū(x) + d(x) + d̄(x)] ≈ 0.28 ∑

f
∫

1

0
dx x ϕf(x)

compatible only if the (anti-)quarks carry 50% of momentum 

later confirmed by Gargamelle 
(CERN, ~ 1975): 

1
2 ∫ dx [Fνp

2 (x) + Fνn
2 (x)] = ∫ dx x [u(x) + ū(x) + d(x) + d̄(x)] = 0.49 ± 0.7

νn ↔ ν̄p

∫ dx ≈ discrete sum

up ↔ dn
dp ↔ un

{

SLAC-MIT measurement of DIS on proton and effective neutron targets (~ 1969-72)



Pedagogical QCD    ❷-5    Marco Radici - INFN Pavia

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model F2(x) = 2x F1(x)Callan-Gross relation (= spin-1/2 quarks absorb only 

    T-polarized γ* )

- observed scaling violations: F2 depends also on Q2

- breaking of Callan-Gross  FL = F2 − 2x F1 ≠ 0
(with gluons, quarks absorb also 
    L-polarized γ* )

Rosenbluth formula:  2 structure functions

dσ
dx dQ2

=
2πα2

xQ4
A(y) F2(x) F2(x) = ∑

f

e2
f x ϕf(x)

 = electron inelasticityy ∼
ν
E

A(y) = 1 + (1 − y)2

∑
f

∫
1

0
dx x ϕf (x) ∼ 0.5- measured violations of sum rule

Problems
scaling:  F2 ≠ F2(Q2)



DIS Experiments: Fixed Target and HERA

EU EIC School 23 38

More on Fixed Target exps in Lecture 2 
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Scaling violations

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

HERA

} fixed
target
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model

dσ
dx dQ2

=
2πα2

xQ4
A(y) F2(x) F2(x) = ∑

f

e2
f x ϕf(x)

 = electron inelasticityy ∼
ν
E

A(y) = 1 + (1 − y)2

F2(x) = 2x F1(x)Callan-Gross relation

- observed scaling violations: F2 depends also on Q2

- breaking of Callan-Gross  FL = F2 − 2x F1 ≠ 0

QCD dσ
dx dQ2

=
2πα2

xQ4 [A(y) F2(x, Q2) − y2 FL(x, Q2)]

scaling:  F2 ≠ F2(Q2)
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aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

From Parton model to QCD

Parton 
model

dσ
dx dQ2

=
2πα2

xQ4
A(y) F2(x) F2(x) = ∑

f

e2
f x ϕf(x)

 = electron inelasticityy ∼
ν
E

A(y) = 1 + (1 − y)2

F2(x) = 2x F1(x)Callan-Gross relation

- observed scaling violations: F2 depends also on Q2

- breaking of Callan-Gross  FL = F2 − 2x F1 ≠ 0

QCD dσ
dx dQ2

=
2πα2

xQ4 [A(y) F2(x, Q2) − y2 FL(x, Q2)]

Fi(x, Q2) = ∑
f

e2
f ∫

1

x

dξ
ξ

d ̂σi, f (αs,
x
ξ

,
Q2

μ2
F ) ϕf(αs, ξ, μF) ≡ ∑

f

e2
f d ̂σi, f ⊗ ϕf

QCD collinear factorization theorem at scale  , valid at all orders μF

usually μ2
R = μ2

F = Q2 d ̂σi, f = d ̂σ(0)
i, f +

αs

4π
d ̂σ(1)

i, f + …

scaling:  F2 ≠ F2(Q2)
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Evolution equations

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

dq(x, Q2)
d log Q2

=
αs

2π [q ⊗ Pqq + g ⊗ Pqg]

10 CHAPTER 1. INCLUSIVE DIFFRACTION AT HERA
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g(x)

Pgq(x/y)

Figure 1.6: Elementary vertexes in QCD and associated splitting functions.

At extremely small values of x the steep rise of structure functions predicted by BFKL must
stop, in order not to violate unitarity. At x → 0 the probability of interactions between partons
(gluons, in particular) becomes so large that they begin to recombine with each other bringing
to saturation effects, thus requiring the introduction of non-perturbative corrections. The GLR
equations [18] introduce a shadowing correction which slows the increase of F2 for decreasing
x.
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Figure 1.7: Validity range for different evolution equations.

On the other hand, for very low values ofQ2 (Q2 ! 1 GeV), the value of αs(Q2) becomes large
and perturbative QCD cannot be applied. Phenomenological models, such as Regge theory [19]
(see Sect. 1.2.2), are used to describe the interactions between particles.
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On the other hand, for very low values ofQ2 (Q2 ! 1 GeV), the value of αs(Q2) becomes large
and perturbative QCD cannot be applied. Phenomenological models, such as Regge theory [19]
(see Sect. 1.2.2), are used to describe the interactions between particles.

splitting
functions

Fi(x, Q2) = ∑
f

e2
f ∫

1

x

dξ
ξ

d ̂σi, f (αs,
x
ξ

,
Q2

μ2
F ) ϕf (αs, ξ, μF) ≡ ∑

f

e2
f d ̂σi, f ⊗ ϕf

Physics does not depend on fictitious scale μF :  DGLAP evolution equations

Describe how μF dependence of  
compensates the one of 

ϕf
d ̂σi, f

ϕf → quark q

ϕf → gluon g
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=
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Figure 1.6: Elementary vertexes in QCD and associated splitting functions.

At extremely small values of x the steep rise of structure functions predicted by BFKL must
stop, in order not to violate unitarity. At x → 0 the probability of interactions between partons
(gluons, in particular) becomes so large that they begin to recombine with each other bringing
to saturation effects, thus requiring the introduction of non-perturbative corrections. The GLR
equations [18] introduce a shadowing correction which slows the increase of F2 for decreasing
x.
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Figure 1.7: Validity range for different evolution equations.

On the other hand, for very low values ofQ2 (Q2 ! 1 GeV), the value of αs(Q2) becomes large
and perturbative QCD cannot be applied. Phenomenological models, such as Regge theory [19]
(see Sect. 1.2.2), are used to describe the interactions between particles.
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On the other hand, for very low values ofQ2 (Q2 ! 1 GeV), the value of αs(Q2) becomes large
and perturbative QCD cannot be applied. Phenomenological models, such as Regge theory [19]
(see Sect. 1.2.2), are used to describe the interactions between particles.

splitting
functions

Fi(x, Q2) = ∑
f

e2
f ∫

1

x

dξ
ξ

d ̂σi, f (αs,
x
ξ

,
Q2

μ2
F ) ϕf (αs, ξ, μF) ≡ ∑

f

e2
f d ̂σi, f ⊗ ϕf

Physics does not depend on fictitious scale μF :  DGLAP evolution equations

partons are part of 
“structure” in φf
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2

proton proton substructure QCD Compton BGF

increasing resolving power Q

Figure 1.4: Schematic diagram to illustrate the increase of the γ∗ resolving power with Q2.

Figure 1.5: An incoming quark in the Breit frame interacts with a longitudinally polarised photon,

and subsequently flips its helicity, which is not allowed (left). Helicity conservation is preserved by

adding a gluon (right). The arrows represent the spin orientation.

The difference between F2 and F1 due to the longitudinal part of the cross section brings to the
definition of the longitudinal structure function, FL. From the positivity requirement of the
cross sections for longitudinally (σL) and transversely (σT ) polarised photons, σL ≥ 0 and σT ≥
0, and from the relations between these cross sections and the structure functions F1 and F2 (see
Eq. (1.3)), it follows that F2 ≥ 2xF1 and therefore 0 ≤ FL ≤ F2.

The unpolarised NC ep cross section in terms of F2 and FL then becomes:

d2σep→eX

dxdQ2
=

2πα2

xQ4
Y+

[

F2

(

x,Q2
)

−
y2

Y+
FL

(

x,Q2
)

]

(1.11)

where Y+ = 1 + (1− y)2. Due to the factor y2, the structure function FL gives a negligible
contribution to the cross section at low values of y (y ! 0.5), but becomes relevant for larger
values of y.

From its nature, FL has direct sensitivity to the gluon emission inside the proton. In the
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proton valence 
structure

QCD 
Compton

γ - gluon 
fusion

increasing resolving 
power μ2

F = Q2
larger number of 

partons with lower x

ϕf → quark q

ϕf → gluon g

Evolution equations

Q2

Describe how μF dependence of  
compensates the one of 

ϕf
d ̂σi, f
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More on Fixed Target exps in Lecture 2 
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Scaling violations

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

For increasing Q2, larger number 
of partons with lower x

F2 grows with Q2 at low x

F2 drops with Q2 at high x

HERA

fixed
target
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partons are part of 
“structure” in φf

DGLAP evolution equations describe how μF dependence of  compensates the one of  
  to make observables Fi independent from μF

ϕf
d ̂σi, f

Q2
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Parton Distribution Functions

aμ = (a0, a1, a2, a3) = (a+, a−, a⊥)

HERAPDF2.0: NLO and NNLO PDFs

EU EIC School 23 55
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Collaborations/Groups active in DGLAP analyses and PDFs determinations:

MSHT: Approximate N3LO PDFs

60

Gluon rises significantly at low 

First attempt to quantify theoretical 
uncertainties

First approximate N3LO PDFs

arXiv:2207.04739 

Many groups

NNLO accuracy is nowadays 
the standard

arXiv:2207.04739

MSHT: Approximate N3LO PDFs

60

Gluon rises significantly at low 

First attempt to quantify theoretical 
uncertainties

First approximate N3LO PDFs

arXiv:2207.04739 

but already 
approximate 
N3LO results

d ̂σi, f = d ̂σ(0)
i, f +

αs

4π
d ̂σ(1)

i, f + ( αs

4π )
2

d ̂σ(1)
2, f + …


