Angularity event shapes in High Energy Scatterings

Tanmay Maji

08 Feb. 2022
Coauthors: Jiawei Zhu, Daekyoung Kang, Jun Gao

Talk organized as...

- Introduction: Jet Event Shapes and angularity
- Event Shapes in DIS
- Angularity beam functions at NNLL
- Angularity differential cross-section at NNLL
- Predictions for future EIC
- Angularity in H -> gg decay at NNLL'
- Conclusion

Jets and Jet Event Shapes?

■ In high energy scattering, the most common final states are collimated branches of strongly interacting particles, called jet.

3-jet event: discovery of gluon

$\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=? ?$
Jet Observables are called
Event Shapes
e.g., Thrust, Jet Broadening, Angularity....

Thrust: Characterizes the geometry of collision

$$
\tau=\frac{2}{a} \sum_{i \in \mathcal{X}}\left|\mathbf{p}_{\perp}^{i}\right| e^{-\left|p_{i}\right|}
$$

$$
\text { Rapidity: } \eta=\frac{1}{2} \ln \left(\frac{p^{-}}{p^{+}}\right)
$$

Thrust: Characterizes the geometry of collision

$$
\tau=\frac{2}{Q} \sum_{i \in \mathcal{X}}\left|\mathbf{p}_{\perp}^{i}\right| e^{-\left|\eta_{i}\right|}
$$

$$
\text { Rapidity: } \eta=\frac{1}{2} \ln \left(\frac{p^{-}}{p^{+}}\right)
$$

Angularity Event Shapes

$$
\begin{gathered}
\tau_{a}=\frac{2}{Q} \sum_{i \in \mathcal{X}}\left|\mathbf{P}_{\perp}^{i}\right| e^{-\left|\eta_{i}\right|(1-a) \longleftarrow \underbrace{\text { Depends on }} \begin{array}{l}
\text { continuous } \\
\text { parameter }
\end{array}} \\
\text { A more general event shape! }
\end{gathered}
$$ provide access from thrust to jet broadening in continuous manner

Angularity Event Shapes

[C. F. Berger, T. Kucs and G. F. Sterman' 2003]

$$
\begin{gathered}
\tau_{a}=\frac{2}{Q} \sum_{i \in \mathcal{X}}\left|\mathbf{P}_{\perp}\right| e^{-\left|\eta_{i}\right|(1-a) \longleftarrow} \begin{array}{c}
\text { Depends on } \\
\text { continuous } \\
\text { parameter }
\end{array} \\
\text { A more general event shape! }
\end{gathered}
$$

provide access from thrust to jet broadening in continuous manner

Angularity

For $e^{+} e^{-}=\operatorname{dijet}$

$$
\tau_{a}^{e e}=\frac{2}{Q^{2}} \sum_{i \in \chi} \min \left\{\left(p_{i} . n\right)^{a / 2}\left(p_{i} \cdot \bar{n}\right)^{(1-a / 2)}\right\}
$$

Global event shapes

C+e-: LEP: [P. Achard et al., JHEP 1110, 143 (2011)]

e+e:

LEP: [P. Achard et al.,
JHEP 1110, 143 (2011)]

```
DIS angularity at EIC!!
```


DIS: hera by the ZEUS and H1 collaborations :

[1] C. Adloff et al. [H1], Phys. Lett. B 406, 256 (1997)
[2] C. Adloff et al. [H1], Eur. Phys. J. C 14, 255 (2000)
[3] A. Aktas et al. [H1], Eur. Phys. J. C 46, 343 (2006)
[4] J. Breitweg et al. [ZEUS], Phys. Lett. B 421, 368 (1998)
[5] S. Chekanov et al. [ZEUS], Eur. Phys. J. C 27, 531 (2003)
[6] S. Chekanov et al. [ZEUS], Nucl. Phys. B 767, 1 (2007)

$a \rightarrow-2$ Angularity

e+e-: Hornig, Lee,
Ovanesyan'09; Bell, Hornig, Lee,
Talbert'18, A.Budhraja, A.Jain and M.Procura'19

Photoproduction:
E.C.Aschenauer, K.Lee, B.S.Page and F.Ringer'19

DIS angularity??

Tanmay Maji, D. Kang, J. Zhu, JHEP11(2021) 026

e+e-: Catani, Trentadue, Turnock,
Webber'93; Florian, Grazzini'04;
Schwartz'07; Becher, Schwartz’08; Abbate,
Fickinger, Hoang, Mateu,
Stewart'10 ;Becher,Schwartz'08;
Stewart,Tackmann,Waalewijn'10 ...
pp: Stewart,Tackmann,PRL'10,'11;PRD'13

DIS: D. Kang,C. Lee,I. Stewart'13

Dokshitzer, Lucenti, Marchesini, Salam'98; Becher, Bell, Neubert'11; Chiu, Jain, Neill, Rothstein'11; Becher and Bell'12

Why DIS angularity?

Puzzle in Strong Coupling determination

Discrepancy> 3-Sigma from Lattice

Need a new test from an independent experiment and new event shapes!

Why DIS angularity?

■ Shed lights on the puzzle in strong coupling constant determination ■DIS event shapes for future Electron-Ion-Collider (EIC) at BNL!!

$$
\begin{align*}
& \text { process, although acceptance up to higher rapidity (for example, } \eta=4.5 \text {) would } \\
& \text { provide a longer lever arm allowing for more stringent tests of the small- } x \text { dynam- } \\
& \text { ics and the Pomeron. Apart from } J / \psi \text { production, the rapidity-gap production of } \\
& \rho \text {-mesons maybe also very promising, perhaps even over a broader }|t| \text {-range. } \\
& \text { 7.1.7 Global event shapes and the strong coupling constant } \\
& \text { Introduction } \\
& \text { Event shapes [289] are global measures of the momentum distribution of hadrons } \\
& \text { in the final state of a collision, using a single number to characterize how well col- } \\
& \text { limated the hadrons are along certain axes. This simple and global nature makes } \\
& \text { them highly amenable to high-precision theoretical calculations and convenient } \\
& \text { for experimental measurements. They then become powerful probes of QCD pre- } \\
& \text { dictions, the strong coupling } \alpha_{s}, \text { hadronization effects, etc. } \\
& \text { The classic example, for collisions } e^{+} e^{-} \rightarrow X, \text { is thrust [290,291], } \\
& \qquad \tau=1-T \text {, where } T=\frac{1}{Q} \max _{\hat{t}} \sum_{i \in X}\left|\hat{\boldsymbol{t}} \cdot \boldsymbol{p}_{i}\right|=\frac{2}{Q} p_{z}^{A}, \tag{7.13}
\end{align*}
$$

at a center-of-mass collision energy Q, summing the three-momenta p_{i} of all finalstate hadrons $i \in X$ projected onto the thrust axis \hat{t}, which is defined as the axis maximizing the sum. It is customary to use $\tau=1-T$, whose $\tau \rightarrow 0$ limit describes pencil-like back-to-back two-jet events, and which grows as the jets broaden, up to the limit $\tau=1 / 2$ for a spherically symmetric final state. Other examples of two-jet event shapes in $e^{+} e^{-}$are broadening B [292], C-parameter [293], and angularities [294,295]

Could be an early milestone!

Angularity in the deep-inelastic scattering!

$$
e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+\operatorname{dijet}
$$

Angularity for DIS

Not back to back even in CM !!

Back to back in CM frame

$$
n \cdot \bar{n}=2
$$

Angularity for DIS

Not back to back even in CM !!

Back to back in CM frame

$$
n \cdot \bar{n}=2
$$

Axis Choice: $q B=x P, q J=$ jet axis

$$
\begin{array}{r}
q_{B}^{\mu}=\omega_{B} \frac{n_{B}^{\mu}}{2} \quad \text { and } \quad q_{J}^{\mu}=\omega_{J} \frac{n_{J}^{\mu}}{2} \quad \text { with } \quad n_{i} \cdot \bar{n}_{i}=2 \\
\text { we obtain } \omega_{B}=\bar{n}_{B} \cdot q_{B} \text { and } \omega_{J}=\bar{n}_{J} \cdot q_{J}
\end{array}
$$

$$
\tau_{a}=\frac{2}{Q^{2}} \sum_{i \in \mathscr{X}} \min \left\{\left(q_{B} \cdot p_{i}\right)\left(\frac{q_{B} \cdot p_{i}}{q_{J} \cdot p_{i}}\right)^{-a / 2},\left(q_{J} \cdot p_{i}\right)\left(\frac{q_{J} \cdot p_{i}}{q_{B} \cdot p_{i}}\right)^{-a / 2}\right\}
$$

Angularity diff. cross-section for DIS

$$
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=L_{\mu \nu}\left(x, Q^{2}\right) W^{\mu \nu}\left(x, Q^{2}, \tau_{a}\right)
$$

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} & \int d \tau_{a}^{J} d \tau_{a}^{B} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\tau_{a}^{S}\right) \\
& \times \sum_{i=q, \bar{q}} H_{i}\left(Q^{2}, \mu\left(B_{i}\left(\tau_{a}^{B}, x, \mu\right) J\left(\tau_{a}^{J}, \mu\right) S\left(\tau_{a}^{S}, \mu\right)\right)\right.
\end{aligned}
$$

Power counting in SCET

Collinear and
soft modes

$$
\begin{array}{ll}
p_{c} \sim Q\left(\lambda_{c}^{2}, 1, \lambda_{c}\right), & \tau_{a}^{B}\left(p_{c}\right) \sim \lambda_{c}^{2-a} \\
p_{s} \sim Q\left(\lambda_{s}, \lambda_{s}, \lambda_{s}\right), & \tau_{a}^{B}\left(p_{s}\right) \sim \lambda_{s}
\end{array}
$$

This implies relevant soft mode contributing to τ_{a}^{B} has a scale of

$$
\lambda_{s} \sim \lambda_{c}^{2-a}
$$

Soft and collinear splitting

$$
p_{c}^{2} \sim Q^{2} \lambda^{2-a} \quad p_{s}^{2} \sim Q^{2} \lambda^{2(2-a)}
$$

$$
\begin{aligned}
& p_{\perp}=0 \quad \text { plane } \\
& p^{2}=p^{+} p^{-}
\end{aligned}
$$

SCET facto.: \quad d $\sigma=$ Hard \times Beam \otimes Jet \otimes Soft

Soft and collinear splitting

$$
\begin{array}{r}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} \int d \tau_{a}^{J} d \tau_{a}^{B} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\tau_{a}^{S}\right) \\
\times \sum_{i=q, \bar{q}} H_{i}\left(Q^{2}, \mu\right) \mathcal{B}_{i}\left(\tau_{a}^{B}, x, \mu\right) J\left(\tau_{a}^{J}, \mu\right) S\left(\tau_{a}^{S}, \mu\right) \\
\searrow \\
\\
\text {-Hornig, Lee, Ovanesyan'09; } \\
\text {-Bell, Hornig, Lee, Talbert'18, }
\end{array}
$$

Beam func.: $B\left(\tau_{a}, x, \mu\right)=\operatorname{pdf} \otimes\left[\delta_{q j} \delta\left(\tau_{a}\right)+\tilde{\mathcal{I}}_{q j}^{(1)}+\mathcal{O}\left(\alpha_{s}^{2}\right)+\ldots\right]$

$$
N P \quad L O \quad N L O \quad N N L O
$$

$$
\widetilde{\mathcal{I}}_{q j}^{(1)}=\frac{\alpha_{s}}{4 \pi}\left[\left(-j_{B} \kappa_{B} \frac{\Gamma_{0}}{2} L_{B}^{2}-\gamma_{0}^{B} L_{B}\right) \mathbb{1}_{q j}+4 C_{q j} P_{q j}(z) L_{B}+\widetilde{c}_{1}^{q j}(z, a)\right]
$$

We present the angularity Beam function at one-loop
-Tanmay Maji, D. Kang, J. Zhu, JHEP11(2021) 026

Resummation in Laplace space

$$
\begin{array}{r}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} \int d \tau_{a}^{J} d \tau_{a}^{B} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\tau_{a}^{S}\right) \\
\times \sum_{i=q, \bar{q}} H_{i}\left(Q^{2}, \mu\right) \mathcal{B}_{i}\left(\tau_{a}^{B}, x, \mu\right) J\left(\tau_{a}^{J}, \mu\right) S\left(\tau_{a}^{S}, \mu\right) \\
G(\nu, \mu)=\int_{0}^{\infty} d \tau_{a} e^{-\nu \tau_{a}} G\left(\tau_{a}, \mu\right) \\
\left.\widetilde{\sigma}_{q}(\nu)=H_{q}\left(Q^{2}, \mu\right) \mathcal{B}_{q}(\nu, \mu)\right) \widetilde{J}(\nu, \mu) \widetilde{S}(\nu, \mu)
\end{array}
$$

Resummation of large logs

	$\Gamma\left(\alpha_{s}\right)$	$\gamma\left(\alpha_{s}\right)$	$\beta\left(\alpha_{s}\right)$	$\{H, J, B, S\}\left[\alpha_{s}\right]$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}

$\mu_{H}=Q, \mu_{J, B}=Q \tau_{a}^{1 /(\overline{2}-a)}, \mu_{S}=Q \tau_{a}$

Resummation of large logs

	$\Gamma\left(\alpha_{s}\right)$	$\gamma\left(\alpha_{s}\right)$	$\beta\left(\alpha_{s}\right)$	$\{H, J, B, S\}\left[\alpha_{s}\right]$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}

$\mu_{H}=Q, \mu_{J, B}=Q \tau_{a}^{1 /(\overline{2}-a)}, \quad \mu_{S}=Q \tau_{a}$
Evolution Equation for beam function

$$
\begin{array}{rlr}
\mu \frac{d}{d \mu} B(\nu, \mu) & =\gamma_{G}(\mu) B(\nu, \mu) ; \quad \text { similar to } J, S, H \\
\text { Solution : } B(\nu, \mu) & =B\left(\nu, \mu_{B} e^{K_{B}\left(\mu_{B}, \mu\right)-j_{B} \eta_{B}\left(\mu_{B}, \mu\right) L_{B}},\right.
\end{array}
$$

- Jet and beam functions are defined by same collinear operator: $\gamma_{J}(\mu)=\gamma_{B}(\mu)$

$$
\begin{array}{cc}
K_{B}\left(\mu_{B}, \mu\right)=L_{B} \sum_{k=1}^{\infty}\left(\alpha_{s} L_{B}\right)^{k}+\sum_{k=1}^{\infty}\left(\alpha_{s} L_{B}\right)^{k}+\ldots & \alpha_{s} L_{B} \sim 1 \\
L L & N L L
\end{array}
$$

$$
L_{B}=\ln \left(\mu / \mu_{B}\right)
$$

LL: Leading Log;
NLL: Next-to-Leading Log

Large logs at threshold limit \& Resummation

$$
\begin{aligned}
& G^{\mathrm{fixed}}\left(L_{G}, \mu\right)=1+\frac{\alpha_{s}(\mu)}{4 \pi}\left[-j_{G} \kappa_{G} \frac{\Gamma_{0}}{2} L_{G}^{2}-\gamma_{0}^{G} L_{G}+c_{1}^{G}\right], \quad G=\{H, \widetilde{S}, \widetilde{J}\} \\
& L_{G}\left(\tau_{a}\right)=\ln \left[\frac{Q}{\mu_{G}}\left(\tau_{a} e^{-\gamma_{E}}\right)^{1 / j_{G}}\right], \quad G=\{S, J\} \quad \text { With jB }=2-a
\end{aligned}
$$

$$
\begin{aligned}
\sigma & =\sigma^{(0)} & & \text { leading order (LO) } \\
& +\alpha_{s} \sigma^{(1)} & & \text { next-to-leading order (NLO) } \\
& +\alpha_{s}^{2} \sigma^{(2)} & & \text { next-next-to-leading order (NNLO) } \\
& +\cdots & &
\end{aligned}
$$

Large logs at threshold limit \& Resummation

$$
G^{\mathrm{fixed}}\left(L_{G}, \mu\right)=1+\frac{\alpha_{s}(\mu)}{4 \pi}\left[-j_{G} \kappa_{G} \frac{\Gamma_{0}}{2} L_{G}^{2}-\gamma_{0}^{G} L_{G}+c_{1}^{G}\right], \quad G=\{H, \widetilde{S}, \widetilde{J}\}
$$

$$
L_{G}\left(\tau_{a}\right)=\ln \left[\frac{Q}{\mu_{G}}\left(\tau_{a} e^{-\gamma_{E}}\right)^{1 / j_{G}}\right], \quad G=\{S, J\} \quad \text { With } \mathrm{jB}=2-\mathrm{a}
$$

$$
\begin{aligned}
\sigma & =\sigma^{(0)} & & \text { leading order (LO) } \\
& +\alpha_{s} \sigma^{(1)} & & \text { next-to-leading order (NLO) } \\
& +\alpha_{s}^{2} \sigma^{(2)} & & \text { next-next-to-leading order (NNLO) }
\end{aligned}
$$

$$
\begin{aligned}
K_{B}\left(\mu_{B}, \mu\right)= & L_{B} \sum_{k=1}^{\infty}\left(\alpha_{s} L_{B}\right)^{k} \quad \text { Leading Log (LL) } \\
& +\sum_{k=1}^{\infty}\left(\alpha_{s} L_{B}\right)^{k} \quad \text { Next-to-leading Log (NLL) }
\end{aligned}
$$

Next-to-next-leading Log (NNLL)

Results

DIS Angularity Beam function

$$
B\left(\tau_{a}^{B}, x, \mu\right)
$$

DIS Angularity Differential Cross-section $\frac{d \sigma^{D I S}}{d x d Q^{2} d \tau_{a}}=$?

Angularity Beam function at NNLL accuracy

Beam func.: $B\left(\tau_{a}, x, \mu\right)=\operatorname{pdf} \otimes\left[\delta_{q j} \delta\left(\tau_{a}\right)+\tilde{\mathcal{I}}_{q j}^{(1)}+\mathcal{O}\left(\alpha_{s}^{2}\right)+\ldots\right]$
$N P \quad L O \quad$ NLO $N N L O$

$$
<-a=-0.5
$$

<- Thrust limit

$$
<-a=0.5
$$

Angularity Differential Cross-section

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} \sum_{v} H_{v}\left(Q^{2}, \mu\right) & \int d \tau_{a}^{J} d \tau_{a}^{B} d k_{S} J_{q}\left(\tau_{a}^{J}, \mu\right) \operatorname{l}_{v / q}\left(\tau_{a}^{B}, x, \mu\right. \\
& \times S\left(k_{S}, \mu\right) \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\frac{k_{S}}{Q_{R}}\right),
\end{aligned}
$$

Angularity Differential Cross-section

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} \sum_{v} H_{v}\left(Q^{2}, \mu\right) & \int d \tau_{a}^{J} d \tau_{a}^{B} d k_{S} J_{q}\left(\tau_{a}^{J}, \mu\right) \beta_{v / q}\left(\tau_{a}^{B}, x, \mu\right. \\
& \times S\left(k_{S}, \mu\right) \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\frac{k_{S}}{Q_{R}}\right),
\end{aligned}
$$

Resummed result

$$
\begin{gathered}
\sigma\left(x, Q^{2}, \tau_{a}, \mu\right)=\sigma_{0}\left(x, Q^{2}\right)\left(\frac{Q}{\mu_{H}}\right)^{\eta_{H}\left(\mu, \mu_{H}\right)} e^{\kappa\left(\mu_{H}, \mu_{J}, \mu_{B}, \mu_{S}, \mu\right)} \\
\times\left(\left(\frac{Q}{\mu_{J}}\right)^{2-a} \tau_{a} e^{-\gamma_{E}}\right)^{\eta_{J}\left(\mu_{, ~ \mu}\right)}\left(\left(\frac{Q}{\mu_{B}}\right)^{2-a} \tau_{a} e^{-\gamma_{E}}\right)^{\eta_{B}\left(\mu, \mu_{B}\right)}\left(\frac{Q^{2}}{\mu_{S}} \tau_{a} e^{-\gamma_{E}}\right)^{2 \eta_{S}\left(\mu, \mu_{S}\right)} \\
\times \tilde{j}_{q}\left(\partial_{\Omega}+\log \left(\frac{Q^{2-a}}{\mu_{J}^{2-a}} \tau_{a} e^{-\gamma_{E}}\right), \mu_{J}\right) \tilde{s}\left(\frac{1}{Q_{R}}\left(\partial_{\Omega}+\log \left(\frac{Q}{\mu_{S}} \tau_{a} e^{-\gamma_{E}}\right)\right), \mu_{S}\right) \\
\times\left[H _ { q } (y , Q ^ { 2 } , \mu _ { H }) \tilde { b } _ { q } \left(\partial_{\Omega}+\log \left(\frac{Q^{2-a}}{\left.\left.\mu_{B}^{2-a} \tau_{a} e^{-\gamma_{E}}\right), x, \mu_{B}\right)}\right.\right.\right. \\
\quad+H_{\bar{q}}\left(y, Q^{2}, \mu_{H}\right) \tilde{b}_{\bar{q}}\left(\partial_{\Omega}+\log \left(\frac{Q^{2-a}}{\left.\left.\left.\mu_{B}^{2-a} \tau_{a} e^{-\gamma_{E}}\right), x, \mu_{B}\right)\right] \frac{1}{\tau_{a} \Gamma(\Omega)}}\right.\right.
\end{gathered}
$$

Numerical results at NNLL

(] DIS angularity cross-section at NNLL accuracy

' a ' dependency

Uncertainty in DIS angularity cross-section is sensitive to the angularity parameter ' a '.
Prediction is more precise for negative 'a'

' x ' dependency

Uncertainty in the angularity cross-section depends on the longitudinal momentum fraction (x) of the partons.
8. Prediction is more precise for the region x going small
uncertainty depends on the angularity parameter 'a' as well as on the longitudinal mo mentum fraction ' x ' of the partons.

Prediction is more precise for small-' x ' and negative ' a ' region.

Beam at NLO: $i \rightarrow k^{*} j$

Fragmentation at NLO: $i^{*} \rightarrow k j$
 Crossing Symmetry!

Splitting Function:
[M.Ritzmann,W.J.Waalewijn,PRD90(2014)]

$$
P_{i \rightarrow k^{*} j}(2 p i . p j, x) \equiv(-1)^{\Delta_{f}} P_{k * \rightarrow i j}(-2 p i . p j, 1 / x)
$$

- Change comes only from the two-particle phase-space and effectively change in sign of the $\log (x)$ term in the matching co-efficient $\mathcal{I}^{(1)}$.

- Difference decreases with the increase of angularity parameter a.

Angularity in H -> gg at NNLL' accuracy

Angularity in Higgs Decay

Higgs decay into hadronic channels (bb, gg, cc,...)

Current accuracy: Higgs -> qq at NNLL’
Higgs -> gg at NNLL

Goal: \quad Higgs -> gg at NNLL’

	$\Gamma\left(\alpha_{s}\right)$	$\gamma\left(\alpha_{s}\right)$	$\beta\left(\alpha_{s}\right)$	$\{H, J, B, S\}\left[\alpha_{s}\right]$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}
NNLL^{\prime}	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}^{2}

Higgs decay rate h -> gg (Fixed order)

$$
\begin{gathered}
\frac{d \Gamma^{i}}{d \tau_{a}}=\Gamma_{B}^{i}(\mu)\left|C_{t}^{i}\left(m_{t}, \mu\right)\right|^{2}\left|C_{S}^{i}\left(m_{H}, \mu\right)\right|^{2} \int d \tau_{a}^{J 1} d \tau_{a}^{J 2} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J 1}-\tau_{a}^{J 2}-\tau_{a}^{S}\right) \\
\times J^{i}\left(\tau_{a}^{J 1}, \mu\right) J^{i}\left(\tau_{a}^{J 2}, \mu\right) S^{i}\left(\tau_{a}^{S}, \mu\right),
\end{gathered}
$$

Born decay rates

$$
\Gamma_{B}^{g}(\mu)=\frac{m_{H}^{3} \alpha_{s}^{2}(\mu)}{72 \pi^{3} v^{2}}
$$

Wilson coefficient, top loop coupled to two gluons

$$
C_{t}\left(m_{t}, \mu\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n} C_{t}^{(n)}\left(m_{t}, \mu\right)
$$

[PRL, 118 (2017) 082002; PRL, 79 (1997) 353]

$$
\text { Hard coefficient } \quad C_{S}^{i}\left(m_{H}, \mu\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n} C_{S}^{i(n)}\left(L_{H}\right)
$$

Cs is defined from the matching to SCET and can be obtained from Hqq and Hgg form factors that are available up to the 3-loop. [PRD 78 (2008) 034027; JHEP 07 (2008) 034; PRD 77 (2008) 014026; JHEP 06 (2010) 094]

Higgs decay rate h -> gg (Fixed order)

$$
\begin{gathered}
\frac{d \Gamma^{i}}{d \tau_{a}}=\Gamma_{B}^{i}(\mu)\left|C_{t}^{i}\left(m_{t}, \mu\right)\right|^{2}\left|C_{S}^{i}\left(m_{H}, \mu\right)\right|^{2} \int d \tau_{a}^{J 1} d \tau_{a}^{J 2} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J 1}-\tau_{a}^{J 2}-\tau_{a}^{S}\right) \\
\times J^{i}\left(\tau_{a}^{J 1}, \mu\right) J^{i}\left(\tau_{a}^{J 2}, \mu\right) S^{i}\left(\tau_{a}^{S}, \mu\right),
\end{gathered}
$$

\square Angularity soft functions $\mathrm{Si}^{\mathrm{i}}(\mathrm{Ta}, \mu)$ describing soft emissions from light-like quark or gluon and is available up to 2-loop orders for both the quarks and gluons.
[C. Lee, et. al. JHEP 05 (2009) 122; G. Bell et. al., JHEP 09 (2020) 015]
\square The angularity jet functions $\mathrm{Ji}(\tau a, \mu)$ describe the collinear emission along the direction of initial quark or, gluon. Quark angularity jet function is unto 2-loop and gluon angularity jet function is unto 1-loop is calculated recently.
[C. Lee et. al., JHEP 05 (2009) 122; JHEP 01 (2019) 147]
© We compute Gluon angularity jet function at 2-loop: The constant C^J_2 at 2-loop [J. Zhu,J. Gao, D. kang, TM, arXiv:2311.07282v1]

In the determination of the constant, there is significant contamination from subleading singular corrections slowly suppressed in small ta limit. In order to estimate the correction, we use asymptotic forms in small ta region and fit it to the nonsingular part of fixed-order result.

Results: Angularity in Hgg at NNLL'

- Resummed distribution received large correction from higher order
- The uncertainty is more sensitive to the angularity perimeter a for the higher order
- For NNLL to NNLL': Uncertainty is reduced by 12% for $\mathrm{a}=-1$ and by 5% for $\mathrm{a}=0.5$

Summary and Conclusion

DIS Angularity: Presented the one-loop angularity beam function precision prediction to the DIS angularity cross-section at NNLL accuracy.
uncertainty depends on the angularity parameter 'a' as well as on the longitudinal momentum fraction ' x ' of the partons.

Prediction is more precise for negative ' a ' and ' x ' going small region.

This prediction could be considered as one of the early milestone to event shape measurement at EIC

■ Angularity Hgg: We present improved predictions of angularity distribution ta in hadronic decays of Higgs boson via effective operator $\mathrm{H} \rightarrow \mathrm{gg}$ that suffers from large perturbative uncertainties on subleading NP corrections. The distribution is improved by resumming large logarithms of angularity at NNLL accuracy in the frame work of SCET.

Thank you!

LO

Figure 1. Representative top-quark loop contributions for the matching of the $H q_{L} \bar{q}_{R}$ amplitude.

Figure 2. Representative Feynman diagrams for the $H g g$ channel (left) and the $H q \bar{q}$ channel (right) for the thrust distribution at LO.

NLO

Figure 3. Representative Feynman diagrams for the $H g g$ channel (upper) and the $H q \bar{q}$ channel (lower) at NLO.

Two-loop constant of gluon jet function

Full QCD

$$
\frac{1}{\Gamma_{B}} \frac{d \Gamma}{d \tau_{a}}=A \delta\left(\tau_{a}\right)+\left[B\left(\tau_{a}\right)\right]_{+}+r\left(\tau_{a}\right)
$$

SCET $\quad \frac{1}{\Gamma_{B}} \frac{d \Gamma_{s}}{d \tau_{a}}=A \delta\left(\tau_{a}\right)+\left[B\left(\tau_{a}\right)\right]_{+}$
Total decay rate $\quad \frac{\Gamma_{t}}{\Gamma_{B}}=\int_{0}^{1} d \tau_{a}^{\prime} \frac{1}{\Gamma_{B}} \frac{d \Gamma}{d \tau_{a}^{\prime}}=A+r_{c}$

Result: Two-loop Constant of gluon jet function

$c_{\tilde{J}}^{2} \backslash a$	-1	-0.75	-0.5	-0.25	0
this work	44.19 ± 1.70	2.10 ± 2.75	-36.43 ± 1.65	-62.08 ± 2.49	-54.55 ± 2.60
Ref. $[59]^{*}$	37.18	-4.59	-40.27	-56.95	-55.73
$c_{\tilde{J}}^{2} \backslash a$	0.25	0.5			
this work	75.09 ± 10.99	814.48 ± 28.71			
${\text { Ref. }[59]^{*}}^{6}$	69.21	776.61			

Higgs decay rate h -> gg (Fixed order)

$$
\begin{aligned}
\frac{d \Gamma^{i}}{d \tau_{a}}=\Gamma_{B}^{i}(\mu)\left|C_{t}^{i}\left(m_{t}, \mu\right)\right|^{2} & \left|C_{S}^{i}\left(m_{H}, \mu\right)\right|^{2} \int d \tau_{a}^{J 1} d \tau_{a}^{J 2} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J 1}-\tau_{a}^{J 2}-\tau_{a}^{S}\right) \\
& \times J^{i}\left(\tau_{a}^{J 1}, \mu\right) J^{i}\left(\tau_{a}^{J 2}, \mu\right) S^{i}\left(\tau_{a}^{S}, \mu\right)
\end{aligned}
$$

Fixed order pQCD result

Top-Ioop Contribution

Wilson coefficient $C_{t}\left(m_{t}, \mu\right)$ comes from integrating out the top quark, whose perturbative expansion can be written as

$$
\begin{equation*}
C_{t}\left(m_{t}, \mu\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n} C_{t}^{(n)}\left(m_{t}, \mu\right) . \tag{2.3}
\end{equation*}
$$

The coefficients $C_{t}^{(n)}\left(m_{t}, \mu\right)$ have been calculated up to $\mathrm{N}^{4} \mathrm{LO}$ [46-52]. For our purpose, we need the results up to $\mathrm{N}^{3} \mathrm{LO}$, which are given by

$$
\begin{align*}
C_{t}\left(m_{t}, \mu\right)= & 1+\frac{\alpha_{s}}{4 \pi} 11+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[L_{t}\left(19+\frac{16}{3} n_{f}\right)+\frac{2777}{18}-\frac{67}{6} n_{f}\right] \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left[L_{t}^{2}\left(209+46 n_{f}-\frac{32}{9} n_{f}^{2}\right)+L_{t}\left(\frac{4834}{9}+\frac{2912}{27} n_{f}+\frac{77}{27} n_{f}^{2}\right)\right. \\
& \left.-\frac{2761331}{648}+\frac{897943 \zeta_{3}}{144}+\left(\frac{58723}{324}-\frac{110779 \zeta_{3}}{216}\right) n_{f}-\frac{6865}{486} n_{f}^{2}\right], \tag{2.4}
\end{align*}
$$

where $L_{t}=\ln \left(\mu^{2} / m_{t}^{2}\right)$, and we have set explicitly the number of colors $N_{c}=3$ to shorten the expression.

Hard functions

We expand the hard Wilson coefficients C_{S}^{i} in eq. (4.1) as

$$
C_{S}^{i}\left(m_{H}, \mu\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n} C_{S}^{i(n)}\left(L_{H}\right),
$$

where

$$
L_{H}=\ln \frac{-m_{H}^{2}-i \epsilon}{\mu^{2}}
$$

The NLO and NNLO coefficients are given by [70, 71]

$$
\begin{aligned}
C_{S}^{g(1)}\left(L_{H}\right)= & C_{A}\left(\frac{\pi^{2}}{6}-L_{H}^{2}\right) \\
C_{S}^{g(2)}\left(L_{H}\right)= & C_{A}^{2}\left[\frac{L_{H}^{4}}{2}+\frac{11 L_{H}^{3}}{9}+\left(\frac{\pi^{2}}{6}-\frac{67}{9}\right) L_{H}^{2}+\left(-2 \zeta_{3}-\frac{11 \pi^{2}}{9}+\frac{80}{27}\right) L_{H}\right. \\
& \left.+\frac{\pi^{4}}{72}-\frac{143 \zeta_{3}}{9}+\frac{67 \pi^{2}}{36}+\frac{5105}{162}\right]+C_{F} n_{f}\left(2 L_{H}+8 \zeta_{3}-\frac{67}{6}\right) \\
& +C_{A} n_{f}\left[-\frac{2 L_{H}^{3}}{9}+\frac{10 L_{H}^{2}}{9}+\left(\frac{52}{27}+\frac{2 \pi^{2}}{9}\right) L_{H}-\frac{46 \zeta_{3}}{9}-\frac{5 \pi^{2}}{18}-\frac{916}{81}\right]
\end{aligned}
$$

$$
a<0 \text { and small-x result }
$$

$$
a<0 \text { and small-x result }
$$

- Gluon contribution to the NLO correction is large at small-x region

$$
a<0 \text { and small-x result }
$$

- Gluon contribution to the NLO correction is large at small- x region

Future direction

1. An extension of this work to access the entire a space, specially $\mathbf{a} \sim 1$ region, by incorporating the recoil effect.
2. Uncertainty in the cross-section is sensitive to Q, ' a ' and ' x ' and we need to find out a reasonable profile function for DIS angularity.

Future direction

1. An extension of this work to access the entire a space, specially a~1 region, by incorporating the recoil effect.
2. Uncertainty in the cross-section is sensitive to Q, ' a ' and ' x ' and we need to find out a reasonable profile function for DIS angularity.
3. Recoil effect in DIS angularity and access to the entire a space, specially a~1 region, by incorporating the recoil effect in DIS!!

- Andrew Hornig, Christopher Lee, and Grigory Ovanesyan,JHEP 05 (2009) 122
-A. Budhraja, Ambar Jain and Massimiliano Procura, JHEP08(2019)144

Anomalous dimension

The universal cusp anomalous dimension $\Gamma_{\text {cusp }}\left(\alpha_{s}\right)$ and non-cusp anomalous dimension $\gamma_{G}\left(\alpha_{s}\right)$ are expressed in powers of α_{s} as

$$
\begin{equation*}
\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)=\sum_{n=0} \Gamma_{n}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+1}, \quad \gamma_{G}\left(\alpha_{s}\right)=\sum_{n=0} \gamma_{n}^{G}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+1} \tag{4.15}
\end{equation*}
$$

where Γ_{n} are given in appendix D and one-loop result for γ_{n}^{G} are given in [36]

$$
\begin{equation*}
\gamma_{0}^{G}=\left\{-12 C_{F}, 0,6 C_{F}\right\} \quad G=\{H, S, J\} \tag{4.16}
\end{equation*}
$$

which again satisfies the consistency in eq. (4.13) at the order α_{s}. The two-loop hard anomalous dimension is well known [61, 63] and available up to three-loops [64]

$$
\begin{equation*}
\gamma_{1}^{H}=-2 C_{F}\left[\left(\frac{82}{9}-52 \zeta_{3}\right) C_{A}+\left(3-4 \pi^{2}+48 \zeta_{3}\right) C_{F}+\left(\frac{65}{9}+\pi^{2}\right) \beta_{0}\right] \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{G}(\mu)=j_{G} \kappa_{G} \Gamma_{\text {cusp }}\left(\alpha_{s}\right) L_{G}+\gamma_{G}\left(\alpha_{s}\right), \tag{4.11}
\end{equation*}
$$

where $\Gamma_{\text {cusp }}\left(\alpha_{s}\right)$ and $\gamma_{G}\left(\alpha_{s}\right)$ are the cusp and non-cusp anomalous dimensions. The characteristic logarithm L_{G} is defined as

$$
L_{G}= \begin{cases}\ln \left(\frac{Q}{\mu}\right) & G=H, \tag{4.12}\\ \ln \left[\frac{Q}{\mu}\left(\nu e^{\gamma_{E}}\right)^{-1 / j_{G}}\right] & G=\{\widetilde{S}, \widetilde{J}, \widetilde{\mathcal{B}}\},\end{cases}
$$

The consistency relation followed by scale independence of cross section $d \sigma(\mu) / d \mu=0$ is given by $\gamma_{H}(\mu)+\gamma_{\widetilde{S}}(\mu)+2 \gamma_{\widetilde{J}}(\mu)=0$, which is valid for any values of Q, μ, ν in eq. (4.11) and it turns into three consistency relations

$$
\begin{align*}
j_{H} \kappa_{H}+j_{S} \kappa_{S}+2 j_{J} \kappa_{J} & =0, \\
\kappa_{S}+2 \kappa_{J} & =0, \\
\gamma_{H}\left(\alpha_{s}\right)+\gamma_{S}\left(\alpha_{s}\right)+2 \gamma_{J}\left(\alpha_{s}\right) & =0 . \tag{4.13}
\end{align*}
$$

The constants j_{G} and κ_{G} are given by

$$
\begin{align*}
j_{G} & =\{1,1,2-a\} \\
\kappa_{G} & =\left\{4, \frac{4}{1-a},-\frac{2}{1-a}\right\}, \quad G=\{H, S, J\} \tag{4.14}
\end{align*}
$$

where $C_{q j}=C_{F}, T_{F}$ for $j=q, g$. One of the logarithmic terms L_{B} is associated with PDF with the splitting functions $P_{q j}$

$$
\begin{align*}
& P_{q q}(z)=\left[\frac{\theta(1-z)}{1-z}\right]_{+}\left(1+z^{2}\right)+\frac{3}{2} \delta(1-z)=\left[\theta(1-z) \frac{1+z^{2}}{1-z}\right]_{+} \\
& P_{q g}(z)=\theta(1-z)\left[(1-z)^{2}+z^{2}\right] \tag{5.5}
\end{align*}
$$

Profile function

Profile function

- We adopt electron-positron angularity profile function from Bell, Hornig, Lee, Talbert, 18

$a=0.5$

DIS factorization in SCET

$$
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=L_{\mu \nu}\left(x, Q^{2}\right) W^{\mu \nu}\left(x, Q^{2}, \tau_{a}\right)
$$

The hadronic tensor defined by QCD current $J^{\mu}(x)=\bar{\psi} \gamma^{\mu} \psi(x)$

$$
\begin{aligned}
W^{\mu \nu}\left(x, Q^{2}, \tau_{a}\right) & =\sum_{X}\langle P| J^{\mu \dagger}|X\rangle\langle X| J^{\nu}|P\rangle(2 \pi)^{(4)} \delta^{4}\left(P+q-p_{X}\right) \delta\left(\tau_{a}-\tau_{a}(X)\right) \\
& =\int d^{4} x e^{i q \cdot x}\langle P| J^{\mu \dagger}(x) \delta\left(\tau_{a}-\hat{\tau}_{a}\right) J^{\nu}(0)|P\rangle .
\end{aligned}
$$

Neglecting the power correction $O\left(\lambda^{2}\right)$, we match the current $J \mu_{(x)}=\psi^{-} \gamma^{\mu} \psi(x)$ onto the operators in SCET and perform the field redefinition to have factorized form of the hadronic tensor as

$$
\begin{aligned}
W_{\mu \nu}\left(x, Q^{2}, \tau_{a}\right)=\left(\frac{8 \pi}{n_{J} \cdot n_{B}}\right) & \int d \tau_{a}^{J} d \tau_{a}^{B} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\tau_{a}^{S}\right) \\
& \times H_{\mu \nu}\left(q^{2}, \mu\right) \mathcal{B}_{i}\left(\tau_{a}^{B}, x, \mu\right) J\left(\tau_{a}^{J}, \mu\right) S\left(\tau_{a}^{S}, \mu\right)
\end{aligned}
$$

Measurement operator: $\hat{\tau}_{a}=\hat{\tau}_{a}^{c_{B}}+\hat{\tau}_{a}^{c_{J}}+\hat{\tau}_{a}^{S}$

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2} d \tau_{a}}=\frac{d \sigma_{0}}{d x d Q^{2}} & \int d \tau_{a}^{J} d \tau_{a}^{B} d \tau_{a}^{S} \delta\left(\tau_{a}-\tau_{a}^{J}-\tau_{a}^{B}-\tau_{a}^{S}\right) \\
& \times \sum_{i=q, \bar{q}} H_{i}\left(Q^{2}, \mu\right) \mathcal{B}_{i}\left(\tau_{a}^{B}, x, \mu\right) J\left(\tau_{a}^{J}, \mu\right) S\left(\tau_{a}^{S}, \mu\right)
\end{aligned}
$$

SCET facto.: $\quad d \sigma=$ Hard \times Beam \otimes Jet \otimes Soft

- D.Kang,Lee,Stewart'2013 Z.Kang,Mantry,Qiu'2012

