

Machine Learning in Gravitational-wave

Prayush Kumar ICTS-TIFR

25 May 2022 LABORATORY FOR INTERDISCIPLINARY BREAKTHROUGH SCIENCE, ICTS-TIFR

Gravitational-wave Astronomy

Gravitational-wave Astronomy

Image credit: Kavli Foundation, LSC; https://cggplus.files.wordpress.com;

GW observations: nearly 100 and counting!

Anatomy of GW astronomy

1. Detection of GW signals

Detection of GW signals: George & Huerta (2016)

	Input	vector (size: 8192)
1	Reshape Layer	tensor (size: 1 × 1 × 8192)
2	Convolution Layer	tensor (size: 16 × 1 × 8177)
3	Pooling Layer	tensor (size: 16 × 1 × 2045)
4	Ramp	tensor (size: 16 × 1 × 2045)
5	Convolution Layer	tensor (size: 32 x 1 x 2017)
6	Pooling Layer	tensor (size: 32 × 1 × 505)
7	Ramp	tensor (size: 32 × 1 × 505)
В	Convolution Layer	tensor (size: 64 × 1 × 477)
9	Pooling Layer	tensor (size: 64 × 1 × 120)
10	Ramp	tensor (size: 64 × 1 × 120)
11	Flatten Layer	vector (size: 7680)
12	Linear Layer	vector (size: 64)
13	Ramp	vector (size: 64)
14	Linear Layer	vector (size: 2)
15	Softmax Layer	vector (size: 2)
	Output	vector (size: 2)

Detection of GW signals: Rebei et al (2019)

Detection of GW signals: Gebhard et al (2019)

Forecasting (detection) of GW signals: Wei et al (2021)

e = 0.1

e = 0.3

e = 0.5

e = 0.1

e = 0.3

e = 0.5

e = 0.7

--- e=0.7

-5

time (s)

-5

time (s)

time (s)

2. Measuring source parameters

Difficulties are the same as for the detection problem: Signal is weaker than instrument noise, we therefore need clever techniques for precisely characterizing the source of GW signals

2. Measuring source parameters

Difficulties are the same as for the detection problem: Signal is weaker than instrument noise, we therefore need clever techniques for precisely characterizing the source of GW signals

Here also we **need low-latency**results since follow-up of GW
events for EM counterparts needs
prompt alerts to be sent to
telescope partners!

2. Measuring source parameters

Difficulties are the same as for the detection problem: Signal is weaker than instrument noise, we therefore need clever techniques for precisely characterizing the source of GW signals

Here also we **need low-latency**results since follow-up of GW
events for EM counterparts needs
prompt alerts to be sent to
telescope partners!

Matched-filtering based Bayesian parameter estimation takes between **5 hours to 5 days per event**!

Measuring source parameters: Gabbard et al (2020)

Measuring source parameters: Green et al (2020)

Measuring source parameters: Chua et al (2020)

Summary & Future Outlook

LIGO-India Scientific Collaboration

ML / Al can now be applied to:

- Low-latency detection of GW signals
- Measurement of source parameters from GW signals
- Characterization of GW detector noise transients

Future:

- Most of these applications are in proof-of-concept stage
- No sufficiently clear understanding yet of the
 - (a) statistical confidences in AI detections, and
 - (b) source parameter measures in Bayesian framework
 - ⇒ More nuanced applications of AI needed
- AI-based methods need to be scalable to future networks of 5 detectors: HLVKI
- Development of AI based algos needs substantial computing expertise & hardware
- Discover yet-undetected signal types
- Develop GW signal models by solving PDEs with neural-network based operators

Questions?

Detector Noise Characterization: George et al (2017)

Detector Noise Characterization: George et al (2017)

