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GW observations: nearly 100 and counting!
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Anatomy of GW astronomy

Astrophysical formation,
Population statistics,

Cosmological information,
Grav. Lensing, 

Core-collapse SNe…. 
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1. Detection of GW signals
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Detection of GW signals: George & Huerta (2016)
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Detection of GW signals: Rebei et al (2019)
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Detection of GW signals: Gebhard et al (2019)
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Forecasting (detection) of GW signals: Wei et al (2021)
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2. Measuring source parameters
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Difficulties are the same as for the 
detection problem: Signal is weaker 
than instrument noise, we therefore 
need clever techniques for precisely 

characterizing the source of GW 
signals
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Difficulties are the same as for the 
detection problem: Signal is weaker 
than instrument noise, we therefore 
need clever techniques for precisely 

characterizing the source of GW 
signals

Here also we need low-latency 
results since follow-up of GW 

events for EM counterparts needs 
prompt alerts to be sent to 

telescope partners!

Matched-filtering based Bayesian 
parameter estimation takes 

between 5 hours to 5 days per 
event!



Measuring source parameters: Gabbard et al (2020)
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Measuring source parameters: Green et al (2020)
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Measuring source parameters: Chua et al (2020)
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Summary & Future Outlook
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ML / AI can now be applied to:
○ Low-latency detection of GW signals
○ Measurement of source parameters from GW signals
○ Characterization of GW detector noise transients

Future:
○ Most of these applications are in proof-of-concept stage
○ No sufficiently clear understanding yet of the 

(a) statistical confidences in AI detections, and
(b) source parameter measures in Bayesian framework
⇒ More nuanced applications of AI needed

○ AI-based methods need to be scalable to future 
networks of 5 detectors: HLVKI

○ Development of AI based algos needs substantial 
computing expertise & hardware

○ Discover yet-undetected signal types
○ Develop GW signal models by solving PDEs with 

neural-network based operators



Questions?
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Detector Noise Characterization: George et al (2017) 
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Detector Noise Characterization: George et al (2017) 
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