Distance problems and their many variants

Eyvindur Ari Palsson

Department of Mathematics Virginia Tech

July 4, 2023

Modern trends in Harmonic Analysis International Centre for Theoretical Sciences Bengaluru, India

Distances

$$\Phi(x_1,x_2)=|x_1-x_2|$$

(日)

문 문 문

Distance problems and their many variants Distances

Triangles

$$\Phi(x_1, x_2, x_3) = (|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|)$$

æ

An Erdős type problem for triangles

What is the least number of distinct triangles determined by N points in the plane? An Erdős type problem for triangles

What is the least number of distinct triangles determined by N points in the plane?

▶ Rudnev obtained N^2 .

Achieved by the regular *N*-gon.

An Erdős type problem for triangles

What is the least number of distinct triangles determined by N points in the plane?

Rudnev obtained N².

Achieved by the regular N-gon.

 Wide open in higher dimensions and not clear what the conjecture should be.

A Falconer type problem for triangles

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the set of triangles

$$D_{\Delta}(E) = \{ (|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) : x_1, x_2, x_3 \in E \}$$

has positive three-dimensional Lebesgue measure?

A Falconer type problem for triangles

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the set of triangles

$$D_{\Delta}(E) = \{ (|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) : x_1, x_2, x_3 \in E \}$$

has positive three-dimensional Lebesgue measure?

Erdoğan and losevich conjecture for triangles in the plane

$$dim_{\mathcal{H}}(E) > rac{3}{2}$$
 in \mathbb{R}^2

• Only know the trivial restriction dim_{\mathcal{H}} $(E) > \frac{d}{2}$ for $d \ge 3$.

Progress on the Falconer type problem for triangles

Grafakos, Greenleaf, Iosevich, P.

• dim_{\mathcal{H}}(E) > $\frac{3}{4}d + \frac{1}{4}$ in \mathbb{R}^d

► Greenleaf, Iosevich, Liu, P.

• $dim_{\mathcal{H}}(E) > \frac{8}{5}$ in \mathbb{R}^2 • $dim_{\mathcal{H}}(E) > \frac{2}{3}d + \frac{1}{3}$ in \mathbb{R}^d when $d \ge 3$

э

Progress on the Falconer type problem for triangles

► Grafakos, Greenleaf, Iosevich, P.

• dim_{$$\mathcal{H}$$} $(E) > \frac{3}{4}d + \frac{1}{4}$ in \mathbb{R}^d

► Greenleaf, Iosevich, Liu, P.

Erdoğan, Hart, losevich

• dim
$$_{\mathcal{H}}(E) > \frac{1}{2}d + \frac{3}{2}$$
 in \mathbb{R}^d

• dim_{$$\mathcal{H}$$} $(E) > \frac{1}{2}d + 1$ in \mathbb{R}^d

The triangle averaging operator

The triangle averaging operator

$$A_{\Delta}(f,g)(x) = \int_{M} f(x-u)g(x-v)d\sigma_{\Delta}(u,v)$$

where $d\sigma_{\Delta}(u, v)$ is the normalized surface measure on

$$\{(u, v) \in \mathbb{R}^d \times \mathbb{R}^d : |u| = t_1, |v| = t_2, |u - v| = t_3\}$$

Properties of the equilateral triangle averaging operator

The equilateral triangle averaging operator

$$A_{\Delta}(f,g)(x) = \int_{|u|=|v|=|u-v|=1} f(x-u)g(x-v)d\sigma_{\Delta}(u,v)$$

becomes on the Fourier side (with some multilinear complications)

 $\widehat{f}(\xi)\widehat{g}(\eta)\widehat{\sigma_{\Delta}}(\xi,\eta)$

Properties of the equilateral triangle averaging operator

The equilateral triangle averaging operator

$$A_{\Delta}(f,g)(x) = \int_{|u|=|v|=|u-v|=1} f(x-u)g(x-v)d\sigma_{\Delta}(u,v)$$

becomes on the Fourier side (with some multilinear complications)

$$\widehat{f}(\xi)\widehat{g}(\eta)\widehat{\sigma_{\Delta}}(\xi,\eta)$$

Through stationary phase estimates (losevich-Liu)

$$|\widehat{\sigma_{\Delta}}(\xi,\eta)| \lesssim \begin{cases} (1+\min(|\xi|,|\eta|)|\sin(\theta)|)^{-\frac{d-2}{2}}(1+|(\xi,\eta)|)^{-\frac{d-2}{2}}\\\\ |\xi+g_{\frac{\pi}{3}}\eta|^{-\frac{1}{2}}|\xi|^{-\frac{d-2}{2}}|\eta|^{-\frac{d-2}{2}}|\sin(\theta)|^{-\frac{d-2}{2}} \end{cases}$$

where θ is the angle between ξ and η .

L^p bounds for the triangle averaging operator

► Trivially $A_{\Delta} : L^{p}(\mathbb{R}^{d}) \times L^{q}(\mathbb{R}^{d}) \to L^{r}(\mathbb{R}^{d})$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ when $r \geq 1$ by Young's convolution inequality.

L^p bounds for the triangle averaging operator

► Trivially $A_{\Delta} : L^{p}(\mathbb{R}^{d}) \times L^{q}(\mathbb{R}^{d}) \rightarrow L^{r}(\mathbb{R}^{d})$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ when $r \geq 1$ by Young's convolution inequality.

Theorem (P, Sovine in 2019) For $d \geq 7$ the operator A_{Δ} is bounded $L^p(\mathbb{R}^d) \times L^q(\mathbb{R}^d) \to L^r(\mathbb{R}^d)$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ where $\left(\frac{1}{p}, \frac{1}{q}\right)$ come from the following region where $p_d = \frac{19d-4}{11d-12}$. $\left(\frac{1}{p_d}, \frac{1}{p_d}\right)$

Geometric information leads to better bounds

• If σ_u is the natural measure on a lower dimensional sphere

$$A_{\Delta}(f,g)(x) = \int_{|u|=|v|=|u-v|=1} f(x-u)g(x-v)d\sigma_u(v)d\sigma(u)$$

Geometric information leads to better bounds

• If σ_u is the natural measure on a lower dimensional sphere

$$A_{\Delta}(f,g)(x) = \int_{|u|=|v|=|u-v|=1} f(x-u)g(x-v)d\sigma_u(v)d\sigma(u)$$

Theorem (losevich, P, Sovine in 2021) For $d \geq 2$ the operator A_{Δ} is bounded $L^p(\mathbb{R}^d) \times L^q(\mathbb{R}^d) \to L^r(\mathbb{R}^d)$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ where now $p_d = \frac{d+1}{d}$. $\frac{1}{q}$ $\left(\frac{1}{p_d}, \frac{1}{p_d}\right)$ (0,1)

L^p improving bounds

From the work of Stovall as well as Greenleaf, losevich, Krause and Liu can obtain the following sharp L^p improving bounds for A_{Δ} . (a) $L^{\frac{3}{2}}(\mathbb{R}^2) \times L^{\frac{3}{2}}(\mathbb{R}^2) \rightarrow L^1(\mathbb{R}^2)$ (b) $L^2(\mathbb{R}^2) \times L^2(\mathbb{R}^2) \rightarrow L^2(\mathbb{R}^2)$ restricted strong type

as well as bounds coming from the linear setting and interpolated bounds with trivial estimates.

L^p improving bounds

From the work of Stovall as well as Greenleaf, losevich, Krause and Liu can obtain the following sharp L^p improving bounds for A_{Δ} . (a) $L^{\frac{3}{2}}(\mathbb{R}^2) \times L^{\frac{3}{2}}(\mathbb{R}^2) \to L^1(\mathbb{R}^2)$ (b) $L^2(\mathbb{R}^2) \times L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$ restricted strong type

as well as bounds coming from the linear setting and interpolated bounds with trivial estimates.

Theorem (losevich, P, Sovine in 2021)
For
$$d \ge 2$$
 the operator A_{Δ} satisfies
(a) $L^{\frac{d+1}{d}}(\mathbb{R}^d) \times L^{\frac{d+1}{d}}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$
(b) $L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ restricted strong type
(c) $L^{\frac{m(d+1)}{d}}(\mathbb{R}^d) \times L^{\frac{m(d+1)}{d}}(\mathbb{R}^d) \to L^{\frac{m(d+1)}{2}}(\mathbb{R}^d), d \ge 2m, m \ge 2$
and the first of those bounds is sharp.

Maximal equilateral triangle averaging operator

The maximal equilateral triangle averaging operator

$$M_{\Delta}(f,g)(x) = \sup_{r>0} \int_{|u|=|v|=|u-v|=1} f(x-ru)g(x-rv)d\sigma_{\Delta}(u,v)$$

Expect mapping properties of the type

$$M_{\Delta}: L^{p}(\mathbb{R}^{d}) \times L^{q}(\mathbb{R}^{d}) \to L^{r}(\mathbb{R}^{d}), \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$$

Maximal equilateral triangle averaging operator

The maximal equilateral triangle averaging operator

$$M_{\Delta}(f,g)(x) = \sup_{r>0} \int_{|u|=|v|=|u-v|=1} f(x-ru)g(x-rv)d\sigma_{\Delta}(u,v)$$

Expect mapping properties of the type

$$M_{\Delta}: L^{p}(\mathbb{R}^{d}) \times L^{q}(\mathbb{R}^{d}) \to L^{r}(\mathbb{R}^{d}), \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$$

• $r > \frac{d}{d-1}$ trivial and optimal if either $p = \infty$ or $q = \infty$.

Maximal equilateral triangle averaging operator

The maximal equilateral triangle averaging operator

$$M_{\Delta}(f,g)(x) = \sup_{r>0} \int_{|u|=|v|=|u-v|=1} f(x-ru)g(x-rv)d\sigma_{\Delta}(u,v)$$

Expect mapping properties of the type

$$M_{\Delta}: L^{p}(\mathbb{R}^{d}) \times L^{q}(\mathbb{R}^{d}) \to L^{r}(\mathbb{R}^{d}), \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$$

▶ $r > \frac{d}{d-1}$ trivial and optimal if either $p = \infty$ or $q = \infty$.

P, Sovine conjecture restricted type bounds

$$M_{\Delta}: L^{\frac{d}{d-1}}(\mathbb{R}^d) \times L^{\frac{d}{d-1}}(\mathbb{R}^d) \to L^{\frac{d}{2d-2},\infty}(\mathbb{R}^d)$$

Some positive results

• Cook, Lyall, Magyar established

$$M_{\Delta}: L^{\frac{m}{m-1}\frac{d}{d-1}}(\mathbb{R}^d) \times L^{\frac{m}{m-1}\frac{d}{d-1}}(\mathbb{R}^d) \to L^{\frac{m}{m-1}\frac{d}{2d-2}}(\mathbb{R}^d)$$
where $d \ge 2m$ and $m \ge 2$.

Distance problems and their many variants Some positive results

《口》《聞》《臣》《臣》

æ

Some positive results

► Cook, Lyall, Magyar established

$$M_{\Delta}: L^{\frac{m}{m-1}\frac{d}{d-1}}(\mathbb{R}^d) \times L^{\frac{m}{m-1}\frac{d}{d-1}}(\mathbb{R}^d) \rightarrow L^{\frac{m}{m-1}\frac{d}{2d-2}}(\mathbb{R}^d)$$
where $d \ge 2m$ and $m \ge 2$.

 P, Sovine in a recent paper established sparse bounds for M_Δ in the Banach range.

- (a) Generalizes bounds obtained by Lacey for M_S .
- (b) Builds on techniques of Roncal, Shrivastava, and Shuin for a maximal bilinear product spherical averaging operator.

The discrete maximal triangle averaging operator

With Theresa Anderson and Angel Kumchev we studied

$$\mathcal{T}(f,g)(k) = \sup_{\lambda>0} \left| \frac{1}{\#\mathcal{U}_{\lambda}} \sum_{u,v\in\mathcal{U}_{\lambda}} f(k-u)g(k-v) \right|$$

where the sum is over the variety

$$\mathcal{U}_{\lambda} = \{u, v \in \mathbb{Z}^d : |u|^2 = |v|^2 = |u - v|^2 = \lambda\}$$

The discrete maximal triangle averaging operator

With Theresa Anderson and Angel Kumchev we studied

$$\mathcal{T}(f,g)(k) = \sup_{\lambda>0} \left| \frac{1}{\#\mathcal{U}_{\lambda}} \sum_{u,v\in\mathcal{U}_{\lambda}} f(k-u)g(k-v) \right|$$

where the sum is over the variety

$$\mathcal{U}_{\lambda} = \{u, v \in \mathbb{Z}^d : |u|^2 = |v|^2 = |u - v|^2 = \lambda\}$$

- ► Can see #U_λ ≈ λ^{d-3} for d large enough for example through modular forms or the circle method.
- ▶ We obtain a wide range of estimates of the type $\ell^p(\mathbb{Z}^d) \times \ell^q(\mathbb{Z}^d) \to \ell^r(\mathbb{Z}^d)$ when $d \ge 9$ where $\frac{1}{p} + \frac{1}{q} \ge \frac{1}{r}$, $r > \max(\frac{32}{d+9}, \frac{d+4}{d-2})$ and p, q > 1.

The discrete maximal triangle averaging operator

With Theresa Anderson and Angel Kumchev we studied

$$\mathcal{T}(f,g)(k) = \sup_{\lambda>0} \left| rac{1}{\#\mathcal{U}_{\lambda}} \sum_{u,v\in\mathcal{U}_{\lambda}} f(k-u)g(k-v) \right|$$

where the sum is over the variety

$$\mathcal{U}_{\lambda} = \{u, v \in \mathbb{Z}^d : |u|^2 = |v|^2 = |u - v|^2 = \lambda\}$$

- ► Can see #U_λ ≈ λ^{d-3} for d large enough for example through modular forms or the circle method.
- ▶ We obtain a wide range of estimates of the type $\ell^p(\mathbb{Z}^d) \times \ell^q(\mathbb{Z}^d) \to \ell^r(\mathbb{Z}^d)$ when $d \ge 9$ where $\frac{1}{p} + \frac{1}{q} \ge \frac{1}{r}$, $r > \max(\frac{32}{d+9}, \frac{d+4}{d-2})$ and p, q > 1.
- Improvements in high dimensions and certain ranges by Cook, Lyall and Magyar.

The Mattila-Sjölin theorem

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the distance set

$$D(E) = \{|x - y| : x, y \in E\}$$

has non-empty interior and thus contains an interval?

Sets of positive measure need not have non-empty interior!

The Mattila-Sjölin theorem

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the distance set

$$D(E) = \{|x - y| : x, y \in E\}$$

has non-empty interior and thus contains an interval?

Sets of positive measure need not have non-empty interior!

Theorem (Mattila, Sjölin in 1999) Let $E \subset \mathbb{R}^d$, $d \ge 2$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{d+1}{2}$ then D(E) has non-empty interior.

 Iosevich, Mourgoglou and Taylor extended this to a wide range of distance metrics in 2011.

Many interesting point configurations

More complicated configurations

- Greenleaf, losevich and Taylor showed Mattila-Sjölin type theorems for various k-point configurations.
- One example is that if E ⊂ ℝ² is compact with dim_H(E) > ⁵/₃ then the set of areas of triangles determined by triples of points of E

$$\left\{rac{1}{2}|\det[x-z,y-z]|:x,y,z\in E
ight\}\subset\mathbb{R}$$

contains an open interval.

More complicated configurations

- Greenleaf, losevich and Taylor showed Mattila-Sjölin type theorems for various k-point configurations.
- One example is that if E ⊂ ℝ² is compact with dim_H(E) > ⁵/₃ then the set of areas of triangles determined by triples of points of E

$$\left\{\frac{1}{2}|\det[x-z,y-z]|:x,y,z\in E\right\}\subset\mathbb{R}$$

contains an open interval.

Their FIO method did not originally apply to the triangle set.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta in 2021) Let $E \subset \mathbb{R}^d$, $d \ge 4$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{2}{3}d + 1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, losevich and Taylor.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta in 2021) Let $E \subset \mathbb{R}^d$, $d \ge 4$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{2}{3}d + 1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, losevich and Taylor.

Theorem (P, Romero Acosta in 2022)

Let $E \subset \mathbb{R}^3$ be compact. If dim_{\mathcal{H}} $(E) > \frac{23}{8}$ then $D_{\Delta}(E)$ has non-empty interior.

- Classic side-side-side viewpoint.
- Builds on work of losevich and Magyar.
- Extends to simplexes in higher dimensions.

The L^2 approach

• Define a measure $\delta(\mu)(\mathbf{t})$ on $D_{\Delta}(E)$ by the relation

$$\int f(\mathbf{t}) d\delta(\mu)(\mathbf{t}) = \iiint f(|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) d\mu(x_1) d\mu(x_2) d\mu(x_3)$$

where μ is a Frostman measure supported on *E*.

• Try to establish the bound $\int \delta(\mu)^2(\mathbf{t}) d\mathbf{t} \lesssim 1$.

The L^2 approach

• Define a measure $\delta(\mu)(\mathbf{t})$ on $D_{\Delta}(E)$ by the relation

$$\int f(\mathbf{t}) d\delta(\mu)(\mathbf{t}) = \iiint f(|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) d\mu(x_1) d\mu(x_2) d\mu(x_3)$$

where μ is a Frostman measure supported on *E*.

• Try to establish the bound
$$\int \delta(\mu)^2({f t}) \, d{f t} \lesssim 1.$$

• Idea:
$$\int \delta(\mu)^2(\mathbf{t}) d\mathbf{t} = \iint_{\mathbf{s}=\mathbf{t}} \delta(\mu)(\mathbf{t})\delta(\mu)(\mathbf{s}) d\mathbf{t}d\mathbf{s}$$

A group-theoretic point of view

- Leads one to consider (x₁, x₂, x₃) and (y₁, y₂, y₃) that give rise to the same triangle, in other words |x_i − x_j| = |y_i − y_j| for all 1 ≤ i < j ≤ 3.</p>
- ▶ Observe that for $x_i \neq x_j$, $|x_i x_j| = |y_i y_j|$ if and only if $x_i x_j = gy_i gy_j$ for some $g \in \mathbb{O}(d)$, the orthogonal group.

Using the group-theoretic point of view it follows that

$$\int \delta(\mu)^2(\mathbf{t}) d\mathbf{t} \leq c \int \mu^6\{(x_1, \dots, x_3, y_1, \dots, y_3) :$$
$$x_i - gy_i = x_j - gy_j, \ 1 \leq i < j \leq 3\} dx dy dg$$

where dg denotes the Haar measure on $\mathbb{O}(d)$.

()

Using the group-theoretic point of view it follows that

$$\int \delta(\mu)^2(\mathbf{t}) \, d\mathbf{t} \leq c \int \mu^6\{(x_1, \dots, x_3, y_1, \dots, y_3) :$$
$$x_i - gy_i = x_j - gy_j, \ 1 \leq i < j \leq 3\} dx dy dg$$

where dg denotes the Haar measure on $\mathbb{O}(d)$.

• Define a measure $\delta(\mu)_g$ on E - gE by the relation

$$\int f(z)d\delta(\mu)_g(z) := \int \int f(u-gv)d\mu(u)d\mu(v).$$

Then can write the inequality above as

$$\int \delta(\mu)^2(\mathbf{t})\,d\mathbf{t} \lesssim \int \int \delta(\mu)^3_g(z)\,dz\,dg.$$

A generalized Mattila integral

From the definition of $\delta(\mu)_g$ one obtains

$$\widehat{\delta(\mu)_{g}}(\xi) = \widehat{\mu}(\xi)\widehat{\mu}(g\xi).$$

A generalized Mattila integral

From the definition of $\delta(\mu)_g$ one obtains

$$\widehat{\delta(\mu)_{g}}(\xi) = \widehat{\mu}(\xi)\widehat{\mu}(g\xi).$$

Using Plancharel

$$\begin{split} \int \delta(\mu)^2(\mathbf{t}) \, d\mathbf{t} &\lesssim \int \int \delta(\mu)_g^3(z) \, dz \, dg \\ &\leq \|\delta(\mu)_g\|_{\infty} \int \int \delta(\mu)_g^2(z) \, dz \, dg \\ &= \|\delta(\mu)_g\|_{\infty} \int |\widehat{\mu}(\xi)|^2 \left\{ \int |\widehat{\mu}(g\xi)|^2 dg \right\} d\xi \\ &\lesssim \|\delta(\mu)_g\|_{\infty} \int \left(\int_{S^{d-1}} |\widehat{\mu}(r\omega)|^2 d\omega \right)^2 r^{d-1} dr \end{split}$$

A generalized Mattila integral

From the definition of $\delta(\mu)_g$ one obtains

$$\widehat{\delta(\mu)_{g}}(\xi) = \widehat{\mu}(\xi)\widehat{\mu}(g\xi).$$

Using Plancharel

$$\begin{split} \int \delta(\mu)^2(\mathbf{t}) \, d\mathbf{t} &\lesssim \int \int \delta(\mu)_g^3(z) \, dz \, dg \\ &\leq \|\delta(\mu)_g\|_{\infty} \int \int \delta(\mu)_g^2(z) \, dz \, dg \\ &= \|\delta(\mu)_g\|_{\infty} \int |\widehat{\mu}(\xi)|^2 \left\{ \int |\widehat{\mu}(g\xi)|^2 dg \right\} d\xi \\ &\lesssim \|\delta(\mu)_g\|_{\infty} \int \left(\int_{S^{d-1}} |\widehat{\mu}(r\omega)|^2 d\omega \right)^2 r^{d-1} dr \end{split}$$

• Can we better estimate $\int \int \delta(\mu)_g^3(z) dz dg$?

For $x \in \mathbb{R}^d$ define the pinned distance set of $E \subset \mathbb{R}^d$

$$D^{x}(E) = \{|x-y| : y \in E\}$$

For $x \in \mathbb{R}^d$ define the pinned distance set of $E \subset \mathbb{R}^d$

$$D^{x}(E) = \{|x-y| : y \in E\}$$

• Can we guarantee $\mathcal{L}(D^{\times}(E)) > 0$?

For $x \in \mathbb{R}^d$ define the pinned distance set of $E \subset \mathbb{R}^d$

$$D^{x}(E) = \{|x-y| : y \in E\}$$

• Can we guarantee $\mathcal{L}(D^{\times}(E)) > 0$?

A bad example is *E* is a sphere around *x*.

For $x \in \mathbb{R}^d$ define the pinned distance set of $E \subset \mathbb{R}^d$

$$D^{x}(E) = \{|x-y| : y \in E\}$$

• Can we guarantee
$$\mathcal{L}(D^{\times}(E)) > 0$$
?

- A bad example is *E* is a sphere around *x*.
- How large does dim_H(E), for E ⊂ ℝ^d, d ≥ 2, need to be to ensure that there exists x ∈ E with L(D^x(E)) > 0?

Group actions and Liu's result

• Peres and Schlag obtained threshold $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$.

Distance problems and their many variants Group actions and Liu's result

Group actions and Liu's result

• Peres and Schlag obtained threshold $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$.

Liu's magic formula

$$\int |\sigma_r * f(x)|^2 r^{d-1} dr = \int |\widehat{\sigma_r} * f(x)|^2 r^{d-1} dr$$

for any $x \in \mathbb{R}^d$ and f a Schwartz function on \mathbb{R}^d .

- Builds on the group action viewpoint in continuous setting developed by Greenleaf, losevich, Liu and P.
- All thresholds using the Mattila scheme translate directly to the pinned setting due to Liu.

Thank you!

Questions?

Contact me: palsson@vt.edu

My website: personal.math.vt.edu/palsson/