Distance problems and their many variants

Eyvindur Ari Palsson
Department of Mathematics
Virginia Tech

July 4, 2023
Modern trends in Harmonic Analysis International Centre for Theoretical Sciences

Bengaluru, India

Distances

Triangles

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right)
$$

An Erdős type problem for triangles

- What is the least number of distinct triangles determined by N points in the plane?

An Erdős type problem for triangles

- What is the least number of distinct triangles determined by N points in the plane?
- Rudnev obtained N^{2}.
- Achieved by the regular N -gon.

An Erdős type problem for triangles

- What is the least number of distinct triangles determined by N points in the plane?
- Rudnev obtained N^{2}.
- Achieved by the regular N -gon.
- Wide open in higher dimensions and not clear what the conjecture should be.

A Falconer type problem for triangles

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}$ compact, need to be to ensure that the set of triangles

$$
D_{\Delta}(E)=\left\{\left(\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right): x_{1}, x_{2}, x_{3} \in E\right\}
$$

has positive three-dimensional Lebesgue measure?

A Falconer type problem for triangles

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}$ compact, need to be to ensure that the set of triangles

$$
D_{\Delta}(E)=\left\{\left(\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right): x_{1}, x_{2}, x_{3} \in E\right\}
$$

has positive three-dimensional Lebesgue measure?

- Erdoğan and losevich conjecture for triangles in the plane

$$
\operatorname{dim}_{\mathcal{H}}(E)>\frac{3}{2} \text { in } \mathbb{R}^{2}
$$

- Only know the trivial restriction $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}$ for $d \geq 3$.

Progress on the Falconer type problem for triangles

- Grafakos, Greenleaf, losevich, P.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{3}{4} d+\frac{1}{4}$ in \mathbb{R}^{d}
- Greenleaf, losevich, Liu, P.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{8}{5}$ in \mathbb{R}^{2}
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{2}{3} d+\frac{1}{3}$ in \mathbb{R}^{d} when $d \geq 3$

Progress on the Falconer type problem for triangles

- Grafakos, Greenleaf, losevich, P.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{3}{4} d+\frac{1}{4}$ in \mathbb{R}^{d}
- Greenleaf, losevich, Liu, P.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{8}{5}$ in \mathbb{R}^{2}
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{2}{3} d+\frac{1}{3}$ in \mathbb{R}^{d} when $d \geq 3$
- Erdoğan, Hart, losevich
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{1}{2} d+\frac{3}{2}$ in \mathbb{R}^{d}
- losevich, Pham, Pham, Shen
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{1}{2} d+1$ in \mathbb{R}^{d}

The triangle averaging operator

- The triangle averaging operator

$$
A_{\Delta}(f, g)(x)=\int_{M} f(x-u) g(x-v) d \sigma_{\Delta}(u, v)
$$

where $d \sigma_{\Delta}(u, v)$ is the normalized surface measure on

$$
\left\{(u, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|u|=t_{1},|v|=t_{2},|u-v|=t_{3}\right\}
$$

Properties of the equilateral triangle averaging operator

- The equilateral triangle averaging operator

$$
A_{\Delta}(f, g)(x)=\int_{|u|=|v|=|u-v|=1} f(x-u) g(x-v) d \sigma_{\Delta}(u, v)
$$

becomes on the Fourier side (with some multilinear complications)

$$
\widehat{f}(\xi) \widehat{g}(\eta) \widehat{\sigma_{\Delta}}(\xi, \eta)
$$

Properties of the equilateral triangle averaging operator

- The equilateral triangle averaging operator

$$
A_{\Delta}(f, g)(x)=\int_{|u|=|v|=|u-v|=1} f(x-u) g(x-v) d \sigma_{\Delta}(u, v)
$$

becomes on the Fourier side (with some multilinear complications)

$$
\widehat{f}(\xi) \widehat{g}(\eta) \widehat{\sigma_{\Delta}}(\xi, \eta)
$$

- Through stationary phase estimates (losevich-Liu)

$$
\left|\widehat{\sigma_{\Delta}}(\xi, \eta)\right| \lesssim\left\{\begin{array}{l}
(1+\min (|\xi|,|\eta|)|\sin (\theta)|)^{-\frac{d-2}{2}}(1+|(\xi, \eta)|)^{-\frac{d-2}{2}} \\
\left|\xi+g_{\frac{\pi}{3}} \eta\right|^{-\frac{1}{2}}|\xi|^{-\frac{d-2}{2}}|\eta|^{-\frac{d-2}{2}}|\sin (\theta)|^{-\frac{d-2}{2}}
\end{array}\right.
$$

where θ is the angle between ξ and η.

L^{p} bounds for the triangle averaging operator

- Trivially $A_{\Delta}: L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ when $r \geq 1$ by Young's convolution inequality.

L^{p} bounds for the triangle averaging operator

- Trivially $A_{\Delta}: L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ when $r \geq 1$ by Young's convolution inequality.

Theorem (P, Sovine in 2019)
For $d \geq 7$ the operator A_{Δ} is bounded $L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ where $\left(\frac{1}{p}, \frac{1}{q}\right)$ come from the following region where $p_{d}=\frac{19 d-4}{11 d-12}$.

Geometric information leads to better bounds

- If σ_{u} is the natural measure on a lower dimensional sphere

$$
A_{\Delta}(f, g)(x)=\int_{|u|=|v|=|u-v|=1} f(x-u) g(x-v) d \sigma_{u}(v) d \sigma(u)
$$

Geometric information leads to better bounds

- If σ_{u} is the natural measure on a lower dimensional sphere

$$
A_{\Delta}(f, g)(x)=\int_{|u|=|v|=|u-v|=1} f(x-u) g(x-v) d \sigma_{u}(v) d \sigma(u)
$$

Theorem (losevich, P, Sovine in 2021)
For $d \geq 2$ the operator A_{Δ} is bounded $L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right)$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ where now $p_{d}=\frac{d+1}{d}$.

L^{p} improving bounds

From the work of Stovall as well as Greenleaf, losevich, Krause and Liu can obtain the following sharp L^{p} improving bounds for A_{Δ}.
(a) $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$
(b) $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ restricted strong type
as well as bounds coming from the linear setting and interpolated bounds with trivial estimates.

L^{p} improving bounds

From the work of Stovall as well as Greenleaf, losevich, Krause and Liu can obtain the following sharp L^{p} improving bounds for A_{Δ}.
(a) $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$
(b) $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ restricted strong type
as well as bounds coming from the linear setting and interpolated bounds with trivial estimates.

Theorem (losevich, P, Sovine in 2021)
For $d \geq 2$ the operator A_{Δ} satisfies
(a) $L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \times L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{1}\left(\mathbb{R}^{d}\right)$
(b) $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ restricted strong type
(c) $L^{\frac{m(d+1)}{d}}\left(\mathbb{R}^{d}\right) \times L^{\frac{m(d+1)}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{\frac{m(d+1)}{2}}\left(\mathbb{R}^{d}\right), d \geq 2 m, m \geq 2$
and the first of those bounds is sharp.

Maximal equilateral triangle averaging operator

- The maximal equilateral triangle averaging operator

$$
M_{\Delta}(f, g)(x)=\sup _{r>0}\left|\int_{|u|=|v|=|u-v|=1} f(x-r u) g(x-r v) d \sigma_{\Delta}(u, v)\right|
$$

- Expect mapping properties of the type

$$
M_{\Delta}: L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right), \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

Maximal equilateral triangle averaging operator

- The maximal equilateral triangle averaging operator

$$
M_{\Delta}(f, g)(x)=\sup _{r>0}\left|\int_{|u|=|v|=|u-v|=1} f(x-r u) g(x-r v) d \sigma_{\Delta}(u, v)\right|
$$

- Expect mapping properties of the type

$$
M_{\Delta}: L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right), \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

- $r>\frac{d}{d-1}$ trivial and optimal if either $p=\infty$ or $q=\infty$.

Maximal equilateral triangle averaging operator

- The maximal equilateral triangle averaging operator

$$
M_{\Delta}(f, g)(x)=\sup _{r>0}\left|\int_{|u|=|v|=|u-v|=1} f(x-r u) g(x-r v) d \sigma_{\Delta}(u, v)\right|
$$

- Expect mapping properties of the type

$$
M_{\Delta}: L^{p}\left(\mathbb{R}^{d}\right) \times L^{q}\left(\mathbb{R}^{d}\right) \rightarrow L^{r}\left(\mathbb{R}^{d}\right), \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

- $r>\frac{d}{d-1}$ trivial and optimal if either $p=\infty$ or $q=\infty$.
- P, Sovine conjecture restricted type bounds

$$
M_{\Delta}: L^{\frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \times L^{\frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \rightarrow L^{\frac{d}{2 d-2}, \infty}\left(\mathbb{R}^{d}\right)
$$

Some positive results

- Cook, Lyall, Magyar established

$$
\begin{aligned}
& \qquad M_{\Delta}: L^{\frac{m}{m-1} \frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \times L^{\frac{m}{m-1} \frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \rightarrow L^{\frac{m}{m-1} \frac{d}{2 d-2}}\left(\mathbb{R}^{d}\right) \\
& \text { where } d \geq 2 m \text { and } m \geq 2 \text {. }
\end{aligned}
$$

Some positive results

- Cook, Lyall, Magyar established

$$
\begin{aligned}
& \qquad M_{\Delta}: L^{\frac{m}{m-1} \frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \times L^{\frac{m}{m-1} \frac{d}{d-1}}\left(\mathbb{R}^{d}\right) \rightarrow L^{\frac{m}{m-1} \frac{d}{2 d-2}}\left(\mathbb{R}^{d}\right) \\
& \text { where } d \geq 2 m \text { and } m \geq 2
\end{aligned}
$$

- P, Sovine in a recent paper established sparse bounds for M_{Δ} in the Banach range.
(a) Generalizes bounds obtained by Lacey for M_{S}.
(b) Builds on techniques of Roncal, Shrivastava, and Shuin for a maximal bilinear product spherical averaging operator.

The discrete maximal triangle averaging operator

- With Theresa Anderson and Angel Kumchev we studied

$$
\mathcal{T}(f, g)(k)=\sup _{\lambda>0}\left|\frac{1}{\# \mathcal{U}_{\lambda}} \sum_{u, v \in \mathcal{U}_{\lambda}} f(k-u) g(k-v)\right|
$$

where the sum is over the variety

$$
\mathcal{U}_{\lambda}=\left\{u, v \in \mathbb{Z}^{d}:|u|^{2}=|v|^{2}=|u-v|^{2}=\lambda\right\}
$$

The discrete maximal triangle averaging operator

- With Theresa Anderson and Angel Kumchev we studied

$$
\mathcal{T}(f, g)(k)=\sup _{\lambda>0}\left|\frac{1}{\# \mathcal{U}_{\lambda}} \sum_{u, v \in \mathcal{U}_{\lambda}} f(k-u) g(k-v)\right|
$$

where the sum is over the variety

$$
\mathcal{U}_{\lambda}=\left\{u, v \in \mathbb{Z}^{d}:|u|^{2}=|v|^{2}=|u-v|^{2}=\lambda\right\}
$$

- Can see $\# \mathcal{U}_{\lambda} \approx \lambda^{d-3}$ for d large enough for example through modular forms or the circle method.
- We obtain a wide range of estimates of the type $\ell^{p}\left(\mathbb{Z}^{d}\right) \times \ell^{q}\left(\mathbb{Z}^{d}\right) \rightarrow \ell^{r}\left(\mathbb{Z}^{d}\right)$ when $d \geq 9$ where $\frac{1}{p}+\frac{1}{q} \geq \frac{1}{r}$, $r>\max \left(\frac{32}{d+9}, \frac{d+4}{d-2}\right)$ and $p, q>1$.

The discrete maximal triangle averaging operator

- With Theresa Anderson and Angel Kumchev we studied

$$
\mathcal{T}(f, g)(k)=\sup _{\lambda>0}\left|\frac{1}{\# \mathcal{U}_{\lambda}} \sum_{u, v \in \mathcal{U}_{\lambda}} f(k-u) g(k-v)\right|
$$

where the sum is over the variety

$$
\mathcal{U}_{\lambda}=\left\{u, v \in \mathbb{Z}^{d}:|u|^{2}=|v|^{2}=|u-v|^{2}=\lambda\right\}
$$

- Can see $\# \mathcal{U}_{\lambda} \approx \lambda^{d-3}$ for d large enough for example through modular forms or the circle method.
- We obtain a wide range of estimates of the type $\ell^{p}\left(\mathbb{Z}^{d}\right) \times \ell^{q}\left(\mathbb{Z}^{d}\right) \rightarrow \ell^{r}\left(\mathbb{Z}^{d}\right)$ when $d \geq 9$ where $\frac{1}{p}+\frac{1}{q} \geq \frac{1}{r}$, $r>\max \left(\frac{32}{d+9}, \frac{d+4}{d-2}\right)$ and $p, q>1$.
- Improvements in high dimensions and certain ranges by Cook, Lyall and Magyar.

The Mattila-Sjölin theorem

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}$ compact, need to be to ensure that the distance set

$$
D(E)=\{|x-y|: x, y \in E\}
$$

has non-empty interior and thus contains an interval?

- Sets of positive measure need not have non-empty interior!

The Mattila-Sjölin theorem

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}$ compact, need to be to ensure that the distance set

$$
D(E)=\{|x-y|: x, y \in E\}
$$

has non-empty interior and thus contains an interval?

- Sets of positive measure need not have non-empty interior!

Theorem (Mattila, Sjölin in 1999)
Let $E \subset \mathbb{R}^{d}, d \geq 2$, be compact. If $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d+1}{2}$ then $D(E)$ has non-empty interior.

- losevich, Mourgoglou and Taylor extended this to a wide range of distance metrics in 2011.

Many interesting point configurations

More complicated configurations

- Greenleaf, Iosevich and Taylor showed Mattila-Sjölin type theorems for various k-point configurations.
- One example is that if $E \subset \mathbb{R}^{2}$ is compact with $\operatorname{dim}_{\mathcal{H}}(E)>\frac{5}{3}$ then the set of areas of triangles determined by triples of points of E

$$
\left\{\frac{1}{2}|\operatorname{det}[x-z, y-z]|: x, y, z \in E\right\} \subset \mathbb{R}
$$

contains an open interval.

More complicated configurations

- Greenleaf, Iosevich and Taylor showed Mattila-Sjölin type theorems for various k-point configurations.
- One example is that if $E \subset \mathbb{R}^{2}$ is compact with $\operatorname{dim}_{\mathcal{H}}(E)>\frac{5}{3}$ then the set of areas of triangles determined by triples of points of E

$$
\left\{\frac{1}{2}|\operatorname{det}[x-z, y-z]|: x, y, z \in E\right\} \subset \mathbb{R}
$$

contains an open interval.

- Their FIO method did not originally apply to the triangle set.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta in 2021)
Let $E \subset \mathbb{R}^{d}, d \geq 4$, be compact. If $\operatorname{dim}_{\mathcal{H}}(E)>\frac{2}{3} d+1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, Iosevich and Taylor.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta in 2021)
Let $E \subset \mathbb{R}^{d}, d \geq 4$, be compact. If $\operatorname{dim}_{\mathcal{H}}(E)>\frac{2}{3} d+1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, Iosevich and Taylor.

Theorem (P, Romero Acosta in 2022)
Let $E \subset \mathbb{R}^{3}$ be compact. If $\operatorname{dim}_{\mathcal{H}}(E)>\frac{23}{8}$ then $D_{\Delta}(E)$ has non-empty interior.

- Classic side-side-side viewpoint.
- Builds on work of losevich and Magyar.
- Extends to simplexes in higher dimensions.

The L^{2} approach

- Define a measure $\delta(\mu)(\mathbf{t})$ on $D_{\Delta}(E)$ by the relation

$$
\int f(\mathbf{t}) d \delta(\mu)(\mathbf{t})=\iiint f\left(\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) d \mu\left(x_{3}\right)
$$

where μ is a Frostman measure supported on E.

- Try to establish the bound $\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} \lesssim 1$.

The L^{2} approach

- Define a measure $\delta(\mu)(\mathbf{t})$ on $D_{\Delta}(E)$ by the relation

$$
\int f(\mathbf{t}) d \delta(\mu)(\mathbf{t})=\iiint f\left(\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) d \mu\left(x_{3}\right)
$$

where μ is a Frostman measure supported on E.

- Try to establish the bound $\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} \lesssim 1$.
- Idea: $\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t}=\iint_{\mathbf{s}=\mathbf{t}} \delta(\mu)(\mathbf{t}) \delta(\mu)(\mathbf{s}) d \mathbf{t} d \mathbf{s}$

A group-theoretic point of view

- Leads one to consider $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ that give rise to the same triangle, in other words $\left|x_{i}-x_{j}\right|=\left|y_{i}-y_{j}\right|$ for all $1 \leq i<j \leq 3$.
- Observe that for $x_{i} \neq x_{j},\left|x_{i}-x_{j}\right|=\left|y_{i}-y_{j}\right|$ if and only if $x_{i}-x_{j}=g y_{i}-g y_{j}$ for some $g \in \mathbb{O}(d)$, the orthogonal group.

g
- Using the group-theoretic point of view it follows that

$$
\begin{aligned}
\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} & \leq c \int \mu^{6}\left\{\left(x_{1}, \ldots, x_{3}, y_{1}, \ldots, y_{3}\right):\right. \\
& \left.x_{i}-g y_{i}=x_{j}-g y_{j}, 1 \leq i<j \leq 3\right\} d x d y d g
\end{aligned}
$$

where $d g$ denotes the Haar measure on $\mathbb{O}(d)$.

- Using the group-theoretic point of view it follows that

$$
\begin{aligned}
\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} & \leq c \int \mu^{6}\left\{\left(x_{1}, \ldots, x_{3}, y_{1}, \ldots, y_{3}\right):\right. \\
& \left.x_{i}-g y_{i}=x_{j}-g y_{j}, \quad 1 \leq i<j \leq 3\right\} d x d y d g
\end{aligned}
$$

where $d g$ denotes the Haar measure on $\mathbb{O}(d)$.

- Define a measure $\delta(\mu)_{g}$ on $E-g E$ by the relation

$$
\int f(z) d \delta(\mu)_{g}(z):=\iint f(u-g v) d \mu(u) d \mu(v)
$$

- Then can write the inequality above as

$$
\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} \lesssim \iint \delta(\mu)_{g}^{3}(z) d z d g
$$

A generalized Mattila integral

- From the definition of $\delta(\mu)_{g}$ one obtains

$$
\widehat{\delta(\mu)_{g}}(\xi)=\widehat{\mu}(\xi) \widehat{\mu}(g \xi) .
$$

A generalized Mattila integral

- From the definition of $\delta(\mu)_{g}$ one obtains

$$
\widehat{\delta(\mu)_{g}}(\xi)=\widehat{\mu}(\xi) \widehat{\mu}(g \xi)
$$

- Using Plancharel

$$
\begin{aligned}
\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} & \lesssim \iint \delta(\mu)_{g}^{3}(z) d z d g \\
& \leq\left\|\delta(\mu)_{g}\right\|_{\infty} \iint \delta(\mu)_{g}^{2}(z) d z d g \\
& =\left\|\delta(\mu)_{g}\right\|_{\infty} \int|\widehat{\mu}(\xi)|^{2}\left\{\int|\widehat{\mu}(g \xi)|^{2} d g\right\} d \xi \\
& \lesssim\left\|\delta(\mu)_{g}\right\|_{\infty} \int\left(\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \omega\right)^{2} r^{d-1} d r
\end{aligned}
$$

A generalized Mattila integral

- From the definition of $\delta(\mu)_{g}$ one obtains

$$
\widehat{\delta(\mu)_{g}}(\xi)=\widehat{\mu}(\xi) \widehat{\mu}(g \xi)
$$

- Using Plancharel

$$
\begin{aligned}
\int \delta(\mu)^{2}(\mathbf{t}) d \mathbf{t} & \lesssim \iint \delta(\mu)_{g}^{3}(z) d z d g \\
& \leq\left\|\delta(\mu)_{g}\right\|_{\infty} \iint \delta(\mu)_{g}^{2}(z) d z d g \\
& =\left\|\delta(\mu)_{g}\right\|_{\infty} \int|\widehat{\mu}(\xi)|^{2}\left\{\int|\widehat{\mu}(g \xi)|^{2} d g\right\} d \xi \\
& \lesssim\left\|\delta(\mu)_{g}\right\|_{\infty} \int\left(\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \omega\right)^{2} r^{d-1} d r
\end{aligned}
$$

- Can we better estimate $\iint \delta(\mu)_{g}^{3}(z) d z d g$?

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{\times}(E)\right)>0$?

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{x}(E)\right)>0$?
- A bad example is E is a sphere around x.

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{\times}(E)\right)>0$?
- A bad example is E is a sphere around x.
- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}, d \geq 2$, need to be to ensure that there exists $x \in E$ with $\mathcal{L}\left(D^{x}(E)\right)>0$?

Group actions and Liu's result

- Peres and Schlag obtained threshold $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$.

Group actions and Liu's result

- Peres and Schlag obtained threshold $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$.
- Liu's magic formula

$$
\int\left|\sigma_{r} * f(x)\right|^{2} r^{d-1} d r=\int\left|\widehat{\sigma}_{r} * f(x)\right|^{2} r^{d-1} d r
$$

for any $x \in \mathbb{R}^{d}$ and f a Schwartz function on \mathbb{R}^{d}.

- Builds on the group action viewpoint in continuous setting developed by Greenleaf, losevich, Liu and P.
- All thresholds using the Mattila scheme translate directly to the pinned setting due to Liu.

Thank you!

Questions?

Contact me: palsson@vt.edu
My website: personal.math.vt.edu/palsson/

