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Distances

Φ(x1, x2) = |x1 − x2|

Distance problems and their many variants Distances



Triangles

Φ(x1, x2, x3) = (|x1 − x2|, |x1 − x3|, |x2 − x3|)
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An Erdős type problem for triangles

I What is the least number of distinct triangles determined by
N points in the plane?

I Rudnev obtained N2.

I Achieved by the regular N-gon.

I Wide open in higher dimensions and not clear what the
conjecture should be.
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A Falconer type problem for triangles

I How large does dimH(E ), for E ⊂ Rd compact, need to be to
ensure that the set of triangles

D∆(E ) = {(|x1 − x2|, |x1 − x3|, |x2 − x3|) : x1, x2, x3 ∈ E}

has positive three-dimensional Lebesgue measure?

I Erdoğan and Iosevich conjecture for triangles in the plane

dimH(E ) >
3

2
in R2

I Only know the trivial restriction dimH(E ) > d
2 for d ≥ 3.
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Progress on the Falconer type problem for triangles

I Grafakos, Greenleaf, Iosevich, P.

I dimH(E ) > 3
4d + 1

4 in Rd

I Greenleaf, Iosevich, Liu, P.

I dimH(E ) > 8
5 in R2

I dimH(E ) > 2
3d + 1

3 in Rd when d ≥ 3

I Erdoğan, Hart, Iosevich

I dimH(E ) > 1
2d + 3

2 in Rd

I Iosevich, Pham, Pham, Shen

I dimH(E ) > 1
2d + 1 in Rd
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The triangle averaging operator

I The triangle averaging operator

A∆(f , g)(x) =

∫
M
f (x − u)g(x − v)dσ∆(u, v)

where dσ∆(u, v) is the normalized surface measure on

{(u, v) ∈ Rd × Rd : |u| = t1, |v | = t2, |u − v | = t3}
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Properties of the equilateral triangle averaging operator

I The equilateral triangle averaging operator

A∆(f , g)(x) =

∫
|u|=|v |=|u−v |=1

f (x − u)g(x − v)dσ∆(u, v)

becomes on the Fourier side (with some multilinear
complications)

f̂ (ξ)ĝ(η)σ̂∆(ξ, η)

I Through stationary phase estimates (Iosevich-Liu)

|σ̂∆(ξ, η)| .


(1 + min(|ξ|, |η|)| sin(θ)|)−

d−2
2 (1 + |(ξ, η)|)−

d−2
2

|ξ + gπ
3
η|−

1
2 |ξ|−

d−2
2 |η|−

d−2
2 |sin(θ)|−

d−2
2

where θ is the angle between ξ and η.
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Lp bounds for the triangle averaging operator

I Trivially A∆ : Lp(Rd)× Lq(Rd)→ Lr (Rd) with 1
p + 1

q = 1
r

when r ≥ 1 by Young’s convolution inequality.

Theorem (P, Sovine in 2019)

For d ≥ 7 the operator A∆ is bounded Lp(Rd)× Lq(Rd)→ Lr (Rd)

with 1
p + 1

q = 1
r where

(
1
p ,

1
q

)
come from the following region

where pd = 19d−4
11d−12 .

( 1
pd
, 1
pd

)

(1,0)

(0,1)

1
p

1
q
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Geometric information leads to better bounds

I If σu is the natural measure on a lower dimensional sphere

A∆(f , g)(x) =

∫
|u|=|v |=|u−v |=1

f (x − u)g(x − v)dσu(v)dσ(u)

Theorem (Iosevich, P, Sovine in 2021)

For d ≥ 2 the operator A∆ is bounded Lp(Rd)× Lq(Rd)→ Lr (Rd)
with 1

p + 1
q = 1

r where now pd = d+1
d .

( 1
pd
, 1
pd

)

(1,0)

(0,1)

1
p

1
q
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Lp improving bounds

From the work of Stovall as well as Greenleaf, Iosevich, Krause and
Liu can obtain the following sharp Lp improving bounds for A∆.

(a) L
3
2 (R2)× L

3
2 (R2)→ L1(R2)

(b) L2(R2)× L2(R2)→ L2(R2) restricted strong type

as well as bounds coming from the linear setting and interpolated
bounds with trivial estimates.

Theorem (Iosevich, P, Sovine in 2021)

For d ≥ 2 the operator A∆ satisfies

(a) L
d+1
d (Rd)× L

d+1
d (Rd)→ L1(Rd)

(b) L2(Rd)× L2(Rd)→ L2(Rd) restricted strong type

(c) L
m(d+1)

d (Rd)× L
m(d+1)

d (Rd)→ L
m(d+1)

2 (Rd), d ≥ 2m,m ≥ 2

and the first of those bounds is sharp.
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Maximal equilateral triangle averaging operator

I The maximal equilateral triangle averaging operator

M∆(f , g)(x) = sup
r>0

∣∣∣∣∣∣∣
∫

|u|=|v |=|u−v |=1

f (x − ru)g(x − rv)dσ∆(u, v)

∣∣∣∣∣∣∣
I Expect mapping properties of the type

M∆ : Lp(Rd)× Lq(Rd)→ Lr (Rd),
1

p
+

1

q
=

1

r

I r > d
d−1 trivial and optimal if either p =∞ or q =∞.

I P, Sovine conjecture restricted type bounds

M∆ : L
d

d−1 (Rd)× L
d

d−1 (Rd)→ L
d

2d−2
,∞(Rd)
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Some positive results

I Cook, Lyall, Magyar established

M∆ : L
m

m−1
d

d−1 (Rd)× L
m

m−1
d

d−1 (Rd)→ L
m

m−1
d

2d−2 (Rd)

where d ≥ 2m and m ≥ 2.

I P, Sovine in a recent paper established sparse bounds for M∆

in the Banach range.

(a) Generalizes bounds obtained by Lacey for MS .

(b) Builds on techniques of Roncal, Shrivastava, and Shuin for a
maximal bilinear product spherical averaging operator.
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The discrete maximal triangle averaging operator

I With Theresa Anderson and Angel Kumchev we studied

T (f , g)(k) = sup
λ>0
| 1

#Uλ

∑
u,v∈Uλ

f (k − u)g(k − v)|

where the sum is over the variety

Uλ = {u, v ∈ Zd : |u|2 = |v |2 = |u − v |2 = λ}

I Can see #Uλ ≈ λd−3 for d large enough for example through
modular forms or the circle method.

I We obtain a wide range of estimates of the type
`p(Zd)× `q(Zd)→ `r (Zd) when d ≥ 9 where 1

p + 1
q ≥

1
r ,

r > max( 32
d+9 ,

d+4
d−2 ) and p, q > 1.

I Improvements in high dimensions and certain ranges by Cook,
Lyall and Magyar.
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The Mattila-Sjölin theorem

I How large does dimH(E ), for E ⊂ Rd compact, need to be to
ensure that the distance set

D(E ) = {|x − y | : x , y ∈ E}

has non-empty interior and thus contains an interval?

I Sets of positive measure need not have non-empty interior!

Theorem (Mattila, Sjölin in 1999)

Let E ⊂ Rd , d ≥ 2, be compact. If dimH(E ) > d+1
2 then D(E )

has non-empty interior.

I Iosevich, Mourgoglou and Taylor extended this to a wide
range of distance metrics in 2011.
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Many interesting point configurations
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More complicated configurations

I Greenleaf, Iosevich and Taylor showed Mattila-Sjölin type
theorems for various k-point configurations.

I One example is that if E ⊂ R2 is compact with dimH(E ) > 5
3

then the set of areas of triangles determined by triples of
points of E{

1

2
| det[x − z , y − z ]| : x , y , z ∈ E

}
⊂ R

contains an open interval.

I Their FIO method did not originally apply to the triangle set.
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Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta in 2021)

Let E ⊂ Rd , d ≥ 4, be compact. If dimH(E ) > 2
3d + 1 then

D∆(E ) has non-empty interior.

I View D∆(E ) from side-angle-side.

I Builds on work of Iosevich and Liu.

I Later matched by Greenleaf, Iosevich and Taylor.

Theorem (P, Romero Acosta in 2022)

Let E ⊂ R3 be compact. If dimH(E ) > 23
8 then D∆(E ) has

non-empty interior.

I Classic side-side-side viewpoint.

I Builds on work of Iosevich and Magyar.

I Extends to simplexes in higher dimensions.
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The L2 approach

I Define a measure δ(µ)(t) on D∆(E ) by the relation∫
f (t)dδ(µ)(t) =

∫∫∫
f (|x1 − x2|, |x1 − x3|, |x2 − x3|) dµ(x1)dµ(x2)dµ(x3)

where µ is a Frostman measure supported on E .

I Try to establish the bound
∫
δ(µ)2(t) dt . 1.

I Idea:
∫
δ(µ)2(t) dt =

∫∫
s=t

δ(µ)(t)δ(µ)(s) dtds
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A group-theoretic point of view

I Leads one to consider (x1, x2, x3) and (y1, y2, y3) that give rise
to the same triangle, in other words |xi − xj | = |yi − yj | for all
1 ≤ i < j ≤ 3.

I Observe that for xi 6= xj , |xi − xj | = |yi − yj | if and only if
xi − xj = gyi − gyj for some g ∈ O(d), the orthogonal group.
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I Using the group-theoretic point of view it follows that∫
δ(µ)2(t) dt ≤ c

∫
µ6{(x1, . . . , x3, y1, . . . , y3) :

xi − gyi = xj − gyj , 1 ≤ i < j ≤ 3}dxdydg

where dg denotes the Haar measure on O(d).

I Define a measure δ(µ)g on E − gE by the relation∫
f (z)dδ(µ)g (z) :=

∫ ∫
f (u − gv)dµ(u)dµ(v).

I Then can write the inequality above as∫
δ(µ)2(t) dt .

∫ ∫
δ(µ)3

g (z) dz dg .
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A generalized Mattila integral

I From the definition of δ(µ)g one obtains

δ̂(µ)g (ξ) = µ̂(ξ)µ̂(gξ).

I Using Plancharel∫
δ(µ)2(t) dt .

∫ ∫
δ(µ)3

g (z) dz dg

≤ ‖δ(µ)g‖∞
∫ ∫

δ(µ)2
g (z) dz dg

= ‖δ(µ)g‖∞
∫
|µ̂(ξ)|2

{∫
|µ̂(gξ)|2dg

}
dξ

. ‖δ(µ)g‖∞
∫ (∫

Sd−1

|µ̂(rω)|2dω
)2

rd−1dr

I Can we better estimate
∫ ∫

δ(µ)3
g (z) dz dg?
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The pinned Falconer distance problem

I For x ∈ Rd define the pinned distance set of E ⊂ Rd

Dx(E ) = {|x − y | : y ∈ E}

I Can we guarantee L(Dx(E )) > 0?

I A bad example is E is a sphere around x .

I How large does dimH(E ), for E ⊂ Rd , d ≥ 2, need to be to
ensure that there exists x ∈ E with L(Dx(E )) > 0?
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Group actions and Liu’s result

I Peres and Schlag obtained threshold dimH(E ) > d
2 + 1

2 .

I Liu’s magic formula∫
|σr ∗ f (x)|2rd−1dr =

∫
|σ̂r ∗ f (x)|2rd−1dr

for any x ∈ Rd and f a Schwartz function on Rd .

I Builds on the group action viewpoint in continuous setting
developed by Greenleaf, Iosevich, Liu and P.

I All thresholds using the Mattila scheme translate directly to
the pinned setting due to Liu.
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Thank you!

Questions?

Contact me: palsson@vt.edu

My website: personal.math.vt.edu/palsson/

Distance problems and their many variants Thank you!

personal.math.vt.edu/palsson/
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