Distance problems and their many variants

Eyvindur Ari Palsson
Department of Mathematics
Virginia Tech

July 3, 2023
Modern trends in Harmonic Analysis International Centre for Theoretical Sciences

Bengaluru, India

Patterns?

Distances

Example

- Distances: $1,1, \sqrt{2}, \sqrt{5}, \sqrt{5}, \sqrt{8}$
- Distinct distances: $1, \sqrt{2}, \sqrt{5}, \sqrt{8}$

Example

- Distances: $1,1, \sqrt{2}, \sqrt{5}, \sqrt{5}, \sqrt{8}$
- Distinct distances: $1, \sqrt{2}, \sqrt{5}, \sqrt{8}$
- How many distinct distances are there in general?

It is easy to have many distinct distances

- N points in the plane.
- Upper bound $\binom{N}{2}=\frac{N(N-1)}{2} \sim N^{2}$.

It is easy to have many distinct distances

- N points in the plane.
- Upper bound $\binom{N}{2}=\frac{N(N-1)}{2} \sim N^{2}$.
- If randomly selected obtain $\binom{N}{2} \sim N^{2}$.

The Erdős distinct distance problem

- What is the least number of distinct distances determined by N points in the plane?

The Erdős distinct distance problem

- What is the least number of distinct distances determined by N points in the plane?
- Conjecture $\frac{N}{\sqrt{\log (N)}}$ as $N \rightarrow \infty$.

Distances squared
$1^{2}+0^{2}=1$

- $1^{2}+1^{2}=2$
\vdots
$(\sqrt{N})^{2}+(\sqrt{N})^{2}=2 N$

Circles encode distances

- Erdős obtained \sqrt{N} in 1946.
- Progress through the decades by Chung, Katz, Moser, Solymosi, Szekely, Szemeredi, Toth, Trotter and so on.

Circles encode distances

- Erdős obtained \sqrt{N} in 1946.
- Progress through the decades by Chung, Katz, Moser, Solymosi, Szekely, Szemeredi, Toth, Trotter and so on.
- Guth and Katz obtained $\frac{N}{\log (N)}$ in 2015.

Circles encode distances

- Erdős obtained \sqrt{N} in 1946.
- Progress through the decades by Chung, Katz, Moser, Solymosi, Szekely, Szemeredi, Toth, Trotter and so on.
- Guth and Katz obtained $\frac{N}{\log (N)}$ in 2015.
- Open in \mathbb{R}^{d} when $d \geq 3$ with the conjecture being $N^{\frac{2}{d}}$.

Quote by Erdős

"My most striking contribution to geometry is, no doubt, my problem on the number of distinct distances. This can be found in many of my papers on combinatorial and geometric problems."

The distance set

- The distance set of $E \subseteq \mathbb{R}^{d}$ is

$$
D(E)=\{|x-y|: x, y \in E\}
$$

The distance set

- The distance set of $E \subseteq \mathbb{R}^{d}$ is

$$
D(E)=\{|x-y|: x, y \in E\}
$$

- If $E \subset \mathbb{R}^{2}$ such that $\# E=N$ then

$$
\#(D(E)) \gtrsim \frac{N}{\log (N)}
$$

by Guth and Katz.

The distance set

- The distance set of $E \subseteq \mathbb{R}^{d}$ is

$$
D(E)=\{|x-y|: x, y \in E\}
$$

- If $E \subset \mathbb{R}^{2}$ such that $\# E=N$ then

$$
\#(D(E)) \gtrsim \frac{N}{\log (N)}
$$

by Guth and Katz.

- If $E \subseteq \mathbb{R}^{d}$ such that $\# E=\infty$ then

$$
\#(D(E))=\infty
$$

The Steinhaus theorem

- Idea

$$
E \subseteq \mathbb{R}^{d} \text { large } \Longrightarrow D(E) \text { large (\& structured) }
$$

The Steinhaus theorem

- Idea

$$
E \subseteq \mathbb{R}^{d} \text { large } \Longrightarrow D(E) \text { large (\& structured) }
$$

Theorem (Steinhaus 1920)
For $E \subseteq \mathbb{R}^{d}$ with $\mathcal{L}^{d}(E)>0$

$$
E-E:=\{x-y: x, y \in E\}
$$

contains a neighborhood of the origin.

- Immediately implies

$$
\mathcal{L}^{d}(E)>0 \Longrightarrow \mathcal{L}(D(E))>0
$$

and further $D(E)$ contains an interval.

The Falconer distance problem

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}, d \geq 2$, need to be to ensure that $\mathcal{L}(D(E))>0$?

The Falconer distance problem

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}, d \geq 2$, need to be to ensure that $\mathcal{L}(D(E))>0$?
- Can construct $E \subset \mathbb{R}$ with $\operatorname{dim}_{\mathcal{H}}(E)=1$ such that $\mathcal{L}(D(E))=0$.

The Falconer distance problem

- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}, d \geq 2$, need to be to ensure that $\mathcal{L}(D(E))>0$?
- Can construct $E \subset \mathbb{R}$ with $\operatorname{dim}_{\mathcal{H}}(E)=1$ such that $\mathcal{L}(D(E))=0$.
- Falconer's conjecture $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}$

First results

For a compact set $E \subset \mathbb{R}^{d}, d \geq 2$.

- Falconer in 1985

$$
\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2} \Longrightarrow \mathcal{L}(D(E))>0
$$

First results

For a compact set $E \subset \mathbb{R}^{d}, d \geq 2$.

- Falconer in 1985

$$
\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2} \Longrightarrow \mathcal{L}(D(E))>0
$$

- Mattila, Sjölin in 1999

$$
\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2} \Longrightarrow D(E) \text { contains an interval }
$$

- losevich, Mourgoglou and Taylor extended this to a wide range of distance metrics in 2011.

Encode dimension with measures

- For a compact set $E \subset \mathbb{R}^{d}$ and $0<s<\operatorname{dim}_{\mathcal{H}}(E)$ there is a probability measure μ supported on E with

$$
\mu\left(B_{r}\right) \lesssim r^{s}
$$

for any ball B_{r} of radius r.

Encode dimension with measures

- For a compact set $E \subset \mathbb{R}^{d}$ and $0<s<\operatorname{dim}_{\mathcal{H}}(E)$ there is a probability measure μ supported on E with

$$
\mu\left(B_{r}\right) \lesssim r^{s}
$$

for any ball B_{r} of radius r.

- Follows by Frostman's lemma. Call μ a Frostman measure.

Encode dimension with measures

- For a compact set $E \subset \mathbb{R}^{d}$ and $0<s<\operatorname{dim}_{\mathcal{H}}(E)$ there is a probability measure μ supported on E with

$$
\mu\left(B_{r}\right) \lesssim r^{s}
$$

for any ball B_{r} of radius r.

- Follows by Frostman's lemma. Call μ a Frostman measure.
- Taking s arbitrarily smaller
$I_{s}(\mu)=\iint|x-y|^{-s} d \mu(x) d \mu(y)=c_{s, d} \int|\widehat{\mu}(\xi)|^{2}|\xi|^{s-d} d \xi<\infty$
Call $I_{s}(\mu)$ the energy integral of μ.

Distance measure

- Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d \delta(\mu)(r)=\iint f(|x-y|) d \mu(x) d \mu(y)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

Distance measure

- Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d \delta(\mu)(r)=\iint f(|x-y|) d \mu(x) d \mu(y)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

- $\delta(\mu)(D(E))=1$

Distance measure

- Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d \delta(\mu)(r)=\iint f(|x-y|) d \mu(x) d \mu(y)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

- $\delta(\mu)(D(E))=1$
- Approximate μ by a smooth function μ_{ϵ} and get

$$
\begin{aligned}
\int f(r) d \delta\left(\mu_{\epsilon}\right)(r) & =\iint f(|x-y|) \mu_{\epsilon}(x) \mu_{\epsilon}(y) d x d y \\
& =\int f(r)\left(\int\left(\sigma_{r} * \mu_{\epsilon}\right)(x) \mu_{\epsilon}(x) d x\right) d r
\end{aligned}
$$

- Get density

$$
\delta\left(\mu_{\epsilon}\right)(r)=\int\left(\sigma_{r} * \mu_{\epsilon}\right)(x) \mu_{\epsilon}(x) d x=\int \widehat{\sigma_{r}}(\xi)\left|\widehat{\mu_{\epsilon}}(\xi)\right|^{2} d \xi
$$

- Get density

$$
\delta\left(\mu_{\epsilon}\right)(r)=\int\left(\sigma_{r} * \mu_{\epsilon}\right)(x) \mu_{\epsilon}(x) d x=\int \widehat{\sigma}_{r}(\xi)\left|\widehat{\mu_{\epsilon}}(\xi)\right|^{2} d \xi
$$

- By stationary phase

$$
|\widehat{\sigma}(\xi)|=\left|\int e^{-2 \pi i y \cdot \xi} d \sigma(y)\right| \lesssim|\xi|^{-\frac{d-1}{2}}
$$

- Get density

$$
\delta\left(\mu_{\epsilon}\right)(r)=\int\left(\sigma_{r} * \mu_{\epsilon}\right)(x) \mu_{\epsilon}(x) d x=\int \widehat{\sigma}_{r}(\xi)\left|\widehat{\mu_{\epsilon}}(\xi)\right|^{2} d \xi
$$

- By stationary phase

$$
|\widehat{\sigma}(\xi)|=\left|\int e^{-2 \pi i y \cdot \xi} d \sigma(y)\right| \lesssim|\xi|^{-\frac{d-1}{2}}
$$

- In the limit $\delta(\mu)$ has density

$$
r^{d-1} \int \widehat{\sigma}(r \xi)|\widehat{\mu}(\xi)|^{2} d \xi
$$

which is bounded by the energy integral and continuous in r.

- Get density

$$
\delta\left(\mu_{\epsilon}\right)(r)=\int\left(\sigma_{r} * \mu_{\epsilon}\right)(x) \mu_{\epsilon}(x) d x=\int \widehat{\sigma}_{r}(\xi)\left|\widehat{\mu_{\epsilon}}(\xi)\right|^{2} d \xi
$$

- By stationary phase

$$
|\widehat{\sigma}(\xi)|=\left|\int e^{-2 \pi i y \cdot \xi} d \sigma(y)\right| \lesssim|\xi|^{-\frac{d-1}{2}}
$$

- In the limit $\delta(\mu)$ has density

$$
r^{d-1} \int \widehat{\sigma}(r \xi)|\widehat{\mu}(\xi)|^{2} d \xi
$$

which is bounded by the energy integral and continuous in r.

- $1=\delta(\mu)(D(E))=\int_{D(E)} \delta(\mu)(r) d r \leq\|\delta(\mu)\|_{L \infty} \mathcal{L}(D(E))$

Spherical averaging operator

- The spherical averaging operator appeared

$$
A_{r}(f)(x)=\frac{c_{d}}{r^{d-1}}\left(\sigma_{r} * f\right)(x)=\int_{\mathbb{S}^{d-1}} f(x-r y) d \sigma(y)
$$

where $d \sigma$ is the normalized surface measure on $\mathbb{S}^{d-1}, d \geq 2$.

Easy bounds

$$
A_{r}(f)(x)=\int_{\mathbb{S}^{d}-1} f(x-r y) d \sigma(y)
$$

- Easy

$$
\left\|A_{r}(f)\right\|_{L^{\infty}} \leq \int_{\mathbb{S}^{d-1}}\|f\|_{L^{\infty}} d \sigma(y)=\|f\|_{L^{\infty}}
$$

- By Fubini

$$
\left\|A_{r}(f)\right\|_{L^{1}} \leq \int_{\mathbb{S}^{d-1}}\|f\|_{L^{1}} d \sigma(y)=\|f\|_{L^{1}}
$$

Conclude by interpolation

$$
A_{r}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), \quad p \geq 1
$$

L^{p} improving and Sobolev bounds

- L^{p} improving estimate

$$
A_{r}: L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{d+1}\left(\mathbb{R}^{d}\right)
$$

L^{p} improving and Sobolev bounds

- L^{p} improving estimate

$$
A_{r}: L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{d+1}\left(\mathbb{R}^{d}\right)
$$

- Full picture

$$
\begin{aligned}
A_{r}: & L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right) \\
& \text { if and only if }
\end{aligned}
$$

$\left(\frac{1}{p}, \frac{1}{q}\right)$ is within the closed triangle $(0,0),(1,1),\left(\frac{d}{d+1}, \frac{1}{d+1}\right)$.

L^{p} improving and Sobolev bounds

- L^{p} improving estimate

$$
A_{r}: L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{d+1}\left(\mathbb{R}^{d}\right)
$$

- Full picture

$$
\begin{aligned}
A_{r}: & L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right) \\
& \text { if and only if }
\end{aligned}
$$

$\left(\frac{1}{p}, \frac{1}{q}\right)$ is within the closed triangle $(0,0),(1,1),\left(\frac{d}{d+1}, \frac{1}{d+1}\right)$.

- Sobolev bounds

$$
A_{r}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)
$$

where $L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)$ is a standard homogeneous Sobolev space.

Maximal spherical averaging operator

- The maximal spherical averaging operator

$$
M_{S}(f)(x)=\sup _{r>0}\left|A_{r}(f)(x)\right|=\sup _{r>0}\left|\int_{\mathbb{S}^{d-1}} f(x-r y) d \sigma(y)\right|
$$

Maximal spherical averaging operator

- The maximal spherical averaging operator

$$
M_{S}(f)(x)=\sup _{r>0}\left|A_{r}(f)(x)\right|=\sup _{r>0}\left|\int_{\mathbb{S}^{d-1}} f(x-r y) d \sigma(y)\right|
$$

- Stein $(d \geq 3)$ and Bourgain $(d=2)$ showed

$$
M_{S}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)
$$

if $p>\frac{d}{d-1}$. (See also Mockenhaupt, Seeger and Sogge.)

Maximal spherical averaging operator

- The maximal spherical averaging operator

$$
M_{S}(f)(x)=\sup _{r>0}\left|A_{r}(f)(x)\right|=\sup _{r>0}\left|\int_{\mathbb{S}^{d-1}} f(x-r y) d \sigma(y)\right|
$$

- Stein $(d \geq 3)$ and Bourgain $(d=2)$ showed

$$
M_{S}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)
$$

if $p>\frac{d}{d-1}$. (See also Mockenhaupt, Seeger and Sogge.)

- Yields Lebesgue differentiation type theorem

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} f(y) d \sigma_{r}(y)=f(x) \text { for a.e. } x
$$

for all $f \in L^{p}\left(\mathbb{R}^{d}\right), p>\frac{d}{d-1}$.

An improved approach

- Establish

$$
\|\delta(\mu)\|_{L^{2}}<\infty
$$

- Idea why sufficient

$$
1=\int_{D(E)} \delta(\mu)(r) d r \leq \mathcal{L}(D(E))^{\frac{1}{2}}\|\delta(\mu)\|_{L^{2}}
$$

- Has given rise to all modern improvements.

The classical Mattila integral

- Idea: $\int \delta(\mu)^{2}(r) d r=\iint_{r=s} \delta(\mu)(r) \delta(\mu)(s) d r d s$
- $|x-y|=\left|x^{\prime}-y^{\prime}\right|$ if and only if $x-y=g\left(x^{\prime}-y^{\prime}\right)$

where $g \in \mathbb{O}(d)$, the orthogonal group.

The classical Mattila integral

- Idea: $\int \delta(\mu)^{2}(r) d r=\iint_{r=s} \delta(\mu)(r) \delta(\mu)(s) d r d s$
- $|x-y|=\left|x^{\prime}-y^{\prime}\right|$ if and only if $x-y=g\left(x^{\prime}-y^{\prime}\right)$

where $g \in \mathbb{O}(d)$, the orthogonal group.
- Using $x-g x^{\prime}=y-g y^{\prime}$ and Plancharel we get

$$
\begin{aligned}
\int \delta(\mu)^{2}(r) d r & \lesssim \int|\widehat{\mu}(\xi)|^{2}\left\{\int|\widehat{\mu}(g \xi)|^{2} d g\right\} d \xi \\
& =C \int\left(\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \sigma(\omega)\right)^{2} r^{d-1} d r
\end{aligned}
$$

Connections to restriction

- Bounding the classical Mattila integral

$$
\int\left(\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \sigma(\omega)\right)^{2} r^{d-1} d r
$$

requires a weighted restriction estimate.

Connections to restriction

- Bounding the classical Mattila integral

$$
\int\left(\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \sigma(\omega)\right)^{2} r^{d-1} d r
$$

requires a weighted restriction estimate.

- If μ Frostman measure on $E \subset \mathbb{R}^{d}$ with $\mu\left(B_{r}\right) \lesssim r^{s}$ for any ball B_{r} where $s<\operatorname{dim}_{\mathcal{H}}(E)$ then estimates of the form

$$
\int_{S^{d-1}}|\widehat{\mu}(r \omega)|^{2} d \sigma(\omega) \lesssim_{\epsilon} r^{-\beta_{d}(s)+\epsilon}
$$

hold where $\beta_{d}(s) \geq \frac{(d-1) s}{d}$ when $\frac{d}{2}<s<d$.

Progress on the Falconer distance problem

- Falconer's original threshold
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$ in \mathbb{R}^{d}

Progress on the Falconer distance problem

- Falconer's original threshold
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$ in \mathbb{R}^{d}
- Improvements due to Wolff and Erdoğan
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{3}$ in \mathbb{R}^{d}

Progress on the Falconer distance problem

- Falconer's original threshold
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$ in \mathbb{R}^{d}
- Improvements due to Wolff and Erdoğan
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{3}$ in \mathbb{R}^{d}
- Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}+\frac{1}{8 d-4}$ in \mathbb{R}^{d}

Progress on the Falconer distance problem

- Falconer's original threshold
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$ in \mathbb{R}^{d}
- Improvements due to Wolff and Erdoğan
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{3}$ in \mathbb{R}^{d}
- Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}+\frac{1}{8 d-4}$ in \mathbb{R}^{d}
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}$ in $\mathbb{R}^{d}, d \geq 2$ even

Progress on the Falconer distance problem

- Falconer's original threshold
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$ in \mathbb{R}^{d}
- Improvements due to Wolff and Erdoğan
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{3}$ in \mathbb{R}^{d}
- Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}+\frac{1}{8 d-4}$ in \mathbb{R}^{d}
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}$ in $\mathbb{R}^{d}, d \geq 2$ even
- $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{4}-\frac{1}{8 d-4}$ in $\mathbb{R}^{d}, d \geq 3$ (Forthcoming???)

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{\times}(E)\right)>0$?

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{x}(E)\right)>0$?
- A bad example is E is a sphere around x.

The pinned Falconer distance problem

- For $x \in \mathbb{R}^{d}$ define the pinned distance set of $E \subset \mathbb{R}^{d}$

$$
D^{x}(E)=\{|x-y|: y \in E\}
$$

- Can we guarantee $\mathcal{L}\left(D^{\times}(E)\right)>0$?
- A bad example is E is a sphere around x.
- How large does $\operatorname{dim}_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^{d}, d \geq 2$, need to be to ensure that there exists $x \in E$ with $\mathcal{L}\left(D^{x}(E)\right)>0$?

Group actions and Liu's result

- Peres and Schlag obtained threshold $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$.

Group actions and Liu's result

- Peres and Schlag obtained threshold $\operatorname{dim}_{\mathcal{H}}(E)>\frac{d}{2}+\frac{1}{2}$.
- Liu's magic formula

$$
\int\left|\sigma_{r} * f(x)\right|^{2} r^{d-1} d r=\int\left|\widehat{\sigma}_{r} * f(x)\right|^{2} r^{d-1} d r
$$

for any $x \in \mathbb{R}^{d}$ and f a Schwartz function on \mathbb{R}^{d}.

- Builds on the group action viewpoint in continuous setting developed by Greenleaf, losevich, Liu and P.
- All thresholds using the Mattila scheme translate directly to the pinned setting due to Liu.

Thank you!

Questions?

Contact me: palsson@vt.edu
My website: personal.math.vt.edu/palsson/

