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Distances

Φ(x1, x2) = |x1 − x2|
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Example

I Distances: 1, 1,
√

2,
√

5,
√

5,
√

8

I Distinct distances: 1,
√

2,
√

5,
√

8

I How many distinct distances are there in general?
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It is easy to have many distinct distances

I N points in the plane.

I Upper bound
(N
2

)
= N(N−1)

2 ∼ N2.

I If randomly selected obtain
(N
2

)
∼ N2.
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The Erdős distinct distance problem

I What is the least number of distinct distances determined by
N points in the plane?

I Conjecture N√
log(N)

as N →∞.

I

Distances squared
12 + 02 = 1
12 + 12 = 2
...
(
√
N)2+(

√
N)2 = 2N
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Circles encode distances

I Erdős obtained
√
N in 1946.

I Progress through the decades by Chung, Katz, Moser,
Solymosi, Szekely, Szemeredi, Toth, Trotter and so on.

I Guth and Katz obtained N
log(N) in 2015.

I Open in Rd when d ≥ 3 with the conjecture being N
2
d .
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Quote by Erdős

“My most striking contribution to geometry is, no doubt, my
problem on the number of distinct distances. This can be found in
many of my papers on combinatorial and geometric problems.”
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The distance set

I The distance set of E ⊆ Rd is

D(E ) = {|x − y | : x , y ∈ E}

I If E ⊂ R2 such that #E = N then

#(D(E )) &
N

log(N)

by Guth and Katz.

I If E ⊆ Rd such that #E =∞ then

#(D(E )) =∞
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The Steinhaus theorem

I Idea

E ⊆ Rd large =⇒ D(E ) large (& structured)

Theorem (Steinhaus 1920)

For E ⊆ Rd with Ld(E ) > 0

E − E := {x − y : x , y ∈ E}

contains a neighborhood of the origin.

I Immediately implies

Ld(E ) > 0 =⇒ L(D(E )) > 0

and further D(E ) contains an interval.
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The Falconer distance problem

I How large does dimH(E ), for E ⊂ Rd , d ≥ 2, need to be to
ensure that L(D(E )) > 0?

I Can construct E ⊂ R with dimH(E ) = 1 such that
L(D(E )) = 0.

I Falconer’s conjecture dimH(E ) > d
2
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First results

For a compact set E ⊂ Rd , d ≥ 2.

I Falconer in 1985

dimH(E ) >
d

2
+

1

2
=⇒ L(D(E )) > 0

I Mattila, Sjölin in 1999

dimH(E ) >
d

2
+

1

2
=⇒ D(E ) contains an interval

I Iosevich, Mourgoglou and Taylor extended this to a wide
range of distance metrics in 2011.
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Encode dimension with measures

I For a compact set E ⊂ Rd and 0 < s < dimH(E ) there is a
probability measure µ supported on E with

µ(Br ) . r s

for any ball Br of radius r .

I Follows by Frostman’s lemma. Call µ a Frostman measure.

I Taking s arbitrarily smaller

Is(µ) =

∫∫
|x−y |−sdµ(x)dµ(y) = cs,d

∫
|µ̂(ξ)|2|ξ|s−ddξ <∞

Call Is(µ) the energy integral of µ.
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Distance measure

I Define the distance measure δ(µ), supported on D(E ), by the
relation∫

f (r) dδ(µ)(r) =

∫∫
f (|x − y |) dµ(x)dµ(y)

for any continuous function f , where µ is a Frostman measure
supported on E .

I δ(µ)(D(E )) = 1

I Approximate µ by a smooth function µε and get∫
f (r) dδ(µε)(r) =

∫∫
f (|x − y |)µε(x)µε(y)dxdy

=

∫
f (r)

(∫
(σr ∗ µε)(x)µε(x)dx

)
dr
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I Get density

δ(µε)(r) =

∫
(σr ∗ µε)(x)µε(x)dx =

∫
σ̂r (ξ)|µ̂ε(ξ)|2dξ

I By stationary phase

|σ̂(ξ)| =

∣∣∣∣∫ e−2πiy ·ξdσ(y)

∣∣∣∣ . |ξ|− d−1
2

I In the limit δ(µ) has density

rd−1
∫
σ̂(rξ)|µ̂(ξ)|2dξ

which is bounded by the energy integral and continuous in r .

I 1 = δ(µ)(D(E )) =

∫
D(E)

δ(µ)(r)dr ≤ ‖δ(µ)‖L∞ L(D(E ))
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Spherical averaging operator

I The spherical averaging operator appeared

Ar (f )(x) =
cd
rd−1

(σr ∗ f )(x) =

∫
Sd−1

f (x − ry)dσ(y)

where dσ is the normalized surface measure on Sd−1, d ≥ 2.
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Easy bounds

Ar (f )(x) =

∫
Sd−1

f (x − ry)dσ(y)

I Easy

‖Ar (f )‖L∞ ≤
∫
Sd−1

‖f ‖L∞ dσ(y) = ‖f ‖L∞

I By Fubini

‖Ar (f )‖L1 ≤
∫
Sd−1

‖f ‖L1 dσ(y) = ‖f ‖L1

Conclude by interpolation

Ar : Lp(Rd)→ Lp(Rd), p ≥ 1

Distance problems and their many variants Easy bounds



Lp improving and Sobolev bounds

I Lp improving estimate

Ar : L
d+1
d (Rd)→ Ld+1(Rd)

I Full picture

Ar : Lp(Rd)→ Lq(Rd)
if and only if(

1
p ,

1
q

)
is within the closed triangle (0, 0), (1, 1),

(
d

d+1 ,
1

d+1

)
.

I Sobolev bounds

Ar : L2(Rd)→ L2d−1
2

(Rd)

where L2d−1
2

(Rd) is a standard homogeneous Sobolev space.
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Maximal spherical averaging operator
I The maximal spherical averaging operator

MS(f )(x) = sup
r>0
|Ar (f )(x)| = sup

r>0

∣∣∣∣∫
Sd−1

f (x − ry)dσ(y)

∣∣∣∣

I Stein (d ≥ 3) and Bourgain (d = 2) showed

MS : Lp(Rd)→ Lp(Rd)

if p > d
d−1 . (See also Mockenhaupt, Seeger and Sogge.)

I Yields Lebesgue differentiation type theorem

lim
r→0+

1

|∂B(x , r)|

∫
∂B(x ,r)

f (y)dσr (y) = f (x) for a.e. x

for all f ∈ Lp(Rd), p > d
d−1 .
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An improved approach

I Establish
‖δ(µ)‖L2 <∞

I Idea why sufficient

1 =

∫
D(E)

δ(µ)(r)dr ≤ L(D(E ))
1
2 ‖δ(µ)‖L2

I Has given rise to all modern improvements.
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The classical Mattila integral
I Idea:

∫
δ(µ)2(r) dr =

∫∫
r=s

δ(µ)(r)δ(µ)(s) drds

I |x − y | = |x ′ − y ′| if and only if x − y = g(x ′ − y ′)

I Using x − gx ′ = y − gy ′ and Plancharel we get

∫
δ(µ)2(r) dr .

∫
|µ̂(ξ)|2

{∫
|µ̂(gξ)|2dg

}
dξ

= C

∫ (∫
Sd−1

|µ̂(rω)|2dσ(ω)

)2

rd−1dr
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Connections to restriction

I Bounding the classical Mattila integral∫ (∫
Sd−1

|µ̂(rω)|2dσ(ω)

)2

rd−1dr

requires a weighted restriction estimate.

I If µ Frostman measure on E ⊂ Rd with µ(Br ) . r s for any
ball Br where s < dimH(E ) then estimates of the form∫

Sd−1

|µ̂(rω)|2dσ(ω) .ε r
−βd (s)+ε

hold where βd(s) ≥ (d−1)s
d when d

2 < s < d .
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Progress on the Falconer distance problem

I Falconer’s original threshold

I dimH(E ) > d
2 + 1

2 in Rd

I Improvements due to Wolff and Erdoğan

I dimH(E ) > d
2 + 1

3 in Rd

I Flurry of improvements recently due to Du, Guth, Iosevich,
Ou, Ren, Wang, Wilson and Zhang.

I dimH(E ) > d
2 + 1

4 + 1
8d−4 in Rd

I dimH(E ) > d
2 + 1

4 in Rd , d ≥ 2 even

I dimH(E ) > d
2 + 1

4 −
1

8d−4 in Rd , d ≥ 3 (Forthcoming???)
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The pinned Falconer distance problem

I For x ∈ Rd define the pinned distance set of E ⊂ Rd

Dx(E ) = {|x − y | : y ∈ E}

I Can we guarantee L(Dx(E )) > 0?

I A bad example is E is a sphere around x .

I How large does dimH(E ), for E ⊂ Rd , d ≥ 2, need to be to
ensure that there exists x ∈ E with L(Dx(E )) > 0?
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Group actions and Liu’s result

I Peres and Schlag obtained threshold dimH(E ) > d
2 + 1

2 .

I Liu’s magic formula∫
|σr ∗ f (x)|2rd−1dr =

∫
|σ̂r ∗ f (x)|2rd−1dr

for any x ∈ Rd and f a Schwartz function on Rd .

I Builds on the group action viewpoint in continuous setting
developed by Greenleaf, Iosevich, Liu and P.

I All thresholds using the Mattila scheme translate directly to
the pinned setting due to Liu.
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Thank you!

Questions?

Contact me: palsson@vt.edu

My website: personal.math.vt.edu/palsson/
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