

 1^{1} data

Existence

Uniqueness

Step 1: construction of the approximate problem

Since the matrix A is not supposed to be bounded, for $\varepsilon > 0$ let us define

$$A_{\varepsilon}(x,s) = A(x,T_{1/\varepsilon}(s))$$

and let $f_{\varepsilon} \in L^2(\Omega)$ such that

$$f_{\varepsilon} \to f$$
 strongly in $L^1(\Omega)$.

We now consider $u_{\varepsilon} \in H_0^1(\Omega)$ a weak solution of the approximated problem : $\forall v \in H_0^1(\Omega)$

(12)
$$\lambda \int_{\Omega} u_{\varepsilon} v + \int_{\Omega} A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla v = \int_{\Omega} f_{\varepsilon} v$$

 1^{1} data

Existence

Uniqueness

Step 2: a priori estimates

 $T_k(u_{\varepsilon})$ is bounded in $H_0^1(\Omega)$ uniformly with respect to ε

Weak solutions

/ 1 data

Existence

Uniqueness

Step 3: extraction of subsequences

There exists a measurable function u, finite a.e. such that, up to a subsequence

$$u_{arepsilon}
ightarrow u$$
 a.e. in Ω

 $\forall k > 0$, $T_k(u_{\varepsilon}) \rightharpoonup T_k(u)$ weakly in $H_0^1(\Omega)$ kEN, Rellich-Kondrasor Theorem, WkEN let up EHo(N)/

Liagonal process, up to a sursequence.

Tylus) -> up to a sursequence. {u_E}_{Eso} is a Cauchy sequence in measure. / {|u_E|>k}-{xEl j |u_E|x)|>k} meas $f(u_{\varepsilon}-u_{\varepsilon}, |>\eta) \leq \text{meas} f(u_{\varepsilon}) = \text{Tr}(u_{\varepsilon}) = \text{T$ Since There) converges are, let 8,00/ 40<8,8/280 mess $\{|T_{\xi}(u_{\xi})-T_{\xi}(u_{\xi},1)>\eta\}<\delta$

=> 40<8,8'<80 mess //48-48,1>13<38

Up a subsequence (still denoted by \$>0) les — u a.e. in St.

There exists a measurable function u

? The lu) \in H^1_0(\Omega)? le finite a.e. in \Omega?

We know then The lue — uh a.e.

I lue — The lue — a.e.

I lue — The lue — a.e.

a.e.

I lue — The lue — a.e. By identification we deduce $u_k = T_k(u) \in H^1_0(\Omega)$. lun limment |u2|>173)=0 => u finite ce.e. in st. Step3. The constructed function u is a contridate (to be a renormalized) solof (1)

 1^{1} data

Existence

Uniqueness

Step 4: uniform control of the decay of the truncated energy

$$\lim_{n \to +\infty} \limsup_{\varepsilon \to 0} \frac{1}{n} \int_{\{|u_{\varepsilon}| < n\}} A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} = 0$$
A very important condition in Definition: $\lim_{n \to +\infty} \frac{1}{n} \int_{\{|u_{\varepsilon}| < n\}} A(x, u) \nabla u \nabla u = 0$.

$$\lim_{n \to +\infty} \inf_{n \to +\infty} \frac{1}{n} \int_{\{|u_{\varepsilon}| < n\}} A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla T_{n}(u_{\varepsilon}) = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} A_{\varepsilon}(u_{\varepsilon}) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^$$

. le finite a.e. | Thui | so a.e. in I | fithul so a.e. in It. Then the Lebesque dominated convergence theorem gives line 1/6/1/Thull =0 $\lim_{n\to+\infty} \lim_{E\to0} \frac{1}{n} \int A_{\xi}(x,u_{\xi}) \nabla u_{\xi}. \nabla u_{\xi} = 0$ $\dim_{n\to+\infty} \lim_{E\to0} \frac{1}{n} \int_{\mathbb{R}^{n}} A_{\xi}(x,u_{\xi}) \nabla u_{\xi}. \nabla u_{\xi} = 0$ (the term is non negative).

Weak solutions 1^{1} data

Existence

Uniqueness

As a consequence we have

and the decay of the energy
$$\begin{array}{c} \forall k>0, \quad T_k(u)\in H^1_0(\Omega) \\ \text{. M. large} \quad A_{\varepsilon}(x,T_m(u_{\varepsilon}))=A(x,T_n(u_{\varepsilon})) \\ \text{. A. elliphicity} \quad . u_{\varepsilon} \to u \text{ a.e. } \cdot \nabla T_n(u_{\varepsilon}) \to \nabla T_n(u_{\varepsilon}) \\ \text{. Step 4.} \\ A(x,u)\nabla u \cdot \nabla u \longrightarrow 0 \text{ as } n \to +\infty. \end{array}$$

It remains to prove (9): $\forall h \in W^{1,\infty}(\mathbb{R})$ with h having compact support

$$\lambda uh(u) - \operatorname{div}(h(u)A(x,u)\nabla u) + h'(u)A(x,u)\nabla u \cdot \nabla u = \operatorname{fh}(u)$$

in
$$\mathcal{D}'(\Omega)$$
. form a test function $\in L^{\infty}(\Omega) \cap \mathcal{AH}^{1}(\Omega)$.

family
$$(\Delta u - \operatorname{div}(A(z,u)\nabla u) = \int_{-\infty}^{\infty} x h(u)$$

in $\mathfrak{A}(\Omega)$.

Remark. We have only weak limit of VTnlue).

We don't know the precise behavior of $A_{\epsilon}(z,u_{\epsilon}) \nabla u_{\epsilon} \cdot \nabla T_{n}(u_{\epsilon})$.

To take $h(u_{\epsilon}) \cdot \varphi$, $\varphi \in \mathcal{E}_{o}(s)$, as test function does allow to conclude.

Weak solutions 1^{1} data

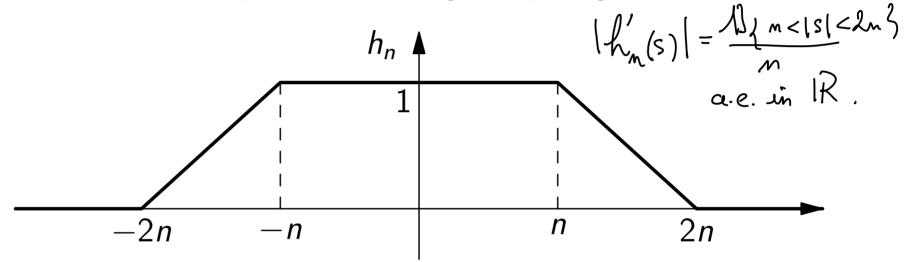
Existence

Uniqueness

Step 5: passing to the limit

$$h_{m}(u_{\varepsilon})h(u) \in L_{(n)}^{\infty}H_{o}(x)$$
. $\nabla (h_{m}(u_{\varepsilon})h(u) \Psi) = h_{m}(u_{\varepsilon})h(u) \Psi \nabla u_{\varepsilon} + h_{m}(u_{\varepsilon})h(u) \nabla \Psi + h_{m}(u_{\varepsilon})h(u) \nabla \Psi$

For any n > 0, we denote by h_n the function given by the graph



Let $h \in W^{1,\infty}(\mathbb{R})$ with compact support and $\varphi \in \mathcal{C}_0^\infty(\Omega)$. In view of the regularity of u_ε , u and φ , and since h has a compact support, $h_n(u_\varepsilon)h(u)\varphi \in L^\infty(\Omega) \cap H_0^1(\Omega)$ is then an admissible test function in the approximate problem :

Weak solutions I^{1} data

Existence

Uniqueness

•
$$|\int_{\Omega} h_n |u_{\varepsilon}| h(u) \Psi A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon}| \leq ||h||_{\infty} ||\Psi||_{\infty} \int_{\Omega} A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon}$$
and $|\int_{\Omega} h_n |u_{\varepsilon}| du_{\varepsilon}| du_{\varepsilon}$

· halus) As (x, us) Vuz = halus) A (x, Ten (us)) VI en (us) - how A(x, Talu) VIII

$$\int_{\Omega} u_{\varepsilon} h_{n}(u_{\varepsilon}) h(u) \varphi + \int_{\Omega} h_{n}(u_{\varepsilon}) h(u) A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla \varphi \\
+ \int_{\Omega} h'(u) h_{n}(u_{\varepsilon}) \varphi A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla u \\
+ \int_{\Omega} h'_{n}(u_{\varepsilon}) h(u) \varphi A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} = \int_{\Omega} fh_{n}(u_{\varepsilon}) h(u) \varphi$$

We now study the behavior of each term, first as ε goes to zero and then as n goes to infinity.

Anlua) hlu) Az(z, uz) Vuz = hnlu) hlu) Alu) Du (z(n)) N Similarly ٤-00. Supph is compact Suhnlujhluj9 + ShnlujhlujA(s,u) Vu. D9 + Jhalu h lu y Abo, u) Vu. Vy + (->) (=) Lhn(u) h(u) P [m -> +\int 1 . with Step 4.

since n large holyhlu = h(u) , hn(u)h'(u) = h'(u) a.e. Juhlu, φ + Jhlu, λ6, νη νω. νφ + Jh'lu, λ(x, νη νω. να θ = ff βhlu) Conclusion u is a renormalized Solution.

Rng. PELONHO

 1^{1} data

Existence

Uniqueness

Renormalized solution and weak (variational) solution

If f is more regular, that is $f \in L^2(\Omega)$ then we recover that any renormalized solution belongs to $H_0^1(\Omega)$. More precisely

Proposition 3

Assume that $f \in L^2(\Omega)$ and $A(x,s) \in (L^\infty(\Omega \times \mathbb{R}))^{N^2}$. Then u is a renormalized solution of (1) iff $u \in H_0^1(\Omega)$ is a weak solution of (1).

Proposition 3 is a consequence of the following

Proposition 4

For any k > 0 we have

$$\lambda \int_{\Omega} u T_k(u) + \int_{\Omega} A(x,u) \nabla u \cdot \nabla T_k(u) = \int_{\Omega} f T_k(u)$$

Formally $T_k(u)$ is an admissible test function for equation (1) and $u \in L^1(\Omega)$.

 1^{1} data

Existence

Uniqueness

Proof of Proposition 4.

EHIONNEQN)

We use in the renormalized formulation h_n in place of h and $T_k(u)$ as test function in (8):

$$\lambda \int_{\Omega} u h_n(u) T_k(u) + \int_{\Omega} h_n(u) A(x,u) \nabla u \cdot \nabla T_k(u)$$

$$+ \int_{\Omega} h'_n(u) T_k(u) A(x,u) \nabla u \cdot \nabla u = \int_{\Omega} f h_n(u) T_k(u)$$

We now derive a priori estimates independent of *n*.