Computation of Angular Momentum of Proton using Lattice QCD

Nilmani Mathur

International School and Workshop on Probing Hadron Structure at the Electron-Ion Collider

ICTS, TIFR, Bengaluru

$\Delta \mathrm{d}:-\mathbf{4 1 (2)} \%$

$$
\chi \text { QCD (2022) }
$$

Phys. Rev. D 106, 014512 (2022)

ETMC (2020)
Phys. Rev. D 101, 094513 (2020)

QCD

$$
\begin{aligned}
S_{Q C D} & =\int d^{4} x L_{Q C D}\left(m_{q}, g_{s}\right) \\
\langle C\rangle & =\frac{\int D G D q D \bar{q} C e^{-S_{Q C D}}}{\int D G D q D \bar{q} e^{-S_{Q C D}}}
\end{aligned}
$$

$$
C_{\mathcal{O}}\left(t_{i}, t_{f}\right)=\sum_{\vec{x}} e^{-i \vec{p} . \vec{x}}\langle 0| \mathcal{O}\left(\vec{x}_{f}, t_{f}\right) \overline{\mathcal{O}}\left(\vec{x}_{i}, t_{i}\right)|0\rangle
$$

QCD \rightarrow LQCD

$$
\begin{aligned}
S_{Q C D} & =\int d^{4} x L_{Q C D}\left(m_{q,} g_{s}\right) \\
\langle C\rangle & =\frac{\int D G D q D \bar{q} C e^{-S_{Q C D}}}{\int D G D q D \bar{q} e^{-S_{Q C D}}}
\end{aligned}
$$

$C_{\mathcal{O}}\left(t_{i}, t_{f}\right)=\sum_{\vec{x}} e^{-i \vec{p} . \vec{x}}\langle 0| \mathcal{O}\left(\vec{x}_{f}, t_{f}\right) \overline{\mathcal{O}}\left(\vec{x}_{i}, t_{i}\right)|0\rangle$

$$
\begin{gathered}
S_{Q C D}^{E}=S_{Q C D}^{E}\left[U, q i, D(U), m_{q_{i}} a\right] \\
\langle C\rangle=\frac{\int D U D q D \bar{q} C e^{-S_{Q C D}^{E}}}{\int D U D q D \bar{q} e^{-S_{Q C D}^{E}}} \approx \frac{1}{N} \sum_{n} C\left(D^{-1}\left(U_{n}\right)\right) \\
\Delta C=\frac{1}{\sqrt{N}}+\text { systematics }
\end{gathered}
$$

QCD \rightarrow LQCD

$$
\begin{aligned}
S_{Q C D} & =\int d^{4} x L_{Q C D}\left(m_{q}, g_{s}\right) \\
\langle C\rangle & =\frac{\int D G D q D \bar{q} C e^{-S_{Q C D}}}{\int D G D q D \bar{q} e^{-S_{Q C D}}}
\end{aligned}
$$

$$
C_{\mathcal{O}}\left(t_{i}, t_{f}\right)=\sum_{\vec{x}} e^{-i \vec{p} . \vec{x}}\langle 0| \mathcal{O}\left(\vec{x}_{f}, t_{f}\right) \overline{\mathcal{O}}\left(\vec{x}_{i}, t_{i}\right)|0\rangle
$$

large time $\sim e^{-E_{0} t}$

Lattice QCD Workflow

Using Monte Carlo methods

 generate a set of gauge ensembles representing QCD dynamics, on Euclidean space-time lattices with varying quark masses, varying lattice sizes and varying lattice spacings

Compute Euclidean correlation functions corresponding to desired observables on those lattice ensembles

Analyse correlation functions, and
finally take chiral, continuum and finite volume limits (also renormalization of lattice to physical results)

Lattice QCD Workflow

Using Monte Carlo methods

 generate a set of gauge ensembles representing QCD dynamics, on Euclidean space-time lattices with varying quark masses, varying lattice sizes and varying lattice spacingsAngular momentum of proton: Need appropriate operators and then to compute their correlation functions 1

Compute Euclidean correlation functions corresponding to desired observables on those lattice ensembles

Analyse correlation functions, and finally take chiral, continuum and finite volume limits (also renormalization of lattice to physical results)

Operators for Angular momentum and spin sum rules

- Energy momentum tensor (Belinfante):

$$
\begin{aligned}
& T^{\mu \nu}=\bar{T}^{\mu \nu}+\widehat{T}^{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& \overleftrightarrow{D}=\frac{1}{2}[\vec{D}+\overleftrightarrow{D}] \quad\{ \} \Rightarrow \text { symetrization }
\end{aligned}
$$

- Angular momentum density:

$$
M^{\alpha \mu \nu}=\bar{T}^{\alpha v} x^{\mu}-\bar{T}^{\alpha \mu} x^{v}
$$

- Angular momentum:

$$
\begin{aligned}
J_{i} & =\frac{1}{2} \epsilon^{i j k} \int d^{3} x M^{0 j k}(x) \\
\vec{J}^{g} & =\int d^{3} x[\vec{x} \times(\vec{E} \times \vec{B})]
\end{aligned}
$$

- Angular momentum density:

$$
M^{\alpha \mu v}=\bar{T}^{\alpha v} x^{\mu}-\bar{T}^{\alpha \mu} x^{v}
$$

- Angular momentum of quarks:

$$
J_{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x M^{0 j k}(x)
$$

$$
\begin{aligned}
\vec{J}^{q}(\mu) & =\int d^{3} x\left[\bar{q} \frac{\vec{\gamma} \gamma_{5}}{2} q+\bar{q}(\vec{x} \times i \vec{D}) q\right] \\
& =\frac{1}{2} \Sigma_{q}(\mu)+\vec{L}_{q}(\mu)
\end{aligned}
$$

Proton spin decomposition

Frame Independent (Ji)

Phys. Rev. Lett., 78:610-613, 1997

$$
\begin{gathered}
J_{P}=J_{q}+J_{g} \\
=\sum_{q=u, d, s, c}(\sqrt{\frac{\mathbf{1}}{\mathbf{2}} \Sigma_{q}}+\overbrace{\boldsymbol{L}_{q}})+J_{g} \\
\end{gathered}
$$

Each term is gauge invariant.
Expt: JLab, COMPASS, HERMES, J-PARC, EIC

Proton spin decomposition

Frame Independent (Ji)

Phys. Rev. Lett., 78:610-613, 1997

$$
\begin{gathered}
J_{P}=J_{q}+J_{g} \\
\left.=\sum_{q=u, d, s, c}\left(\sqrt{\frac{\mathbf{1}}{\mathbf{2}} \Sigma_{q}}+\boldsymbol{L}_{q}\right)+J_{g}\right) \\
\text { Quark spin }_{\begin{array}{l}
\text { Quark } \\
\text { orbital } \\
\text { angular } \\
\text { momentum }
\end{array}}^{\begin{array}{l}
\text { Total gluon } \\
\text { angular } \\
\text { momentum }
\end{array}} \\
\text { Expt: JLab, COMPASS, HERMES, J-PARC, EIC }
\end{gathered}
$$

Infinite momentum frame

(Jaffe-Manohar) Nucl. Phys., B337:509-546, 1990

$$
J_{P}=
$$

$$
\begin{aligned}
& =\sum_{q=u, d, s, c} \xlongequal[\frac{\mathbf{1}}{\mathbf{2}} \Sigma_{q}]{ }+\overbrace{\Delta G}+\mathcal{L}_{q}+\mathcal{L}_{4} \\
& \text { Quark spin } \\
& \begin{array}{ll}
\begin{array}{l}
\text { Gluon } \\
\text { helicity } \\
\epsilon^{i j} F^{+i} A^{j}
\end{array} & \begin{array}{l}
\text { Quark } \\
\text { orbital } \\
\text { angular } \\
\text { momentum } \\
\bar{q}(x \times i \partial) \psi
\end{array}
\end{array}
\end{aligned}
$$

Not gauge invariant. Use light-cone gauge. Also from GPDs, GTMD
Expt: PHENIX, STAR, COMPASS, HERMES, EIC

These decompositions are not unique. There are many ways, and each can have their legitimate meanings

$$
\begin{aligned}
&\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu v\}}|N(p, s)\rangle= \frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
&+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
&\left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{v}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
& \\
& q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2 \\
& T_{1}, \boldsymbol{T}_{2}, \boldsymbol{D}, \bar{C}: \text { Gravitational form factors }
\end{aligned}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{0}^{1} d x x g(x)
$$

$$
\begin{aligned}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu \nu\}}|N(p, s)\rangle= & \frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
& +\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
& \left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{v}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu v}\right] u_{N}(p, s) \\
& \\
& \\
& \\
& T_{1}, \boldsymbol{T}_{2}, \boldsymbol{D}, \bar{C}: \text { Gravitational form factors }
\end{aligned}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{0}^{1} d x x g(x)
$$

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu \nu\}}|N(p, s)\rangle=\frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
& \text { Anomalous gravitomagntic }+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
& \text { moment } \\
& \left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
& q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2 \\
& T_{1}, T_{2}, D, \bar{C}: \text { Gravitational form factors }
\end{aligned}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{0}^{1} d x x g(x)
$$

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu \nu\}}|N(p, s)\rangle=\frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
& \text { Anomalous gravitomagntic }+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{\nu} \sigma^{\mu \alpha}\right)\right\} \\
& \text { moment } \\
& \left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
& \text { Pressure } \\
& q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2 \\
& T_{1}, T_{2}, \bar{D}, \bar{C}: \text { Gravitational form factors }
\end{aligned}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{0}^{1} d x x g(x)
$$

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu \nu\}}|N(p, s)\rangle=\frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
& \text { Anomalous gravitomagntic }+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{\nu} \sigma^{\mu \alpha}\right)\right\} \\
& \text { moment } \\
& \begin{array}{c}
\left.+\mathrm{D}_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
\text { Pressure }
\end{array} \\
& q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2 \\
& T_{1}, T_{2}, D, \bar{C}: \text { Gravitational form factors }
\end{aligned}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{\text {Momentum fraction }}^{1} d x x g(x)
$$

$$
\begin{aligned}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu v\}}|N(p, s)\rangle= & \frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
+ & +\frac{1}{\text { Anomalous gravitomagntic }} \begin{aligned}
2 m_{N} \\
\text { moment }
\end{aligned} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
& \left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{v}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
& \text { Pressure } \quad \text { Trace anomaly }
\end{aligned}
$$

$$
q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2
$$ $T_{1}, T_{2}, D, \bar{C}:$ Gravitational form factors

$$
\text { At } q^{2} \rightarrow 0 \quad J^{q, g}=\frac{\mathbf{1}}{\mathbf{2}}\left[\boldsymbol{T}_{1}(\mathbf{0})+\boldsymbol{T}_{2}(\mathbf{0})\right]^{q, g} \quad\langle\boldsymbol{x}\rangle^{q, g}=\boldsymbol{T}_{\mathbf{1}}(\mathbf{0})^{q, g}
$$

Momentum fraction (second moment of the PDF)
Sum rule: $\quad\langle\boldsymbol{x}\rangle^{q}+\langle\boldsymbol{x}\rangle^{g}=\boldsymbol{T}_{\mathbf{1}}(\mathbf{0})^{q}+\boldsymbol{T}_{\mathbf{1}}(\mathbf{0})^{g}=\mathbf{1}$

$$
J^{q}+J^{g}=\frac{1}{2}=\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]^{q}+\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]^{g}
$$

$$
T_{1}^{q}(0)=\int_{0}^{1} d x x(q(x)+\bar{q}(x)) \quad T_{1}^{g}(0)=\int_{\text {Momentum fraction }}^{1} d x x g(x)
$$

$$
\begin{aligned}
&\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu v\}}|N(p, s)\rangle= \frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\boldsymbol{T}_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
&+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
& \text { Anomalous gravitomagntic } \\
& \text { moment } \\
&\left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{v}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu v}\right] u_{N}(p, s) \\
& \text { Pressure } \text { Trace anomaly }
\end{aligned}
$$

$$
q=p^{\prime}-p: \text { momentum transfer } \quad \bar{p}=\left(p+p^{\prime}\right) / 2
$$ $T_{1}, T_{2}, D, \bar{C}:$ Gravitational form factors

$$
\text { At } q^{2} \rightarrow 0 \quad J^{q, g}=\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]^{q, g} \quad\langle x\rangle^{q, g}=T_{1}(0)^{q, g}
$$

Momentum fraction (second moment of the PDF)
Sum rule:

$$
\begin{aligned}
& \langle x\rangle^{q}+\langle x\rangle^{g}=T_{1}(0)^{q}+T_{1}(0)^{g}=1 \\
& J^{q}+J^{g}=\frac{1}{2}=\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]^{q}+\frac{1}{2}\left[T_{1}(0)+T_{2}(0)\right]^{g} T_{2}(0)^{q}+T_{2}(0)^{g}=0
\end{aligned}
$$

- Angular momentum :

$$
\begin{aligned}
\vec{J}^{q}(\mu)= & \int d^{3} x\left[\bar{q} \frac{\vec{\gamma} \gamma_{5}}{2} q+\bar{q}(\vec{x} \times i \vec{D}) q\right] \\
& =\frac{1}{2} \Sigma_{q}(\mu)+\vec{L}_{q}(\mu) \\
\vec{J}^{g}= & \int d^{3} x[\vec{x} \times(\vec{E} \times \vec{B})]
\end{aligned}
$$

- Operators:

$$
\begin{array}{ll}
\left\langle N\left(p^{\prime}, s\right)\right| \mathcal{O}_{A}^{\mu}|N(p, s)\rangle ; & \mathcal{O}_{A}^{\mu}=\bar{q} \gamma^{\mu} \gamma_{5} q \\
\left\langle N\left(p^{\prime}, s\right)\right| \mathcal{O}_{J_{q}}^{\mu \nu}|N(p, s)\rangle ; & \mathcal{O}_{J_{q}}^{\mu \nu}=\bar{q} \gamma^{\left\{\mu \overleftrightarrow{D} \overleftrightarrow{D}^{v}\right\}} q \\
\left\langle N\left(p^{\prime}, s\right)\right| \mathcal{O}_{J_{g}}^{\mu \nu}|N(p, s)\rangle ; & \mathcal{O}_{J_{g}}^{\mu \nu}=2 \operatorname{Tr}\left[G_{\mu \sigma} G_{v \sigma}\right]
\end{array}
$$

Physical observables

$\langle\boldsymbol{x}\rangle_{q, g}$	Momentum fraction	$\gamma_{\mu} \overrightarrow{\boldsymbol{D}}_{\nu}$
$\left\langle x^{2}\right\rangle_{q, g}$	Second moment	$\gamma_{\mu} \overrightarrow{\boldsymbol{D}}_{\nu} \overrightarrow{\boldsymbol{D}}_{\delta}$
$\Delta u-\Delta d=g_{A}$	Axial charge	$\gamma_{5} \gamma_{\mu}$
$\Delta u+\Delta d=\Delta \Sigma_{u, d}$	Spin content	$\gamma_{5} \gamma_{\mu}$
$\delta u-\delta d=g_{T}$	Tensor charge	$\gamma_{5} \sigma_{\mu \nu}$

$$
\begin{aligned}
& \hline \\
& \hline
\end{aligned}
$$

$$
G_{N O N}^{\alpha \beta}\left(t_{2}, t_{1}, \vec{p}\right)=\sum_{\vec{x}_{2}, \vec{x}_{1}} e^{-i \vec{p} \cdot\left(\vec{x}_{2}-\vec{x}_{0}\right)}\langle 0| \mathrm{T}\left(\chi^{\alpha}\left(x_{2}\right) \mathcal{O}\left(x_{1}\right) \bar{\chi}^{\beta}\left(x_{0}\right)\right)|0\rangle
$$

Connected insertion

Disconnected insertion

Three Point Correlation Function

$$
\begin{aligned}
& G_{P T_{\mu \nu} P}^{\alpha \beta}\left(t_{2}, t_{1}, \vec{p}, \overrightarrow{p^{\prime}}\right)=\sum_{\overrightarrow{x_{2}, \overrightarrow{x_{1}}}} e^{-i \vec{p} \cdot \overrightarrow{x_{2}}} e^{-i \vec{q} \cdot \overrightarrow{x_{1}}} \\
&<0\left|\mathrm{~T}\left(\chi^{\alpha}\left(x_{2}\right) \mathrm{O}_{\mu \nu}\left(x_{1}\right) \bar{\chi}^{\beta}(0)\right)\right| 0>
\end{aligned}
$$

Operator

$$
\begin{aligned}
& \Gamma_{\alpha \beta} G_{N A_{i} N}^{\beta \alpha}\left(t_{f}, t, t_{0}, \bar{p}, \vec{q}\right) \equiv \Gamma_{\alpha \beta} \sum_{\bar{x}, \bar{x}_{f}} e^{i \bar{q} \cdot \vec{x}}\left\langle\boldsymbol{T}\left(\chi^{\alpha}\left(x_{f}\right) A_{i} \bar{\chi}^{\beta}\left(x_{0}\right)\right\rangle\right. \\
& \xrightarrow[E_{q}]{t_{f}-t, t-t_{0} \gg 1,} \frac{E_{q}+m}{E^{2}}|\phi|^{2} e^{-m\left(t_{f}-t\right)-E_{q}\left(t-t_{0}\right)}\left[g_{A}\left(q^{2}\right)-h_{A}\left(q^{2}\right) \frac{q_{i}^{2}}{E_{q}+m}\right] ; \Gamma=\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

The combined ratios leads to the form factors

$$
g_{A}\left(q^{2}\right)-h_{A}\left(q^{2}\right) \frac{q_{i}^{2}}{E_{q}+m} \xrightarrow{q_{i=0}} g_{A}\left(q^{2}\right)
$$

Quark spin contribution $\Delta \Sigma$

- Flavor-singlet axial vector current

$$
A_{\mu}^{0}=\sum_{f=u, d, s, c} \bar{q}_{f} i \gamma_{\mu} \gamma_{5} \boldsymbol{q}_{f}
$$

- On the lattice we need to compute the matrix element of the flavor-singlet axial vector current

$$
\begin{aligned}
& \langle N(p, s)| A_{\mu}^{0}|N(p, s)\rangle=s_{\mu} g_{A}^{0} \\
& \begin{aligned}
& s_{\mu} \quad \text { Polarization vector } \\
& g_{A}^{0}=\Delta \Sigma=\Delta u+\Delta d+\Delta s+\Delta c \quad \text { Quark spin contribution of the } u, d, s \text { and } c \\
&=\Delta(u+d)_{\mathrm{CI}}+\Delta(u+d)_{\mathrm{DI}}+\Delta s_{\mathrm{D} I}+\Delta c_{\mathrm{DI}}
\end{aligned}
\end{aligned}
$$

Quark spin contribution

Axial ward identity

$$
\begin{array}{cc}
\partial_{\mu} A_{\mu}^{0}=\sum_{f=u, d, s} 2 m_{f} P_{f}-2 i N_{f} q & \\
& \chi Q C D \text { (2017-24) } \\
P_{f}=\bar{\psi}_{f} i \gamma_{5} \psi_{f} & q=\frac{1}{16 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \\
\text { Pseudoscalar density } & \text { Topological charge }
\end{array}
$$

Nucleon matrix element of this is satisfied by CI and DI separately

Topological charge contribution is part of the quark spin.

$$
\begin{aligned}
&\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{T}_{q, g}^{\{\mu \nu\}}|N(p, s)\rangle= \frac{1}{2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[T_{1}^{q, g}\left(q^{2}\right)\left(\gamma^{\mu} \bar{p}^{v}+\gamma^{v} \bar{p}^{\mu}\right)\right. \\
&+\frac{1}{2 m_{N}} T_{2}^{q, g}\left(q^{2}\right)\left\{i q_{\alpha}\left(\bar{p}^{\mu} \sigma^{v \alpha}+\bar{p}^{v} \sigma^{\mu \alpha}\right)\right\} \\
& \text { Anomalous gravitomagntic } \\
&\left.+D_{q, g}\left(q^{2}\right) \frac{q^{\mu} q^{v}-g_{\mu \nu} q^{2}}{m_{N}}+\bar{C}_{q, g}\left(q^{2}\right) m_{N} g_{\mu \nu}\right] u_{N}(p, s) \\
& \text { Prementre anomaly }
\end{aligned}
$$

$$
J^{q, g}=\frac{\mathbf{1}}{\mathbf{2}}\left[\mathrm{T}_{1}(\mathbf{0})+\mathrm{T}_{2}(\mathbf{0})\right]^{q, g}
$$

PHYSICAL REVIEW D, VOLUME 62, 114504

Quark orbital angular momentum from lattice QCD

N. Mathur, ${ }^{1,2}$ S. J. Dong, ${ }^{1}$ K. F. Liu, ${ }^{1,3}$ L. Mankiewicz, ${ }^{4,5}$ and N. C. Mukhopadhyay ${ }^{2}$
${ }^{\prime}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
${ }^{2}$ Department of Physics, Applied Physics and Astronomy, RPI, Troy, New York 12180
${ }^{3}$ SLAC, P.O. Box 4349, Stanford, California 94309
${ }^{4}$ Copernicus Astronomical Center, ul. Bartycka 18, PL-00-716 Warsaw, Poland
${ }^{5}$ Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland (Received 10 December 1999; published 25 October 2000)

On an Euclidean space-time lattice,

$$
\begin{aligned}
\mathcal{T}_{4 i}^{q(E)}= & (-1) \frac{i}{4} \sum_{f} \bar{\psi}_{f}\left[\gamma_{4} \vec{D}_{i}+\gamma_{i} \vec{D}_{4}-\gamma_{4} \overleftarrow{D}_{i}-\gamma_{i} \overleftarrow{D}_{4}\right] \psi_{f} \\
& \vec{D}_{\mu} \psi(x)=\frac{1}{2 a}\left[U_{\mu}(x) \psi\left(x+a_{\mu}\right)-U_{\mu}^{\dagger}\left(x-a_{\mu}\right) \psi\left(x-a_{\mu}\right)\right] \\
& \bar{\psi}(x) \overleftarrow{D}_{\mu}=\frac{1}{2 a}\left[\bar{\psi}\left(x+a_{\mu}\right) U_{\mu}^{\dagger}(x)-\bar{\psi}\left(x-a_{\mu}\right) U_{\mu}^{\dagger}\left(x-a_{\mu}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{4 i}^{g(E)}=(+i)\left[-\frac{1}{2} \sum_{k=1}^{3} 2 \operatorname{Tr}^{\text {color }}\left[G_{4 k} G_{k i}+G_{i k} G_{k 4}\right]\right] \\
& G_{\mu \nu}^{(E)}(x)=\frac{1}{8}\left(P_{\mu \nu}(x)-P_{\mu \nu}^{\dagger}(x)\right) \quad P_{\mu \nu}= U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x+\nu) U_{\nu}^{\dagger}(x) \\
&+U_{\nu}(x) U_{\mu}^{\dagger}(x-\mu+\nu) U_{\nu}^{\dagger}(x-\mu) U_{\mu}(x-\mu) \\
&+U_{\mu}^{\dagger}(x-\mu) U_{\nu}^{\dagger}(x-\mu-\nu) U_{\mu}(x-\mu-\nu) U_{\nu}(x-\nu) \\
&+U_{\nu}^{\dagger}(x-\nu) U_{\mu}(x-\nu) U_{\nu}(x-\nu+\mu) U_{\mu}^{\dagger}(x)
\end{aligned}
$$

Correlation functions for OAM

- Time ordered two-point correlation function of nucleon:

Nucleon interpolating field:

$$
\begin{aligned}
& G_{\alpha \beta}^{N N}(\vec{p}, t)= \sum_{\vec{x}} e^{-i \vec{p} \cdot \vec{x}}\langle 0| T\left[\chi_{\alpha}(\vec{x}, t) \bar{\chi}_{\beta}(\overrightarrow{0}, 0)\right]|0\rangle \quad \chi_{\alpha}(x)= \\
& C_{2 p t}(\vec{p}, t) \equiv \operatorname{Tr}\left[\Gamma_{0} G^{N N}(\vec{p}, t)\right] \xrightarrow{\gg 1} \frac{Z_{p}^{2}}{(L a)^{3}} \frac{E_{p}+m}{E_{p}} e^{-E_{p}\left(t-t_{0}\right)}+A e^{-E_{p}^{1}\left(t-t_{0}\right)} \\
& \Gamma_{0}=P_{+}=\frac{1+\gamma_{4}}{2}
\end{aligned}
$$

- Matrix element of tensor current can be obtained using three-point correlation functions:

$$
G_{\alpha \beta}^{\mathcal{T}_{4 i}^{q . g}}\left(t_{\mathrm{f}}, \tau, \vec{p}_{\mathrm{f}}, \vec{p}_{\mathrm{i}}\right)=\sum_{\vec{x}_{\mathrm{f}}, \vec{z}} e^{-i \vec{p}_{\mathrm{f}} \cdot\left(\vec{x}_{\mathrm{f}}-\vec{z}\right)} e^{i \vec{p}_{\mathrm{i}} \cdot \vec{z}}\langle 0| T\left[\chi_{\alpha}\left(\vec{x}_{\mathrm{f}}, t_{\mathrm{f}}\right) \mathcal{T}_{4 i}^{q, g}(\vec{z}, \tau) \bar{\chi}_{\beta}(\overrightarrow{0}, 0)\right]|0\rangle
$$

- With a definition of

$$
C_{3 \mathrm{p}, \Gamma_{\alpha}}^{4 i}\left(t_{\mathrm{f}}, \tau, \vec{p}_{\mathrm{f}}, \vec{p}_{\mathrm{i}}\right) \equiv \operatorname{Tr}\left[\Gamma_{\alpha} G^{\mathcal{T}_{i i}^{q, g}}\left(t_{\mathrm{f}}, \tau, \vec{p}_{\mathrm{f}}, \vec{p}_{\mathrm{i}}\right)\right]
$$

$$
R_{\Gamma_{a}}^{4 i}\left(t_{\mathrm{f}}, \tau, \vec{p}_{\mathrm{f}}, \vec{p}_{\mathrm{i}}\right) \equiv \frac{C_{3 \mathrm{pt}, \Gamma_{\alpha}}^{4 i}\left(t_{\mathrm{f}}, \tau, \vec{p}_{\mathrm{f}}, \vec{p}_{\mathrm{i}}\right.}{C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{f}}, t_{\mathrm{f}}\right)} \sqrt{\frac{C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{i}}, t_{\mathrm{f}}-\tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{f}}, \tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{f}}, t_{\mathrm{f}}\right)}{C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{f}}, t_{\mathrm{f}}-\tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{i}}, \tau\right) C_{2 \mathrm{pt}}\left(\vec{p}_{\mathrm{i}}, t_{\mathrm{f}}\right)}}
$$

Required ratios

$$
\underset{t_{\mathrm{f}}-\gg 1}{t_{\mathrm{f}}^{\gg 1}} \frac{a_{1} T_{1}\left(Q^{2}\right)+a_{2} T_{2}\left(Q^{2}\right)+a_{3} D\left(Q^{2}\right)}{4 \sqrt{E_{p^{\prime}}\left(E_{p^{\prime}}+m\right) E_{p}\left(E_{p}+m\right)}}
$$

1. $\quad R_{\Gamma_{0}}^{4 i}\left(t_{\mathrm{f}}, \tau, \vec{p}, \vec{p}\right)=p_{i} T_{1}(0)$
2. $\quad R_{\Gamma_{j}}^{4 i}\left(t_{\mathrm{f}}, t, \vec{p}, \overrightarrow{0}\right)=\frac{-i}{4} \sqrt{\frac{E_{p}+m}{2 E_{p}}} \epsilon_{i, j, k} p_{k}\left[T_{1}+T_{2}\right]\left(Q^{2}\right)$
3. $R_{\Gamma_{j}}^{4 i}\left(t_{\mathrm{f}}, t, \overrightarrow{0}, \vec{p}\right)=\frac{-i}{4} \sqrt{\frac{E_{p}+m}{2 E_{p}}} \epsilon_{i, j, k} p_{k}\left[T_{1}+T_{2}\right]\left(Q^{2}\right)$
4. $\quad R_{\Gamma_{j}}^{4 i}\left(t_{\mathrm{f}}, t, \vec{p},-\vec{p}\right)=\frac{-i}{2} \epsilon_{i, j, k} p_{k}\left[T_{1}+T_{2}\right]\left(Q^{2}\right)$

ХQCD: Phys. Rev. D 106, 014512 (2022)

χ QCD: Phys. Rev. D 106, 014512 (2022)

χ QCD: Phys. Rev. D 106, 014512 (2022)

Renormalization

$$
\begin{aligned}
& \mathcal{O}^{S}(M)=Z_{\mathcal{O} ; \text { bare }}^{S}(M) \mathcal{O}_{\text {bare }}, \\
& \mathcal{O}^{\mathrm{RGI}}=\Delta Z_{\mathcal{O}}^{S}(M) \mathcal{O}^{S}(M) \equiv Z_{\mathcal{O}}^{\mathrm{RGI}} \mathcal{O}_{\text {bare }} .
\end{aligned}
$$

For example:

$$
\begin{gathered}
\langle x\rangle_{R}^{q^{+}}=Z_{q q}\langle x\rangle_{B}^{q^{+}}+Z_{q g}\langle x\rangle_{B}^{g} \\
\langle x\rangle_{R}^{g}=Z_{g g}\langle x\rangle_{B}^{g}+Z_{g q}\langle x\rangle_{B}^{q^{+}}
\end{gathered}
$$

ETMC: Phys. Rev. D 101, 094513 (2020)

Angular momentum components from LQCD calculations

Phys. Rev. D 106, 014512 (2022)

ETMC (2020)
Phys. Rev. D 101, 094513 (2020)

OAM from GTMD

$$
\begin{aligned}
& \text { Longitudinal quark OAM in } z \text {-dir } L_{3}^{U}=\int d x \int d^{2} b_{T} \int d^{2} k_{T}\left(b_{T} \times k_{T}\right)_{3} \mathcal{W}^{U}\left(x, b_{T}, k_{T}\right) \\
& \qquad L_{3}^{U}=-\left.\int d x \int d^{2} k_{T} k_{T}^{2} m^{2} F_{14}\right|_{\Delta_{T}=0} \begin{array}{l}
\text { C. Lorcé and B. Pasquini, } \\
\text { Phys. Rev. D 84, 014015 (2011). }
\end{array} \\
& \qquad \underline{L_{3}}=\frac{1}{-\epsilon_{i j} \xrightarrow{\partial \Delta_{T, j}}\left(\Phi\left(a \vec{e}_{i}\right)-\Phi\left(-a \vec{e}_{i}\right)\right) \mid}
\end{aligned}
$$

$$
\Phi\left(z_{T}\right)=\left\langle P+\Delta_{T} / 2, S=\vec{e}_{3}\right| \bar{\psi}\left(-z_{T} / 2\right) \gamma^{+} U\left[-z_{T} / 2, z_{T} / 2\right] \psi\left(z_{T} / 2\right)\left|P-\Delta_{T} / 2, S=\vec{e}_{3}\right\rangle
$$

$$
\text { M. Engelhardt, PRD 95, } 094505 \text { (2017) }
$$

n : number of valence quarks
\boldsymbol{e}_{3} : Unit vector in the longitudinal direction
$\boldsymbol{e}_{\boldsymbol{i}}:$ Unit vector in the transverse direction
Δ_{T} : Momentum transfer
z_{T} : Operator separation

- Straight $U\left[-\frac{Z}{2}, \frac{Z}{2}\right] \rightarrow$ Ji OAM
- Staple-shaped $U\left[-\frac{Z}{2}, \frac{Z}{2}\right] \rightarrow \mathrm{JM} \mathrm{OAM}$
- Torque accumulation due to final state interaction causes the difference

OAM from GTMD

OAM from GTMD

Quark OAM can also be calculated using the second Mellin moment of the twist-3 generalized parton distribution in the forward limit

$$
\begin{gathered}
L_{3}=\left(L_{3}+2 S_{3}\right)-2 S_{3}=-\int d x x \bar{E}_{2 T}-\int d x \bar{H} \quad \text { Engelhardt@S } \\
L_{3}+2 S_{3}=\left.\epsilon_{i j} \frac{1}{2} \frac{\partial}{\partial(z \cdot P)} \frac{\partial}{\partial \Delta^{i}}\left\langle P+\Delta_{T} / 2,+\right| \bar{\psi}(-z / 2) \gamma^{j} \mathcal{U} \psi(z / 2)\left|P-\Delta_{T} / 2,+\right\rangle\right|_{z^{+}=z^{-}=0, \Delta_{T}=0, z_{T} \rightarrow 0} \\
2 P^{j} n=\left.\langle P,+| \bar{\psi}(-z / 2) \gamma^{j} \mathcal{U} \psi(z / 2)|P,+\rangle\right|_{z^{+}=z^{-}=0, z_{T} \rightarrow 0}
\end{gathered}
$$

Original frame: $z^{+}=0, \quad z \cdot P=z^{-} P^{+}, \quad z^{2}=-z_{T}^{2}$
Lattice frame: $\quad z_{0}=0, \quad z \cdot P=-z_{3} P_{3}, \quad z^{2}=-z_{3}^{2}-z_{T}^{2}$

Gluon helicity from Lattice QCD

- $\boldsymbol{\Delta} \boldsymbol{G}$: High energy PP collision
$\mathcal{L}_{\boldsymbol{q}}, \mathcal{L}_{\boldsymbol{g}}$: Generalized parton distributions (GPDs) Wigner distributions (GTMD)

Phys. Rev. Lett., 91:062001, 2003
Phys. Rev. D, 69:074014, 2004
JHEP, 08:056, 2009, JHEP, 05:041, 2011

- Matrix elements of appropriate equal-time local operator operators
\rightarrow boost to the infinite momentum frame
~ non-local gauge invariant from light-cone Phys. Rev. Lett., 111:112002, 2013 Lattice + LMET
- $\Delta G \sim \vec{E} \times \vec{A}_{\text {phys }} \quad \mathcal{D}^{i} A_{\text {phys }}^{i} \equiv \partial^{i} A_{\text {phys }}^{i}-i g\left[A^{i}, A_{\text {phys }}^{i}\right]=\mathbf{0}$

$$
A^{i}=A_{p h y s}^{i}+A_{n g i}^{i}
$$

$\boldsymbol{A}_{\boldsymbol{p h y s}}^{\boldsymbol{i}}$: similar to the transverse gauge-invariant part of the gauge potential \boldsymbol{A}_{\perp} in QED

ΔG From Lattice QCD

- First moment of the gluon helicity distribution:

$$
\begin{aligned}
\Delta G= & \int d x \frac{l}{2 x P^{+}} \int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}} \\
& \times\langle P S| F_{a}^{+\alpha}\left(\xi^{-}\right) \mathcal{L}^{a b}\left(\xi^{-}, 0\right) \tilde{F}_{\alpha, b}^{+}(0)|P S\rangle
\end{aligned}
$$

A. Manohar, Phys. Lett. B 255, 579 (1991)

$$
\begin{aligned}
& \xi^{ \pm}=\left(\xi^{0} \pm \xi^{3}\right) / \sqrt{2} \quad \text { Light-front coordinates } \\
& \mathcal{L}\left(\xi^{-}, 0\right)=P \exp \left[-i g \int_{0}^{\xi-} A^{+}\left(\eta^{-}, 0_{\perp}\right) d \eta^{-}\right]
\end{aligned}
$$

Light-cone gauge link

- A gauge-invariant gluon helicity operator in a nonlocal form

$$
\begin{aligned}
& \tilde{S}_{g}=\left[\vec{E}^{a}(0) \times\left(\vec{A}^{a}(0)-\frac{1}{\nabla^{+}}\left(\vec{\nabla} A^{+, b}\right) \mathcal{L}^{b a}\left(\xi^{-}, 0\right)\right)\right]^{z} \quad \nabla^{+}=\partial / \partial \xi^{-} \\
& \vec{E} \times \vec{A} \\
& \vec{S}_{g}=2 \int_{\vec{\partial} \cdot \vec{A}} d^{3} x \operatorname{Tr}\left(\vec{E}_{c} \times \vec{A}_{c}\right) \\
& \text { Coulomb gauge: } \overrightarrow{\boldsymbol{\partial}} \cdot \overrightarrow{\boldsymbol{A}}=\mathbf{0}
\end{aligned}
$$

$\overrightarrow{\boldsymbol{S}}_{g}$: not Lorentz invariant, frame dependent Needs to calculate in rest and moving frames and needs to be matched after renormalization. Also calculations have to be in Coulomb gauge

[^0]
Lattice QCD calculation for ΔG

- Gauge fixed potential:

$$
A_{c, \mu}=\left(\frac{U_{\mu}^{c}(x)-U_{\mu}^{c \dagger}(x)+U_{\mu}^{c}(x-a \hat{\mu})-U_{\mu}^{c \dagger}(x-a \hat{\mu})}{4 i a g}\right)_{\text {traceless }}
$$

- Coulomb gauge:

$$
\sum_{\mu=x, y, z}\left[U_{\mu}^{c}(x)-U_{\mu}^{c}(x-a \hat{\mu})\right]=0
$$

- Chromoelectric field:

$$
\begin{aligned}
F_{\mu \nu}^{c}= & \frac{i}{8 a^{2} g}\left(\mathcal{P}_{\mu, \nu}-\mathcal{P}_{\nu, \mu}+\mathcal{P}_{\nu,-\mu}-\mathcal{P}_{-\mu, \nu} \quad \mathcal{P}_{\mu, \nu}=U_{\mu}^{c}(x) U_{\nu}^{c}(x+a \hat{\mu}) U_{\mu}^{c \dagger}(x+a \hat{\nu}) U_{\nu}^{c \dagger}(x) .\right. \\
& \left.+\mathcal{P}_{-\mu,-\nu}-\mathcal{P}_{-\nu,-\mu}+\mathcal{P}_{-\nu, \mu}-\mathcal{P}_{\mu,-\nu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta G\left(\mu^{2}=10 \mathrm{GeV}^{2}\right) & \approx S_{G}\left(\infty, \mu^{2}=10 \mathrm{GeV}^{2}\right) \\
& =0.251(47)(16) \\
& \rightarrow 50(9)(3) \% \text { of proton spin }
\end{aligned}
$$

Caveat: convergence problem for perturbative series in LMET systematics is not under control and more work is necessary.

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Disconnected insertion: Systematics need to be improved. Further improvement requires better sources, ground state overlap without excited state contamination, more measurements, more statistics
Need: better operator set up with many sources (distillation), bigger size lattices with large number of configurations

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Large momentum: Systematics are not within control.
Further improvement requires.
Need: Improved method for correlators with large momenta, lattices with smaller spacings with large number of configurations, better operator set up for momentum projection.

Disconnected insertion: Systematics need to be improved. Further improvement requires better sources, ground state overlap without excited state contamination, more measurements, more statistics
Need: better operator set up with many sources (distillation), bigger size lattices with large number of configurations

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Large momentum: Systematics are not within control. Further improvement requires.
Need: Improved method for correlators with large momenta, lattices with smaller spacings with large number of configurations, better operator set up for momentum projection.

Disconnected insertion: Systematics need to be improved. Further improvement requires better sources, ground state overlap without excited state contamination, more measurements, more statistics
Need: better operator set up with many sources (distillation), bigger size lattices with large number of configurations

Gluon operators: Systematics are not within control. Need: improved operator set up (multigrid?), better smearing procedure, lattices with smaller lattice spacings with large number of configurations

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Large momentum: Systematics are not within control. Further improvement requires.
Need: Improved method for correlators with large momenta, lattices with smaller spacings with large number of configurations, better operator set up for momentum projection.

Disconnected insertion: Systematics need to be improved. Further improvement requires better sources, ground state overlap without excited state contamination, more measurements, more statistics
Need: better operator set up with many sources (distillation), bigger size lattices with large number of configurations

Renormalization: Systematics can be controlled.
Further improvement requires
Need: Mixing between operators needs to be computed properly. Different action set up may need different renormalization procedures.

Gluon operators: Systematics are not within control. Need: improved operator set up (multigrid?), better smearing procedure, lattices with smaller lattice spacings with large number of configurations

Looking forward

Connected insertion: Systematics are within control. Further improvement requires better ground state overlap without excited state contamination, more statistics Need: better operator set up with many sources, bigger size lattices with large number of configurations

Large momentum: Systematics are not within control. Further improvement requires.
Need: Improved method for correlators with large momenta, lattices with smaller spacings with large number of configurations, better operator set up for momentum projection.

Disconnected insertion: Systematics need to be improved. Further improvement requires better sources, ground state overlap without excited state contamination, more measurements, more statistics
Need: better operator set up with many sources (distillation), bigger size lattices with large number of configurations

Renormalization: Systematics can be controlled.
Further improvement requires
Need: Mixing between operators needs to be computed properly. Different action set up may need different renormalization procedures.

Gluon operators: Systematics are not within control. Need: improved operator set up (multigrid?), better smearing procedure, lattices with smaller lattice spacings with large number of configurations

Extending these calculations for nuclei?

Need: Bigger volume lattices and new methodologies for controlling systematics

Conclusions

* Lattice calculations can provide first-principles non-perturbative quantitative results with controlled precision for the helicity and orbital angular momentum content, structure functions, PDFs, GPDss, TMDs, DA, wave-functions, etc. of hadrons.
* These observables are necessary to understand the non-perturbative structure of hadrons.
* Lattice calculations are playing important roles in studying the spin content and the emergence of mass of a proton. These calculations are showing a substantial contribution from gluon angular momentum and also from quark orbital angular momentum.
* In the ongoing exascale era or supercomputing it is envisaged that the results from these calculations will be more precise.
* Similar to one nucleon case, these calculations may possibly be performend for low lying nuclei too!
* These calculations will be very important for achieving EIC science goals

In partonic interpretation, v_{n}^{f} is the (n - 1)th moment of the momentum fraction carried by quarks with flavor f at scale μ
i. e. , $v_{n}^{f}(\mu)=\int_{0}^{1} d x x^{n-1}\left[f(x)+(-1)^{n} \bar{f}(x)\right]=\left\langle x^{n-1}\right\rangle_{f}$
$v_{n}^{g}(\mu)=\int_{0}^{1} d x x^{n-1} g(x)$
$a_{n}^{(f)}=2 \Delta^{(n)} q^{(f)}=2 \int_{0}^{1} \mathrm{~d} x x^{n} \frac{1}{2}\left[q_{\uparrow}^{(f)}(x)-q_{\downarrow}^{(f)}(x)\right], f=u, d$
$q_{\uparrow}(x), q_{\downarrow}(x)$ are the quark distribution function with spin parallel or antiparallel to the direction of motion

$$
a_{0}^{(u)}=2 \Delta u, \quad a_{0}^{(d)}=2 \Delta d
$$

where, Δf is the fraction quark spin carried by quarks with flavor f.

$$
\begin{aligned}
\text { For } g_{2}, & a_{n}^{f}: \text { twist } 2 \\
& d_{n}^{f}: \text { twist } 3
\end{aligned}
$$

Wandzura-Wilczek contribution

[^0]: S. Chen, X.-F. Lu, W.-M. Sun, F. Wang, and T. Goldman, Phys. Rev. Lett. 100, 232002 (2008).
 X.-S. Chen, W.-M. Sun, X.-F. Lu, F. Wang, and T. Goldman, Phys. Rev. Lett. 103, 062001 (2009).
 C. Lorce, Phys. Rev. D 87, 034031 (2013).
 Y. Zhao, K.-F. Liu, and Y. B. Yang, Phys. Rev. D 93, 054006 (2016).

