Exceptional topological superconductors and their Floquet analog

Tanay Nag

Ref: Phys. Rev. B 106, L140303 (2022)

Acknowledgements: A. K. Ghosh (Uppsala University, Sweden)

Stability of Quantum Matter in and out of Equilibrium at Various Scales (SQMVS) 2024, ICTS Bangalore

January 19, 2024

Tanay Nag, BITS Pilani Hyderabad campus SQMVS 2024, ICTS Bangalore

- 1. Introduction and motivation
 - Topologial (higher-order) systems and non-Hermitian topology
 - Periodic dynamics and its consequences
- 2. Question and its answer
 - Exceptional topological superconductors and their Floquet analog (PRB 106, L140303 (2022))

A B K A B K

3. Conclusions and experimental relevance

Understanding the basic band structure Ind. J. Phys. 95, 2639 (2021)

Tanay Nag, BITS Pilani Hyderabad campus SQMVS 2024, ICTS Bangalore

イロン イヨン イヨン イヨン

Э

1D example of SSH chain Lecture Notes in Physics, 919 (2016)

SSH Hamiltonian

$$H = \begin{pmatrix} 0 & v + we^{ik} \\ v + we^{-ik} & 0 \end{pmatrix}$$
$$= d_x \sigma_x + d_y \sigma_y$$

with $d_x = v + w \cos k$, $d_y = w \sin k$

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

Topological superconductor in 1D: *p*-wave spinless Majorana chain Physics-Uspekhi 44, 131 (2001)

p-wave Hamiltonian: $H = \frac{i}{2} \sum_{j=1}^{N-1} [(-w + \Delta)a_j b_{j+1} + (w + \Delta)b_j a_{j+1}] - \frac{i}{2} \sum_{j=1}^{N} \mu a_j b_j$

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

Proximity induced topological superconductor PRL 100, 096407 (2008),

PRL 104, 040502 (2010), PRB 88, 155420 (2013)

- p-wave Kitaev chain
- Rashba nanowire $(k_x^2 + k_x \sigma_y) + s$ -wave proximed SC + magnetic field $(E_z \sigma_x)$ \Rightarrow emergent *p*-wave TSC in 1D
- Surface of TI + proximity induced s-wave SC + magnetic field ⇒ chiral TSC in 2D
- Helical spin chain + proximity induced s-wave SC \Rightarrow emergent p-wave TSC

What is a higher-order topological (HOT) phase? Science 357, 61

(2017); PRB 96, 245115 (2017)

- n^{th} -order topological phase in d dimensions is characterized by the existence of $n_c = (d n)$ -dimensional boundary modes
- Mutually anticommuting matrices with discrete Wilson-Dirac masses

Let's start with a 2D Hamiltonian PRB 100, 115403 (2019)

HOTI Hamiltonian: QSHI and perturbation

$$\begin{aligned} H_{\text{QSHI}} &= t_1 \sum_{j=1}^2 \Gamma_j \sin k_j - t_0 \Gamma_3 \big[m - \sum_{j=1}^2 \cos k_j \big] \\ V &= \Delta \left(\cos k_x - \cos k_y \right), \quad H_{\text{HOTI}} = H_{\text{QSHI}} + \mathbf{V} \Gamma_d \end{aligned}$$

with $\Gamma_1 = \sigma_3 \tau_1$, $\Gamma_2 = \sigma_0 \tau_2$, $\Gamma_3 = \sigma_0 \tau_3$, $\Gamma_4 = \sigma_1 \tau_1$ and $(\boldsymbol{\tau}, \boldsymbol{\sigma}) \in$ (sublattice, spin)

• Connecting to construction method: $t_1 \sum_{j=1}^2 \Gamma_j \sin k_j$ in H_{QSHI} represent m = 2 terms $\longrightarrow t_0 \Gamma_3 \left[m - \sum_{j=1}^2 \cos k_j \right]$ is p = 1 term as first-order mass yielding n = 1-order regular topological phase \longrightarrow $V\Gamma_4$ is p = 2 term as Wilson-Dirac mass yielding n = 2-order HOT phase

イロン イヨン イヨン

First-order topological phases PRB 100, 115403 (2019)

• Gap vanishes at $\mathbf{k} = (0,0)$, (π,π) when $m = \pm 2$ and $\mathbf{k} = (\pi,0)$, $(0,\pi)$ when m = 0.

SOTI in 2D PRB 100, 115403 (2019)

HOTI Hamiltonian: QSHI and perturbation

$$H_{\text{QSHI}} = t_1 \sum_{j=1}^{2} \Gamma_j \sin k_j - t_0 \Gamma_3 \left[m - \sum_{j=1}^{2} \cos k_j \right]$$
$$V = \Delta \left(\cos k_x - \cos k_y \right), \quad H_{\text{HOTI}} = H_{\text{QSHI}} + \mathbf{V} \mathbf{\Gamma}_4$$

with $\Gamma_1 = \sigma_3 \tau_1$, $\Gamma_2 = \sigma_0 \tau_2$, $\Gamma_3 = \sigma_0 \tau_3$, $\Gamma_4 = \sigma_1 \tau_1$ and $(\boldsymbol{\tau}, \boldsymbol{\sigma}) \in$ (sublattice, spin)

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

Higher-order topological superconductor (HOTSC) PRB 98, 165144

(2018), PRL 124, 227001 (2020), PRB 104, 134508 (2021), PRB 104, L180503 (2021)

- ▶ QSHI with SOC + proximity induced s-wave SC + uniaxial magnetic field ⇒ corner modes in 2D (TRS broken)
- QSHI with SOC + proximity induced d-wave SC ⇒ Corner modes in 2D (TRS preserved)
- Hopping + p + id-wave SC ⇒ Corner modes in 2D (C₄T preserved)
- 3D TI + proximity induced s-wave SC + magnetic field + Wilson-Dirac mass terms ⇒ hinge and corner modes in 3D
- ► Hopping + SOC+ d₁ + id₂-wave SC ⇒ Corner modes in 3D

・ロト ・回ト ・ヨト ・ヨト

- Second-order Wilsonian mass term: $d_{x^2-y^2}$ SC gap term $\Delta_1(\cos k_x - \cos k_y)\tau_x$ (8 MHMs) or $\Lambda_1(\cos k_x - \cos k_y)\mu_x\sigma_y$ (16 MHMs) in the TI + *s*-wave proximed SC
- Third-order Wilsonian mass term: $d_{3z^2-r^2}$ SC gap term $\Delta_2(2\cos k_z - \cos k_x - \cos k_y)\tau_y$ (8 MCMs) or $\Lambda_1(2\cos k_z - \cos k_x - \cos k_y)\mu_z$ (16 MCMs) in the TI + *s*-wave proximed SC

ヘロト ヘヨト ヘヨト ヘヨト

Microscopics to an effective non-Hermitian model

Explicit presence of gain and loss terms (optical meta-materials)

- ► Interacting systems (electron-electron, electron-phonon) leading to quasiparticles of finite lifetime i.e., $H \rightarrow H + \Sigma$ where self-energy Σ is complex
- Quantum systems in contact with reservoir (Lindblad master equation):

$$\partial_t \rho(t) = \mathcal{L}_t \rho(t) = -i[H, \rho(t)] + \sum_j (L_j \rho(t) L_j^{\dagger} - \frac{1}{2} \{L_j L_j^{\dagger}, \rho(t)\})$$

Redefining the Hamiltonian $H_e = H - i \sum j L_i^{\dagger} L_j$ leads to

$$\partial_t \rho(t) = \mathcal{L}_t \rho(t) = -i[H_e \rho(t) - \rho(t)H_e^{\dagger}] + \sum_j L_j \rho(t)L_j^{\dagger}$$
 where

 $\sum_{j} L_{j}
ho(t) L_{j}^{\dagger}$ is the jump term

Non-Hermitian Hamiltonian: $H \neq H^{\dagger}$

$$H|\psi_n^R\rangle = E|\psi_n^R\rangle$$
, $\langle \psi_n^L|H = E\langle \psi_n^L| \Rightarrow H^{\dagger}|\psi_n^L\rangle = E^*|\psi_n^L\rangle$

$$H_{eff} = \begin{pmatrix} 0 & J \\ J & -i\frac{\gamma_e}{2} \end{pmatrix}$$

Eigenvalues & eigenvectors
$$\lambda_{\pm} = -i\frac{\gamma_e}{4} \pm \sqrt{J^2 - \frac{\gamma_e^2}{16}}$$
$$|\psi_{\pm}\rangle \propto \begin{pmatrix} \lambda_{\pm} \\ J \end{pmatrix}$$

< 토 ▶ < 토 ▶ .

$$H = J\sigma_x + \frac{i\gamma_e}{4}\sigma_z - \alpha \frac{i\gamma_e}{4}\sigma_0 \rightarrow \text{PT-symmetric if } \alpha = 0$$

$$(\Box + \langle \sigma \rangle)$$
Tanay Nag, BITS Pilani Hyderabad campus
SQMVS 2024, ICTS Bangalore

- ► Two-level Hamiltonian $H(k) = d(k).\sigma + d_0(k)\sigma_0$ with $d = d_R + id_I$
- ► Hermitian case with $d_I = 0$: $E_{\pm} = \pm \sqrt{d_x^2 + d_y^2 + d_z^2}$ vanishes for $d_x = 0, d_y = 0, d_z = 0 \rightarrow$ three constraints for a two band crossing
- Non-Hermitian case with $d_I \neq 0$: Complex-energy spectrum $E_{\pm} = d_0 \pm \sqrt{d_R^2 - d_I^2 + 2i d_R \cdot d_I}$
- Degeneracies occur more frequently when d²_R − d²_I = 0 and d_R ⋅ d_I = 0 → two constraints for a two band crossing

イロン イヨン イヨン

Non-Hermitian topology and skin modes Front. Phys. 11 1123596 (2023)

Modified SSH model:

$$H = \begin{pmatrix} 0 & t_1 + t_2 e^{ik} \\ mt_1 + nt_2 e^{-ik} & 0 \end{pmatrix}$$

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

- Can we engineer non-Hermitian exceptional HOTSC phase using d-wave paring?
- How is the bulk boundary correspondence modified? How to characterize the MZMs?
- How can one engineer the anomalous Floquet HOTSC phase for the NH case?

Underlying model for our problem

$$H_{\rm dD}(\boldsymbol{k}) = \begin{pmatrix} H_{\rm TI}^{\rm dD}(\boldsymbol{k}) - \mu & \Delta \\ \Delta^* & \mu - \mathcal{T}^{-1} H_{\rm TI}^{\rm dD}(-\boldsymbol{k}) \mathcal{T} \end{pmatrix}$$

where Pauli matrices (σ, s, τ) operate on the (sublattice/orbital, spin, particle-hole) degrees of freedom

For 2D: $H_{TT}^{2D} = (m - \cos k_x - \cos k_y)\sigma_z + \sin k_x\sigma_x s_z + \sin k_y\sigma_y$ preserving TRS $\mathcal{T} = is_y\mathcal{K}, \ M_x = \sigma_0 s_x$ and $M_y = \sigma_z s_x$ and $\Delta = \Delta(\cos k_x - \cos k_y)\sigma_0 s_0$, PHS: $\mathcal{P} = \tau_y\sigma_x s_z\mathcal{K}$, CS: $\mathcal{C} = \tau_z\sigma_x s_y$

For 3D: $H_{TI}^{3D} = (m - \cos k_x - \cos k_y - \cos k_z)\sigma_z + \sin k_x\sigma_xs_x + \sin k_y\sigma_xs_y + \sin k_z\sigma_xs_z$ preserving TRS $\mathcal{T} = is_y\mathcal{K}$, $M_x = \sigma_zs_x$, $M_y = \sigma_zs_y$, $M_z = \sigma_zs_z$ and $\Delta = \Delta_1(\cos k_x - \cos k_y)\sigma_0s_0 + i\Delta_2(2\cos k_z - \cos k_x - \cos k_y)\sigma_0s_0$, PHS: $\mathcal{P} = \tau_y\sigma_ys_y\mathcal{K}$, CS: $\mathcal{C} = \tau_z\sigma_y$

イロン 不同 とくほど 不同 とう

Underlying model for our problem

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} H_{\mathrm{TI}}(\mathbf{k}) - \mu & \Delta(\cos k_x - \cos k_y)\sigma_0 s_0 \\ \Delta(\cos k_x - \cos k_y)\sigma_0 s_0 & \mu - U_{\mathcal{T}}^{-1}H_{\mathrm{TI}}^*(-\mathbf{k})U_{\mathcal{T}} \end{pmatrix} ,$$

► Ingredients:
$$H_{\text{TI}}(\mathbf{k}) = (\lambda_x \sin k_x + i\gamma_x)\sigma_x s_z + (\lambda_y \sin k_y + i\gamma_y)\sigma_y s_0 + (m_0 - t_x \cos k_x - t_y \cos k_y)\sigma_z s_0 = H_{\text{TI}}^{\text{H}}(\mathbf{k}) + i\gamma_x \sigma_x s_z + i\gamma_y \sigma_y s_0$$

< ロ > < 同 > < 三 > < 三 >

- ► $\mathcal{H}(\mathbf{k})$ preserves ramified (time-reversal symmetry) TRS: $U_T \mathcal{H}_{TI}^*(\mathbf{k}) U_T^{-1} = \mathcal{H}_{TI}(-\mathbf{k})$ with $U_T = \sigma_0 s_y$
- ► $\mathcal{H}(\mathbf{k})$ preserves ramified (particle-hole symmetry) PHS[†]: $U_{\mathcal{C}}\mathcal{H}_{\mathrm{TI}}^{*}(\mathbf{k})U_{\mathcal{C}}^{-1} = -\mathcal{H}_{\mathrm{TI}}(-\mathbf{k})$ with $U_{\mathcal{C}} = \sigma_{x}s_{0}$
- $H_{TI}^{H}(\mathbf{k})$ preserves TRS $\mathcal{T} = iU_{\mathcal{T}}\mathcal{K}$ and PHS $\mathcal{C} = U_{\mathcal{C}}\mathcal{K}$

The model and crystalline symmetries

The compact form $\mathcal{H}(\mathbf{k}) = \mathbf{N} \cdot \mathbf{\Gamma}$; where, $\mathbf{N} = \{\lambda_x \sin k_x + i\gamma_x, \lambda_y \sin k_y + i\gamma_y, m_0 - t_x \cos k_x - t_y \cos k_y, \Delta(\cos k_x - \cos k_y)\}$, $\mathbf{\Gamma} = \{\tau_z \sigma_x s_z, \tau_z \sigma_y s_0, \tau_z \sigma_z s_0, \tau_x \sigma_0 s_0\}$ with the Pauli matrices τ , σ , and s act on PH (e, h), orbital (α, β) , and spin (\uparrow, \downarrow) degrees of freedom, respectively.

- ► For $t_x = t_y$, $\lambda_x = \lambda_y$, and $|\gamma_x| = |\gamma_y| \neq 0$, $\mathcal{H}(\mathbf{k})$ breaks the following crystalline symmetries four-fold rotation with respect to *z*, $C_4 = \tau_z e^{-\frac{i\pi}{4}\sigma_z s_z}$, mirror-reflection along *x*, $\mathcal{M}_x = \tau_x \sigma_x s_0$ and mirror-reflection along *y*, $\mathcal{M}_y = \tau_x \sigma_y s_0$ while $\mathcal{H}^{\mathrm{H}}(\mathbf{k})$ respects the above symmetries
- ► $\mathcal{H}(\mathbf{k})$ and $\mathcal{H}^{\mathrm{H}}(\mathbf{k})$ both preserve mirror-rotation I $\mathcal{M}_{xy} = C_4 \mathcal{M}_y$ for $\gamma_x = \gamma_y \neq 0$ [$\mathcal{M}_{xy} \mathcal{H}(k_x, k_y) \mathcal{M}_{xy}^{-1} = \mathcal{H}(k_y, k_x)$], and mirror-rotation II $\mathcal{M}_{x\bar{y}} = C_4 \mathcal{M}_x$ for $\pm \gamma_x = \mp \gamma_y \neq 0$ [$\mathcal{M}_{x\bar{y}} \mathcal{H}(k_x, k_y) \mathcal{M}_{x\bar{y}}^{-1} = \mathcal{H}(-k_y, -k_x)$], sublattice/ chiral symmetry $\mathcal{S} = \tau_y \sigma_0 s_0$ [$\mathcal{S}\mathcal{H}(\mathbf{k}) \mathcal{S}^{-1} = -\mathcal{H}(\mathbf{k})$].

(ロ) (同) (E) (E) (E) (E)

Energy spectrum with PBC and OBC

The EPs $m_0^{s,\pm} = s(t_x + t_y) \pm \sqrt{\gamma_x^2 + \gamma_y^2}$ for $(k_x, k_y) = (0,0)$ and (π, π) with $s = \pm$ are marked by black lines within which $\operatorname{Re}[E(k)]$ associated with $\mathcal{H}(\mathbf{k})$ remains gapless as designated by yellow-shaded region

イロン 不同 とくほど 不同 とう

臣

Gap closing lines PRL 123, 066404 (2019)

How is the bulk boundary correspondence modified?

- Hermitian $\mathcal{H}^{H}(\mathbf{k})$: topologial phase appears $m_0 < |t_x + t_y|$, trivial phase appears $m_0 > |t_x + t_y|$
- ▶ Non-Hermitian $\mathcal{H}(\mathbf{k})$: $m_0^{s,\pm} = s(t_x + t_y) \pm \sqrt{\gamma_x^2 + \gamma_y^2} \rightarrow \text{topogical gapped}$ phase from PBC $m_0^{-,+} < m_0 < m_0^{+,-}$
- ▶ Non-Bloch momentum $\mathbf{k} \to \mathbf{k'} + i\beta$ with $\beta_i = \gamma_i / \lambda_i$ (i = x, y) to get satisfy bulk-boundary correspondence for small γ
- Topological gapped phase from OBC sustains for $m > m_0^{+,-}$ and $m < m_0^{-,+}$

ロトメポトメミトメミト・ミ

Breaking and recovery of bulk-boundary correspondence

Can we engineer non-Hermitian exceptional HOTSC phase?

The topologial phase (PBC and OBC) boundary with Non-Bloch momentum $\mathbf{k} \rightarrow \mathbf{k'} + i\beta$ is $m = \pm (t_x + t_y + \gamma_x^2/2\lambda_x^2 + \gamma_y^2/2\lambda_y^2)$

Non-Hermiticity induced topological phase that exists beyond $m = \pm (t_x + t_y)$.

ロトメポトメミトメミト・ミ

Another consequence of non-Bloch momentum: Skin modes

Non-Bloch form of momentum in non-Hermitian system leads to skin modes which are otherwise Bloch band for Hermitian system

イロト イヨト イヨト イヨト

Disorder stability

► The onsite disorder potential of the form $V(i,j) = \sum_{i,j} V_{ij} \Gamma_3$ that preserves the chiral and mirror-rotation I symmetry. Here, V_{ij} is randomly distributed in the range $V_{ij} \in \left[-\frac{w}{2}, \frac{w}{2}\right]$

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

Breaking of mirror-rotation symmetries and localization at multiple corners

- Mirror rotation I with $\mathcal{M}_{xy} = C_4 \mathcal{M}_y$ constraints single corner localization: $\mathcal{M}_{xy} \mathcal{H}(k_x, k_y) \mathcal{M}_{xy}^{-1} = \mathcal{H}(k_y, k_x)$, if $\gamma_x = \gamma_y \neq 0$ while $t_x = t_y$ and $\lambda_x = \lambda_y$
- Mirror rotation II with $\mathcal{M}_{x\bar{y}} = C_4 \mathcal{M}_x$ constraints single corner localization: $\mathcal{M}_{x\bar{y}} \mathcal{H}(k_x, k_y) \mathcal{M}_{x\bar{y}}^{-1} = \mathcal{H}(-k_y, -k_x)$, if $\pm \gamma_x = \mp \gamma_y \neq 0$ while $t_x = t_y$ and $\lambda_x = \lambda_y$,

Sublattice/ chiral symmetry with $S = \tau_y \sigma_0 s_0$ is preserved: $S\mathcal{H}(\mathbf{k})S^{-1} = -\mathcal{H}(\mathbf{k}).$

s-wave NH HOTSC

► The Hamiltonian is given by $\mathcal{H}(\mathbf{k}) = \mathbf{N} \cdot \mathbf{\Gamma}$; where, $\mathbf{N} = \{\lambda_x \sin k_x + i\gamma_x, \lambda_y \sin k_y + i\gamma_y, m_0 - t_x \cos k_x - t_y \cos k_y, \Delta_s, \Lambda(\cos k_x - \cos k_y)\}, \mathbf{\Gamma} = \{\tau_z \sigma_x s_z, \tau_z \sigma_y s_0, \tau_z \sigma_z s_0, \tau_x \sigma_0 s_0, \tau_0 \sigma_x s_x\}$. The last term proportional to Λ represents C_4 symmetry breaking Wilson-Dirac mass term.

< ∃⇒

How to characterize the MZMs?

Wannier center, polarization and Wilson loop PRB 47, 1651(R) (1993),

PRB 26, 4269 (2016)

- ▶ Projection of the position operator in the occupied subspace ⇒ Polarization $P_x = e \sum_{n=1}^{N} \langle W_n(j) | x | W_n(j) \rangle$ corresponds to sum of the Wannier centers of the occupied bands where $W_n(r - R_j)$ denotes the Wannier functions ⇒ $= -\text{Im}[\ln \prod_{j=0}^{J-1} \langle u_n(k_j) | u_n(k_{j+1}) \rangle]/(2\pi) + j$
- ► $W_{\alpha} = F_{\mathbf{k}+N\Delta k_{\alpha}} \dots F_{\alpha,\mathbf{k}}$ with $[F_{\alpha,\mathbf{k}}]_{mn} = \left\langle u_{\mathbf{k}+\Delta k_{\alpha}}^{m} \middle| u_{\mathbf{k}}^{n} \right\rangle$, Wilson loop is unitary, eigenstates depend on the base point k, eigenvalues do not

▶ Projected position operator using the Bloch functions (eigenvalues) ⇒ Polarization (Wannier center), Polarization (Berry phase in the occupied sub-space) $p_x = -\frac{i}{2\pi} \text{Log Det} [W_{k+2\pi \leftarrow k}]$

Polarization ↔ Wannier center ↔ Wilson loop ↔ Berry phase

Example of FOT phase: $p_x = 1/2 \pmod{1}$ for 1D SSH model

(日) (四) (三) (三) (三)

Construction of static *n*th-order/ (nested)ⁿ Wilson loops

PRB 96, 245115 (2017)

Equibrium or Floquet stroboscopic and insensitive to gap

The position operator \hat{x} is projected onto occupied subspace \rightarrow first-order Wilson loop (Wannier bands and values) and first-order polarization

The position operator \hat{y} is **projected onto subspace associated with first-order Wannier bands** \rightarrow **second-order Wilson loop** and second-order polarization $\downarrow \downarrow$ The position operator \hat{z} is **projected onto subspace associated with second-order**

Wannier bands \rightarrow **third-order Wilson loop** and third-order polarization

- ► FSOTSC in 2D: $p_y^{\pm \nu_x} = \frac{1}{N_x} \sum_{k_x} \nu_y^{\pm \nu_x}(k_x) = 1/2 \pmod{1}$ while first-order is gapped
- ► FTOTSC in 3D: $p_z^{\pm \nu_y^{\pm \nu_x}} = \frac{1}{N_x N_y} \sum_{k_x, k_y} \nu_z^{\pm \nu_y^{\pm \nu_x}} = 1/2 \pmod{1}$ while first-order and second-order are gapped out

(ロ) (同) (E) (E) (E) (E)

Second-order Wilson loop: SOT

First-order Wilson loop: FOT

Image: A match the second s

▲ 臣 ▶ 臣 • • ○ � @

Bi-orthogonalized version for NH system

- The bi-orthogonalization guarantees $\sum_{n} |\Psi_{n}^{R}(\mathbf{k}')\rangle \langle \Psi_{n}^{L}(\mathbf{k}')| = \mathbb{I}$ and $\langle \Psi_{n}^{L}(\mathbf{k}')|\Psi_{n}^{R}(\mathbf{k}')\rangle = \delta_{mn}$; where, *n* runs over all the energy levels irrespective of their occupations.
- ▶ The non-Bloch form of the momentum $\mathbf{k'} \rightarrow \mathbf{k'}$ in $\mathcal{H}(\mathbf{k})$ i.e., $\mathcal{H}(\mathbf{k}) \rightarrow \mathcal{H'}(\mathbf{k'})$.
- Polarization along $x \to \text{first-order Wilson loop} \to \text{Wannier Hamiltonian}$ $\log W_{x,\mathbf{k'}} \to \text{Wannier spectrum } \pm \nu_x$ and Wannier functions $|\nu_{x,\mu}^{\text{R}}(\mathbf{k'})\rangle$ and $\langle \nu_{x,\mu}^{\text{L}}(\mathbf{k'})|$

► Polarization along the perpendicular *y*-direction by projecting onto each $\pm \nu_x$ branch \rightarrow nested Wilson loop $W_{y,\mathbf{k}'}^{\pm\nu_x} = F_{y,\mathbf{k}'+(L_y-1)\Delta_y\mathbf{e}_y}^{\pm\nu_x} \cdots F_{y,\mathbf{k}'+\Delta_y\mathbf{e}_y}^{\pm\nu_x} F_{y,\mathbf{k}'}^{\pm\nu_x}$ where $\left[F_{y,\mathbf{k}'}^{\pm\nu_x}\right]_{\mu_1\mu_2} = \sum_{mn} \left[\nu_{x,\mu_1}^{\mathrm{L}}(\mathbf{k}' + \Delta_y\mathbf{e}_y)\right]_m^* \left[F_{y,\mathbf{k}'}\right]_{mn} \left[\nu_{x,\mu_2}^{\mathrm{R}}(\mathbf{k}')\right]_n$ with $\left[F_{y,\mathbf{k}'}\right]_{mn} = \langle \Psi_m^{\mathrm{L}}(\mathbf{k}' + \Delta_y\mathbf{e}_y) | \Psi_n^{R}(\mathbf{k}') \rangle$

► Nested Wannier Hamiltonian $\log W_{y,\mathbf{k}'}^{\pm\nu_{\chi}} \rightarrow \text{Wannier spectrum } \nu_{y,\mu'}^{\pm\nu_{\chi}}(k'_{\chi}) \rightarrow \text{nested bi-orthogonalized polarization} \left[\langle \nu_{y,\mu'}^{\pm\nu_{\chi}} \rangle = \frac{1}{L_{\chi}} \sum_{k'_{\chi}} \operatorname{Re} \left[\nu_{y,\mu'}^{\pm\nu_{\chi}}(k'_{\chi}) \right] \right]$

Consistency check: Bi-orthogonalized first-order polarization

• $M_x: \nu_x(k_y) \to -\nu_x(k_y)$, and $\nu_y^{\nu_x}(k_x) \to \nu_y^{-\nu_x}(-k_x)$; M_x causes the first-order branches to appear in pairs

• M_y : $\nu_x(k_y) \rightarrow \nu_x(-k_y)$, and $\nu_y^{\nu_x}(k_x) \rightarrow -\nu_y^{\nu_x}(k_x)$; M_y defines the shape of the first-order branches

The four-fold rotation C_4 and mirror rotations \mathcal{M}_{xy} , $\mathcal{M}_{x\bar{y}}$ interchange the branches, C_4 : $\nu_x(k_y) \to -\nu_y(k_x)$, and $\nu_y^{\nu_x}(k_x) \to \nu_x^{-\nu_y}(-k_y)$, \mathcal{M}_{xy} : $\nu_x(k_y) \to \nu_y(k_x)$, and $\nu_y^{\nu_x}(k_x) \to \nu_x^{\nu_y}(k_y) \mathcal{M}_{x\bar{y}}$: $\nu_x(k_y) \to -\nu_y(-k_x)$, and $\nu_y^{\nu_x}(k_x) \to -\nu_x^{-\nu_y}(-k_y)$.

How can one engineer the anomalous Floquet HOTSC phase for the NH case?

イロト イヨト イヨト イヨト

æ

Anomalous phases in Floquet physics Scientific reports 8, 2243 (2018)

・ロト ・回ト ・ヨト ・ヨト

How do we treat? Floquet theory PR 138, B979 (1965)

- Temporal analog of Bloch theorem for a time periodic Hamiltonian: H(t) = H(t + T)
- Wave function can be written in the Floquet basis: $|\Psi_j(t)\rangle = e^{-i\mu_j t} |\Phi_j(t)\rangle$, with $|\Phi_j(t+T)\rangle = |\Phi_j(t)\rangle$
- Wave-function of Schrödinger equation at the stroboscopic instant: $|\Psi(T)\rangle = \sum_{j} r_{j} e^{-i\mu_{j}T} |\Phi_{j}(0)\rangle$ with $r_{j} = \langle \Phi_{j}(0) | \Psi_{j}(0) \rangle$
- ► Time evolution operator: Floquet operator $U(T) = Te^{-i\int_0^T H(t)dt} = \sum_j e^{-i\mu_j T} |\Phi_j(0)\rangle \langle \Phi_j(0)| = exp(-iH_F T)$ where H_F is the Floquet Hamiltonian with eigenstates $|\Phi_j(0)\rangle$ and eigenvalue μ_j

・ロト ・回ト ・ヨト ・ヨト … ヨ

Dynamic generation of second-order TI (SOTI): Floquet SOTI PRB 103, 115308 (2021), PRB 106, L140303 (2022)

Periodically kick in the FOT mass term

$$V(t) = m_1 \Gamma_3 \sum_{r=1}^{\infty} \delta(t - r T)$$
 with $\Gamma_3 = \tau_z \sigma_z s_0$

$$U(\mathbf{k}, T) = \exp\left[-i\mathcal{H}_0(\mathbf{k})T\right] \exp\left[-im_1\Gamma_3\right]$$

 $\begin{array}{l} \blacktriangleright \hspace{0.1cm} H_{\rm HOTSC}^{\rm stat} = H_{\rm HOTSC}^{\rm stat} + m_1 \Gamma_3 \hspace{0.1cm} {\rm exhibit} \\ {\rm trivial \ gapped \ phase \ as} \\ m_0 > |t_x + t_y + \sqrt{\gamma_x^2 + \gamma_y^2}| \end{array}$

 $H_{\rm Flq}(\mathbf{k}) \approx \\ \mathcal{H}_0(\mathbf{k}) + \frac{m_1}{T} \Gamma_3 + m_1 \sum_{j=1,4}^{\neq 3} N_j \Gamma_{j1} \text{ and} \\ \text{renormalized mass term} \\ m'_0 = m_0 - t_x - t_y - \frac{\gamma_x^2}{2\lambda_x^2} - \frac{\gamma_y^2}{2\lambda_y^2} + \frac{m_1}{T}$

Floquet NH HOTSC

ヘロト 人間 とくほど 人間とう

э

Tuning the MCMs dynamically

・ロト ・回ト ・ヨト ・ヨト

æ

- Considering 2D NH TI, proximized with d-wave superconductivity, we show the emergence of NH SOTSC phase
- ► Breakdown of bulk-boundary correspondence for Bloch momenta → recovery of bulk-boundary correspondence with non-Bloch momenta
- MZMs are topologically characterized by the bi-orthogonal nested polarization

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

Floquet anomalous π **-mode** following the mass kick

Experimental connections: NH topology PRL 123, 165701 (2019)

Non-Hermitian SSH model using a finite silicon waveguide lattice leading to topological phase \rightarrow finite size effect of Hermitian system is overcome by the PT symmetric non-Hermitian terms such that topologial edge modes sustain

イロン イヨン イヨン

э

Experimental connections: Floquet HOT in acoustic system arXiv:2012.08847

Tanay Nag, BITS Pilani Hyderabad campus

SQMVS 2024, ICTS Bangalore

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Any questions ...?

Tanay Nag, BITS Pilani Hyderabad campus SQMVS 2024, ICTS Bangalore

イロン イヨン イヨン

臣