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Understanding the basic band structure Ind. J. Phys. 95, 2639 (2021)

Genus=0 Genus=1Non-adiabatic
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1D example of SSH chain Lecture Notes in Physics, 919 (2016)

SSH Hamiltonian

H =

(
0 v + we ik

v + we−ik 0

)
= dxσx + dyσy

with dx = v + w cos k, dy = w sin k
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Topological superconductor in 1D: p-wave spinless
Majorana chain Physics-Uspekhi 44, 131 (2001)

p-wave Hamiltonian: H = i
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Proximity induced topological superconductor PRL 100, 096407 (2008),

PRL 104, 040502 (2010), PRB 88, 155420 (2013)

I p-wave Kitaev chain
I Rashba nanowire (k2

x + kxσy ) + s-wave proximed SC + magnetic field (Ezσx )
⇒ emergent p-wave TSC in 1D

I Surface of TI + proximity induced s-wave SC + magnetic field ⇒ chiral TSC in
2D

I Helical spin chain + proximity induced s-wave SC ⇒ emergent p-wave TSC
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What is a higher-order topological (HOT) phase? Science 357, 61

(2017); PRB 96, 245115 (2017)

Symmetry broken

Symmetry restored
Lower order
topological phase 

Higher order
topological phase 

+
-

+
-

+

+

-

-

I nth-order topological phase in d dimensions is characterized by the existence of
nc = (d − n)-dimensional boundary modes

I Mutually anticommuting matrices with discrete Wilson-Dirac masses
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Let’s start with a 2D Hamiltonian PRB 100, 115403 (2019)

HOTI Hamiltonian: QSHI and perturbation

HQSHI = t1

2∑
j=1

Γj sin kj − t0Γ3

[
m −

2∑
j=1

cos kj
]

V = ∆ (cos kx − cos ky ) , HHOTI = HQSHI + VΓ4

with Γ1 = σ3τ1, Γ2 = σ0τ2, Γ3 = σ0τ3, Γ4 = σ1τ1 and (τ ,σ) ∈
(sublattice, spin)

I Connecting to construction method: t1

∑2
j=1 Γj sin kj in HQSHI

represent m = 2 terms −→ t0Γ3

[
m −

∑2
j=1 cos kj

]
is p = 1 term as

first-order mass yielding n = 1-order regular topological phase −→
VΓ4 is p = 2 term as Wilson-Dirac mass yielding
n = 2-order HOT phase
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First-order topological phases PRB 100, 115403 (2019)
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I Gap vanishes at k = (0, 0), (π, π) when m = ±2 and k = (π, 0),
(0, π) when m = 0.
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SOTI in 2D PRB 100, 115403 (2019)

HOTI Hamiltonian: QSHI and perturbation

HQSHI = t1

2∑
j=1

Γj sin kj − t0Γ3

[
m −

2∑
j=1

cos kj
]

V = ∆ (cos kx − cos ky ) , HHOTI = HQSHI + VΓ4

with Γ1 = σ3τ1, Γ2 = σ0τ2, Γ3 = σ0τ3, Γ4 = σ1τ1 and (τ ,σ) ∈
(sublattice, spin)
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Higher-order topological superconductor (HOTSC) PRB 98, 165144

(2018), PRL 124, 227001 (2020), PRB 104, 134508 (2021), PRB 104, L180503 (2021)

I QSHI with SOC + proximity induced
s-wave SC + uniaxial magnetic field ⇒
corner modes in 2D (TRS broken)

I QSHI with SOC + proximity induced
d-wave SC ⇒ Corner modes in 2D (TRS
preserved)

I Hopping + p + id-wave SC ⇒ Corner
modes in 2D (C4T preserved)

I 3D TI + proximity induced s-wave SC +
magnetic field + Wilson-Dirac mass
terms ⇒ hinge and corner modes in 3D

I Hopping + SOC+ d1 + id2-wave SC ⇒
Corner modes in 3D
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Example: static HOTSC PRB 104, 134508 (2021)

I Second-order Wilsonian mass term:
dx2−y2 SC gap term
∆1(cos kx − cos ky )τx (8 MHMs)
or Λ1(cos kx − cos ky )µxσy (16
MHMs) in the TI + s-wave
proximed SC

I Third-order Wilsonian mass term:
d3z2−r2 SC gap term
∆2(2 cos kz − cos kx − cos ky )τy (8
MCMs) or
Λ1(2 cos kz − cos kx − cos ky )µz

(16 MCMs) in the TI + s-wave
proximed SC
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Microscopics to an effective non-Hermitian model

I Explicit presence of gain and loss terms (optical meta-materials)

I Interacting systems (electron-electron, electron-phonon) leading to
quasiparticles of finite lifetime i.e., H → H + Σ where self-energy Σ
is complex

I Quantum systems in contact with reservoir (Lindblad master
equation):

∂tρ(t) = Ltρ(t) = −i [H, ρ(t)] +
∑

j(Ljρ(t)L†j −
1
2{LjL

†
j , ρ(t)})

Redefining the Hamiltonian He = H − i
∑

jL†j Lj leads to

∂tρ(t) = Ltρ(t) = −i [Heρ(t)− ρ(t)H†e ] +
∑

j Ljρ(t)L†j where∑
j Ljρ(t)L†j is the jump term
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Non-Hermitian Hamiltonian: H 6= H†

H|ψR
n 〉 = E |ψR

n 〉, 〈ψL
n |H = E 〈ψL

n | ⇒ H†|ψL
n〉 = E∗|ψL

n〉

H = Jσx + iγe
4 σz − α

iγe
4 σ0 → PT-symmetric if α = 0
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Non-Hermitian degeneracies RMP 93, 15005 (2021)

I Two-level Hamiltonian
H(k) = d (k).σ + d0(k)σ0 with
d = dR + idI

I Hermitian case with dI = 0:

E± = ±
√

d2
x + d2

y + d2
z vanishes for

dx = 0, dy = 0, dz = 0 → three
constraints for a two band crossing

I Non-Hermitian case with dI 6= 0:
Complex-energy spectrum

E± = d0 ±
√

d2
R − d2

I + 2idR · dI

I Degeneracies occur more frequently when
d2
R − d2

I = 0 and dR · dI = 0 → two
constraints for a two band crossing
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Non-Hermitian topology and skin modes Front. Phys. 11 1123596 (2023)

Modified SSH model:

H =

(
0 t1 + t2e

ik

mt1 + nt2e
−ik 0

)
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Main questions

I Can we engineer non-Hermitian exceptional HOTSC phase using
d-wave paring?

I How is the bulk boundary correspondence modified? How to
characterize the MZMs?

I How can one engineer the anomalous Floquet HOTSC phase for the
NH case?
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Hermitian HOTSC model PRB 105, 155406 (2022)

Underlying model for our problem

HdD(k) =

(
HdD

TI (k)− µ ∆
∆∗ µ− T −1HdD

TI (−k)T

)
where Pauli matrices (σ, s, τ ) operate on the (sublattice/orbital, spin, particle-hole)
degrees of freedom

I For 2D: H2D
TI = (m − cos kx − cos ky )σz + sin kxσx sz + sin kyσy preserving TRS

T = isyK, Mx = σ0sx and My = σz sx and ∆ = ∆(cos kx − cos ky )σ0s0, PHS:
P = τyσx szK, CS: C = τzσx sy

I For 3D:
H3D
TI = (m − cos kx − cos ky − cos kz )σz + sin kxσx sx + sin kyσx sy + sin kzσx sz

preserving TRS T = isyK, Mx = σz sx , My = σz sy , Mz = σz sz and
∆ = ∆1(cos kx − cos ky )σ0s0 + i∆2(2 cos kz − cos kx − cos ky )σ0s0, PHS:
P = τyσy syK, CS: C = τzσy
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Non-Hermitian SOTSC model PRB 105, 155406 (2022)

Underlying model for our problem

H(k) =

(
HTI(k)− µ ∆(cos kx − cos ky )σ0s0

∆(cos kx − cos ky )σ0s0 µ− U−1
T H∗TI(−k)UT

)
,

I Ingredients: HTI(k)=
(λx sin kx + iγx )σx sz + (λy sin ky + iγy )σy s0 + (m0 − tx cos kx − ty cos ky )σz s0 =
HH
TI(k) + iγxσx sz + iγyσy s0

I H(k) preserves ramified (time-reversal symmetry) TRS:

UTH∗TI(k)U−1
T = HTI(−k) with UT = σ0sy

I H(k) preserves ramified (particle-hole symmetry) PHS†:

UCH∗TI(k)U−1
C = −HTI(−k) with UC = σx s0

I HH
TI(k) preserves TRS T = iUT K and PHS C = UCK
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The model and crystalline symmetries

The compact form H(k) = N · Γ; where, N =
{λx sin kx+iγx , λy sin ky+iγy ,m0−tx cos kx−ty cos ky ,∆(cos kx−cos ky )},
Γ = {τzσxsz , τzσy s0, τzσzs0, τxσ0s0} with the Pauli matrices τ , σ, and s

act on PH (e, h), orbital (α, β), and spin (↑, ↓) degrees of freedom,
respectively.

I For tx = ty , λx = λy , and |γx | = |γy | 6= 0, H(k) breaks the
following crystalline symmetries four-fold rotation with respect to z ,
C4 = τze

− iπ
4 σz sz , mirror-reflection along x , Mx = τxσxs0 and

mirror-reflection along y , My = τxσy s0 while HH(k) respects the
above symmetries

I H(k) and HH(k) both preserve mirror-rotation I Mxy = C4My for
γx = γy 6= 0 [MxyH(kx , ky )M−1

xy = H(ky , kx)], and mirror-rotation
II Mxȳ = C4Mx for ±γx = ∓γy 6= 0
[MxȳH(kx , ky )M−1

xȳ = H(−ky ,−kx)], sublattice/ chiral symmetry

S = τyσ0s0 [SH(k)S−1 = −H(k)].
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Energy spectrum with PBC and OBC

The EPs ms,±
0 = s(tx + ty )±

√
γ2
x + γ2

y for (kx , ky ) = (0, 0) and (π, π) with s = ±
are marked by black lines within which Re[E(k)] associated with H(k) remains
gapless as designated by yellow-shaded region
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Gap closing lines PRL 123, 066404 (2019)

How is the bulk boundary correspondence modified?

I Hermitian HH(k): topologial phase appears m0 < |tx + ty |, trivial phase
appears m0 > |tx + ty |

I Non-Hermitian H(k): ms,±
0 = s(tx + ty )±

√
γ2
x + γ2

y → topogical gapped

phase from PBC m−,+0 < m0 < m+,−
0

I Non-Bloch momentum k→ k′ + iβ with βi = γi/λi (i = x , y) to get satisfy
bulk-boundary correspondence for small γ

I Topological gapped phase from OBC sustains for m > m+,−
0 and m < m−,+0
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Breaking and recovery of bulk-boundary correspondence

Can we engineer non-Hermitian exceptional HOTSC phase?

I The topologial phase (PBC and OBC) boundary with Non-Bloch momentum
k→ k′ + iβ is m = ±(tx + ty + γ2

x/2λ2
x + γ2

y/2λ2
y )

I Non-Hermiticity induced topological phase that exists beyond m = ±(tx + ty ).
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Another consequence of non-Bloch momentum: Skin
modes

I Non-Bloch form of momentum in non-Hermitian system leads to skin modes
which are otherwise Bloch band for Hermitian system
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Disorder stability

I The onsite disorder potential of the form V (i , j) =
∑

i,j VijΓ3 that preserves the
chiral and mirror-rotation I symmetry. Here, Vij is randomly distributed in the
range Vij ∈

[
−w

2
, w

2

]
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Breaking of mirror-rotation symmetries and localization at
multiple corners

I Mirror rotation I with Mxy = C4My constraints single corner localization:

MxyH(kx , ky )M−1
xy = H(ky , kx ), if γx = γy 6= 0 while tx = ty and λx = λy

I Mirror rotation II with Mxȳ = C4Mx constraints single corner localization:

MxȳH(kx , ky )M−1
xȳ = H(−ky ,−kx ), if ±γx = ∓γy 6= 0 while tx = ty and

λx = λy ,

I Sublattice/ chiral symmetry with S = τyσ0s0 is preserved:
SH(k)S−1 = −H(k).
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s-wave NH HOTSC

I The Hamiltonian is given by H(k) = N · Γ; where, N =
{λx sin kx + iγx , λy sin ky + iγy ,m0− tx cos kx − ty cos ky ,∆s ,Λ(cos kx −cos ky )},
Γ = {τzσx sz , τzσy s0, τzσz s0, τxσ0s0, τ0σx sx}. The last term proportional to Λ
represents C4 symmetry breaking Wilson-Dirac mass term.
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Topologial invariant: bi-orthogolalized nested polarization

How to characterize the MZMs?
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Wannier center, polarization and Wilson loop PRB 47, 1651(R) (1993),

PRB 26, 4269 (2016)

I Projection of the position operator in the occupied subspace ⇒ Polarization
Px = e

∑N
n=1〈Wn(j)|x |Wn(j)〉 corresponds to sum of the Wannier centers of the

occupied bands where Wn(r − Rj ) denotes the Wannier functions ⇒
= −Im[lnΠJ−1

j=0 〈un(kj )|un(kj+1)〉]/(2π) + j

I Wα = Fk+N∆kα . . .Fα,k with [Fα,k]mn =
〈
umk+∆kα

∣∣∣ unk〉, Wilson loop is

unitary, eigenstates depend on the base point k, eigenvalues do not

I Projected position operator using the Bloch functions (eigenvalues) ⇒
Polarization (Wannier center), Polarization (Berry phase in the occupied
sub-space) px = − i

2π
Log Det [Wk+2π←k ]

I Polarization ↔ Wannier center ↔ Wilson loop ↔ Berry phase

I Example of FOT phase: px = 1/2 (mod 1) for 1D SSH model
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Construction of static nth-order/ (nested)n Wilson loops
PRB 96, 245115 (2017)

                                Equlibrium or Floquet stroboscopic and   insensitive to gap     

                  The position operator  is projected onto occupied subspace  first-order Wilson 
                         loop (Wannier bands and values) and first-order polarization 
                                                                          
                        The position operator  is projected onto subspace associated with first-order 
                         Wannier bands    second-order Wilson loop  and second-order polarization 
                                                                         
                   The position operator  is projected onto subspace associated with  second-order 
                           Wannier bands   third-order Wilson loop and  third-order polarization 

I FSOTSC in 2D: p±νxy = 1
Nx

∑
kx
ν±νxy (kx) = 1/2(mod 1) while

first-order is gapped

I FTOTSC in 3D: p
±νy±νx

z = 1
NxNy

∑
kx ,ky

ν
±ν±νx

y
z = 1/2(mod 1) while

first-order and second-order are gapped out
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Comparison with first-order PRB 96, 245115 (2017)

Second-order Wilson loop: SOT First-order Wilson loop: FOT
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Bi-orthogonalized version for NH system

I The bi-orthogonalization guarantees
∑

n |ΨR
n (k′)〉〈ΨL

n (k′)| = I and
〈ΨL

n (k′)|ΨR
n (k′)〉 = δmn; where, n runs over all the energy levels irrespective of

their occupations.

I The non-Bloch form of the momentum k′ → k′ in H(k) i.e., H(k)→H′(k′).

I Polarization along x → first-order Wilson loop → Wannier Hamiltonian
logWx,k′ → Wannier spectrum ±νx and Wannier functions |νRx,µ(k′)〉 and

〈νLx,µ(k′)|

I Polarization along the perpendicular y -direction by projecting onto each ±νx
branch → nested Wilson loop W±νx

y,k′ = F±νx
y,k′+(Ly−1)∆yey

· · ·F±νx
y,k′+∆yey

F±νx
y,k′

where
[
F±νx
y,k′

]
µ1µ2

=
∑

mn

[
νLx,µ1

(k′ + ∆yey )
]∗
m

[
Fy,k′

]
mn

[
νRx,µ2

(k′)
]
n

with[
Fy,k′

]
mn

= 〈ΨL
m(k′ + ∆yey )|ΨR

n (k′)〉

I Nested Wannier Hamiltonian logW±νx
y,k′ → Wannier spectrum ν±νx

y,µ′ (k
′
x ) →

nested bi-orthogonalized polarization 〈ν±νx
y,µ′ 〉 = 1

Lx

∑
k′x

Re
[
ν±νx
y,µ′ (k

′
x )
]
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Consistency check: Bi-orthogonalized first-order
polarization

I Mx : νx (ky )→ −νx (ky ), and ννxy (kx )→ ν−νxy (−kx ); Mx causes the first-order
branches to appear in pairs

I My : νx (ky )→ νx (−ky ), and ννxy (kx )→ −ννxy (kx ); My defines the shape of the
first-order branches

I The four-fold rotation C4 and mirror rotations Mxy , Mxȳ interchange the

branches, C4: νx (ky )→ −νy (kx ), and ννxy (kx )→ ν
−νy
x (−ky ), Mxy :

νx (ky )→ νy (kx ), and ννxy (kx )→ ν
νy
x (ky ) Mxȳ : νx (ky )→ −νy (−kx ), and

ννxy (kx )→ −ν−νyx (−ky ).
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Floquet exceptional HOTSC

How can one engineer the anomalous Floquet HOTSC phase for
the NH case?
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Anomalous phases in Floquet physics Scientific reports 8, 2243 (2018)
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How do we treat? Floquet theory PR 138, B979 (1965)

I Temporal analog of Bloch theorem for a time periodic Hamiltonian:
H(t) = H(t + T )

I Wave function can be written in the Floquet basis:
|Ψj(t)〉 = e−iµj t |Φj(t)〉, with |Φj(t + T )〉 = |Φj(t)〉

I Wave-function of Schrödinger equation at the stroboscopic instant:
|Ψ(T )〉 = Σj rje

−iµjT |Φj(0)〉 with rj = 〈Φj(0)|Ψj(0)〉

I Time evolution operator: Floquet operator

U(T ) = T e−i
∫ T

0
H(t)dt = Σje

−iµjT |Φj(0)〉〈Φj(0)| = exp(−iHFT )
where HF is the Floquet Hamiltonian with eigenstates |Φj(0)〉 and
eigenvalue µj
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Dynamic generation of second-order TI (SOTI): Floquet
SOTI PRB 103, 115308 (2021), PRB 106, L140303 (2022)

Periodically kick in the FOT mass term

V (t) = m1Γ3

∞∑
r=1

δ (t − r T ) with Γ3 = τzσzs0

U(k,T ) = exp [−iH0(k)T ] exp [−im1Γ3]

0

0 1 2 3 4

t /T

I Hstat
HOTSC = Hstat

HOTSC + m1Γ3 exhibit
trivial gapped phase as

m0 > |tx + ty +
√
γ2
x + γ2

y |

I HFlq(k) ≈
H0(k) + m1

T Γ3 + m1

∑6=3
j=1,4 NjΓj1 and

renormalized mass term

m′0 = m0 − tx − ty − γ2
x

2λ2
x
− γ2

y

2λ2
y

+ m1

T
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Floquet NH HOTSC
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Tuning the MCMs dynamically
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Conclusion

I Considering 2D NH TI, proximized with d-wave
superconductivity, we show the emergence of NH SOTSC
phase

I Breakdown of bulk-boundary correspondence for Bloch momenta →
recovery of bulk-boundary correspondence with non-Bloch
momenta

I MZMs are topologically characterized by the bi-orthogonal nested
polarization

I Floquet anomalous π-mode following the mass kick
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Experimental connections: NH topology PRL 123, 165701 (2019)

I Non-Hermitian SSH model using a finite silicon waveguide lattice leading to
topological phase → finite size effect of Hermitian system is overcome by the
PT symmetric non-Hermitian terms such that topologial edge modes sustain
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Experimental connections: Floquet HOT in acoustic
system arXiv:2012.08847
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