
Montgomery’s conjecture on large values of Dirichlet

polynomials

In the early 1970s, Montgomery studied large values of Dirichlet

polynomials.

This problem is somewhat related to the restriction problem and

other problems in Fourier analysis.

Montgomery raised an interesting conjecture, but there has been

little progress since his work.

In this talk, we discuss what is known about the problem and the

issues that make it hard to go further.



Montgomery’s conjecture on Dirichlet polynomials

D(t) =
2NX

n=N+1

bne
it log n.

Conjecture. (Montgomery) If p � 2 and T � N, then

kDkLp([0,T ]) /
⇣
N + N1/2T 1/p

⌘
kbnk`1 .

Example 1. bn = 1. Then |D(t)| ⇠ N for |t|  1.

Example 2. bn = ±1 random. Then |D(t)| ⇠ N1/2
for most t.

Motivation: Estimates for the number of zeroes of Riemann zeta in

di↵erent parts of the critical strips. Distribution of primes in short

intervals.
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Part 1: Related questions in harmonic analysis

Montgomery’s question is related to several questions in restriction

theory.

We will now recall them.



General extension operators

µ a measure on Rd
or another abelian group.

Eµf := cf µ.

Problem: For a given µ, estimate the best constant C in

kEµf kLp  Ckf kLq .

Example (Stein): µ is surface measure on Sd�1
.

D(t) =
P2N

n=N+1 bne
it log n.

µ =
P2N

n=N+1 �log n.
g(log n) = bn.
Then D = Eµg .
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Random extension operators

ZT := Z/TZ.
A ⇢ ZT with |A| = N.

g : A ! C.
EAg(x) :=

P
a2A g(a)e(axT ).

Theorem (Bourgain, late 80s). If A is a random subset of ZT with

|A| = N, then with high probability

kEAgk`p(ZT ) .
�
N1/2

+ T 1/p
�
kgk`2 

�
N + N1/2T 1/p

�
kgk`1 .

Compare with Montgomery

D(t) =
P2N

n=N+1 bne
it log n.

Conjecture. kDkLp([0,T ]) /
�
N + N1/2T 1/p

�
kbnk`1 .
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Random extension operators

Theorem (Bourgain, late 80s). If A is a random subset of ZT with

|A| = N, then with high probability

kEAgk`p(ZT ) .
�
N1/2

+ T 1/p
�
kgk`2 

�
N + N1/2T 1/p

�
kgk`1 .

Compare with Montgomery

D(t) =
P2N

n=N+1 bne
it log n.

Conjecture. kDkLp([0,T ]) /
�
N + N1/2T 1/p

�
kbnk`1 .

I Same inequality. Sharp because of same examples.

I But Bourgain’s proof doesn’t give any information about any

particular set A. Open problem to give explicit examples of A.



Part 2: Methods

Next we describe some of the methods used to prove Lp estimates

for the Montgomery problem and more generally for extension

operators EA.

We are looking for implications of the form:

Condition about A ! Lp bounds for EA.

Problem: Given a set A ⇢ ZT which is secretly a random set of

size N, what Lp bounds for EA can we prove in polynomial time?

What we know about Montgomery’s problem is very similar to

what we know about this problem.

I’ll describe the methods in the context of a set A ⇢ ZT . They

apply equally well to the Montgomery problem.
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Orthogonality

Recall

A ⇢ ZT with |A| = N.

g : A ! C.
EAg(x) :=

P
a2A g(a)e(axT ).

Orthogonality: kEAgk2`2(ZT )
= Tkgk2`2 .

The T is a normalization because ke(axT )k2`2(ZT )
= T .

The proof is just that the characters e(axT ) are orthogonal on ZT .

For Dirichlet polynomials D(t) =
P2N

n=N+1 bne
it log n

,

the functions e it log n are approximately orthogonal on [0,T ] if

T � N.
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Even integer moments

Recall EAg(x) :=
P

a2A g(a)e(axT ).

Note
P

x2ZT
|EAg(x)|2s =

P
x2ZT

|EAg(x)s |2.

But EAg(x)s =
P

b2ZT

�P
a1+...+as=b g(a1)...g(as)

�
e(bxT ).

Define rs,A(b) = #{(a1, ..., as) 2 As
: a1 + ...+ as = b}.

Condition 1: krs,Ak`1 / Ns/T .

I True for a random set A with high prob.

I Checkable in polynomial time.

I A version of this is true for A = {log n}2Nn=N+1.

Proposition. Condition 1 ! kEAgkL2s(ZT ) /
⇣
N

1
2 + T

1
2s

⌘
kgk`2 .
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Even integer moments

Because of the trick on the last slide, even integer moments are

better understood than other moments in many problems.

Montgomery’s conjecture is proven when p is an even integer and

open in every other case.

Bourgain’s theorem was proven for even integer p long before his

work.

When p is an even integer, there are explicit sets A ⇢ ZT with

|A| ⇠ N and

kEAgkLp(ZT ) . (N1/2
+ T 1/p

)kgk`2 .



Large value estimates

Lp estimates are closely related to estimates for superlevel sets.

W�f := {x : |f (x)| > �}.



Montgomery’s large value estimate

Recall EAg(x) :=
P

a2A g(a)e(axT ).

EA1(x) :=
P

a2A e(axT ) = Â(x).

Condition 2: Â(0) = N and |Â(x)| / N1/2
for x 6= 0.

I True for random A with high prob.

I Checkable in polynomial time.

I A version of this is conjectured for Dirichlet polynomials. But

the proven bounds are weaker:

Theorem. (Montgomery) If A obeys condition 2

and if � > N1/4+✏kgk`2
then |W�(EAg)| / N

�2 kgk2`2 .
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Theorem. (Montgomery) If A obeys condition 2

and if � > N1/4+✏kgk`2
then |W�(EAg)| / N

�2 kgk2`2 .

Remark. The conclusion is very strong.

If we knew the conclusion for all � > N✏kgk`2 ,
then it would be even stronger than Montgomery’s conjecture from

Slide 2.

BUT, if � < N1/4kgk`2 , the theorem tells us nothing about W�.



TT ⇤
arguments

Montgomery proved his large value estimate using a TT ⇤
-type

argument.

This technique is somewhat similar to the proof of Tomas-Stein

theorem in restriction theory, which was done a little bit later.

Recall EAg(x) :=
P

a2A g(a)e(axT ).

For W ⇢ ZT , define

EA,W g(x) = 1W (x)EA(x).

Key ingredient: estimate kEA,W k22!2 = kEA,WE ⇤
A,W k2!2.
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Key ingredient: estimate kEA,W k22!2 = kEA,WE ⇤
A,W k2!2.

EA,WE ⇤
A,W is a matrix with rows and columns indexed by W .

The (x1, x2) entry is Â(x1 � x2). Under condition 2:

I Diagonal entries are N = |A|.
I O↵ diagonal entries have norm |Â(x1 � x2)|  C✏N1/2+✏

.
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A,W k2!2  N + C✏|W |N1/2+✏
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If blue factor is at most (1/2)�2
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(1/2)�2|W |  Nkgk2`2 and so |W | . N
�2 kgk2`2 .
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Limits of our knowledge

Recall D(t) =
P2N

n=N+1 bne
it log n

. Suppose |bn|  1 for all n.

Set T = N3/2
.

Proposition. |WN3/4(D) \ [0,T ]| . N.

Can prove with L2 estimate or L4 estimate.

If � = N3/4+✏
, the large value estimate gives much stronger bound

fpr |W�(D) \ [0,T ]|.

Challenge: Prove |WN3/4(D) \ [0,T ]| . N1��
.

The proposition has an easy proof (just compute the L2 norm).

So I was surprised that it is di�cult to improve it by a tiny bit.

Then I learned about a cousin problem where the Proposition is

sharp.

PART 3
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Enemy scenario (Fu - G -Maldague-Cohen)

Define an = log n. Recall D(t) =
P2N

n=N+1 bne
itan .

Define ãn =
p

n
N . Define D̃(t) =

P2N
n=N+1 bne

itãn .

The sequences an and ãn look similar on the real line.

Conjecturally, all the previous discussion applies to both an and ãn.
In particular, conjecturally, an and ãn both satisfy versions of

Condition 1 and Condition 2 as long as T  N3/2
.



Enemy scenario (Fu - G -Maldague-Cohen)

Define an = log n. Recall D(t) =
P2N

n=N+1 bne
itan .

Define ãn =
p

n
N . Define D̃(t) =

P2N
n=N+1 bne

itãn .

Notice that the sequence {ãn}2Nn=N+1 contains the integers fromp
N to

p
2N.

We can use this to build an ‘enemy example’.



Enemy scenario (Fu - G -Maldague, Cohen)

Define an = log n. Recall D(t) =
P2N

n=N+1 bne
itan .

Define ãn =
p

n
N . Define D̃(t) =

P2N
n=N+1 bne

itãn .

Set bn =

(
N1/4 n = m2

0 else

Note D̃(t) = N1/4Pp
N<m

p
2N e

i mp
N
t
.

So |WN3/4D̃ \ [0,N3/2
]| ⇠ N. This matches upper bound from L2

norm.

~"57

---1 =
N32



Challenge problem vs. enemy scenario

Challenge problem.

Define an = log n. Recall D(t) =
P2N

n=N+1 bne
itan .

Suppose |bn|  1. (And so
P

n |bn|2  N.)

Try to prove |WN3/4(D) \ [0,N3/2
] < N1��

.

Enemy scenario.

Define ãn =
p

n
N . Define D̃(t) =

P2N
n=N+1 bne

itãn .

Set bn =

(
N1/4 n = m2

0 else
. Note

P2N
n=N+1 |bn|2 ⇠ N.

Then |WN3/4(D̃) \ [0,N3/2
] ⇠ N.

To beat enemy scenario bound, we must either:

1. Distinguish an from ãn.

2. Distinguish kbnk`1  1 from kbnk2`2  N.
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2. Distinguish kbnk`1  1 from kbnk2`2  N.



Wave packets

Wave packets have been a crucial tool for studying the extension

operator for submanifolds of Rn
.

There is also a version of wave packets for Dirichlet polynomials,

which goes back to Bourgain’s work on the Montgomery

conjecture in the late 80s.

We will recall this work.

But then we will argue that wave packets by themselves don’t give

enough information to make progress on the challenge problem.

PART 4



Recall extension operator for circle vs. Dirichlet

polynomials

Suppose µ is arc length measure on the unit circle S1
.

For g : S1 ! C, ES1g(x) :=
R
S1 g(!)e i!·xdµ(!).

Let A = {log n}2Nn=N+1.

For g : A ! C, define EAg(t) =
P

a2A g(a)e ita.
If we identify g(log n) = bn, then
EAg(t) = D(t) =

P2N
n=N+1 bne

it log n
.

Circle is not a straight line, leading to non-trivial estimates.

Analogously A is not an arithmetic progression, leading to

non-trivial estimates.
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Wave packets

Suppose µ is arc length measure on the unit circle S1
.

For g : S1 ! C, ES1g(x) :=
R
S1 g(!)e i!·xdµ(!).

Suppose ✓ ⇢ S1
arc. ✓̄ rectangular box around ✓. ✓̄⇤ the dual box.

Lemma (vague) If g✓ supported in ✓,
then |ES1g✓| ⇡ constant on translates of ✓̄⇤.

Q



Wave packets for Dirichlet polynomials

Let A = {log n}2Nn=N+1.

For g : A ! C, define EAg(t) =
P

a2A g(a)e ita.
Suppose I is the intersection of A with an interval.

Then I ⇢ Nr (Arith. Progr.) =: Ī .

Lemma (vague) If gI is supported on I ,
then |EAgI | ⇡ constant on translates of Ī ⇤.

↑

->

⑱ ③. ③ · . ACR

-

I I

-*
I



Montgomery and Kakeya

Theorem (Bourgain, late 80s): Montgomery conjecture implies

Kakeya conjecture.

Also, in Montgomery conjecture, need a factor of logT .

Proof idea. Can choose gI so that EgI is concentrated on a single

translate of Ī ⇤.
Arrange these translates to overlap a lot.

Analogous to Fe↵erman’s counterexample to ball multiplier.

Each Ī ⇤ is a fat AP.

Di↵erent I have APs with di↵erent common di↵erence.

This leads to an arithmetic variant of the Kakeya problem.

The arithmetic variant problem is probably harder than the original

Kakeya problem.

Bourgain also found a clever way to relate original Kakeya to

arithmetic Kakeya.



Montgomery and Kakeya 2

Wave packets were used to show that

restriction conjecture implies Kakeya conjecture.

But they have also been used to make a lot of progress on

restriction conj.

————–

Wave packets were used to show that

Montgomery conjecture implies Kakeya conjecture.

But can they lead to progess on Montgomery conjecture?

—————–

Fu, Maldague and I tried to adapt wave-packet based ideas from

restriction/decoupling to Montgomery conjecture.



Issue with wave packets for Montgomery

Wavepackets for circle

Suppose ✓ ⇢ S1
arc. ✓̄ rectangular box around ✓.

Key fact: |ES1g✓| ⇡ constant on translates of ✓̄⇤.
If diam(✓) ⌧ 1, then ✓̄ is “non-trivial”.

Wave packets for Dirichlet polynomials. Recall A = {log n}2Nn=N+1.

Suppose I ⇢ A. Ī smallest fat AP containing I
Key fact: |EAgI | ⇡ constant on translates of Ī ⇤.
If diam(I ) < N�1/2

, Ī is ”non-trivial”.

If diam(I ) > N�1/2
, Ī is just an interval.

⑭
I

⑱.e e B &

-
E

%ge o a

en
I I
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Wave packets are not enough to rule out enemy scenario

Issues:

1. A = {log n}2Nn=N+1 and Ã =
p

n
N have the same wave packets.

2. In enemy scenario, |EÃgI (t)| is contant for I with
diam(I ) < N�1/2

. There is no interesting behavior to try to bound.

But if diam(I ) > N�1/2
, then there are no wave packets to try to

use anyway.



Short Dirichlet polynomials

Dshort(t) =
PN+N1/2

n=N+1 bne itan , with an = log n OR an =
p

n
N .

In this range, there is a very close analogy between Dirichlet

polynomials and the extension operator for the circle or parabola.

Fu-G-Maldague proved analogues of restriction estimates,

decoupling, small cap decoupling, ...

Theorem (FGM): If N  T  N2
and p � 2, then

kDshortkLp([0,T ]) /
⇣
N

1
2N

1
2p + T

1
pN

1
4

⌘
kbnk`1 .

This bound is sharp for all T from N3/2
to N2

, for every p � 2.

BUT for original Montgomery, wave packets don’t distinguish D
from D̃ and don’t rule out enemy scenario.
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Fu-G-Maldague proved analogues of restriction estimates,

decoupling, small cap decoupling, ...

Theorem (FGM): If N  T  N2
and p � 2, then

kDshortkLp([0,T ]) /
⇣
N

1
2N

1
2p + T

1
pN

1
4

⌘
kbnk`1 .

This bound is sharp for all T from N3/2
to N2

, for every p � 2.

BUT for original Montgomery, wave packets don’t distinguish D
from D̃ and don’t rule out enemy scenario.


