INTERLUDE AN ASSESSMENT AND A WAY FORWARD

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

LEAST SQUARES FORMULATIONS - A CLASSIFICATION

- Linear vs nonlinear
- Ordinary vs weighted
- Orthogonal vs oblique projection
- Full rank vs rank deficient
- Over vs under determined
- Off-line vs on-line formulations

PATHWAYS TO THE SOLUTION

Two ways

- Directly minimize $f(x)$
- Iterative minimization
- Module-4.3
- Solve $\nabla_{x} f(x)=0$
- Check if $\nabla_{x}^{2} f(x)$ is SPD
- Matrix methods
- Module-4.2
- These methods are useful throughout the course

PATHWAYS TO SOLUTION - LINEAR CASE

- Off-line, ordinary linear, full rank formulation: Module - 3.1

$$
\left(H^{\top} H\right) x=H^{\top} Z, \quad\left(H^{\top} H\right)-S P D, m>n
$$

$$
\left(H H^{\top}\right) y=Z \text { and } x=H^{\top} y,\left(H H^{\top}\right)-S P D, m<n
$$

- Off-line, weighted, linear full rank formulation: Module - 3.1

$$
\left(H^{\top} W H\right) x=H^{\top} W Z, \quad\left(H^{\top} W H\right)-S P D, m>n
$$

$$
\left(H W H^{\top}\right) y=Z \text { and } x=W H^{\top} y,\left(H W H^{\top}\right)-S P D, m<n
$$

- W - SPD

PATH WAYS TO SOLUTION - LINEAR CASE

- Off-line, ordinary linear, rank-deficient formulation: Module - 3.2

$$
\begin{aligned}
& \left(H^{\top} H+\alpha I\right) x=H^{\top} Z, \quad\left(H^{\top} H+\alpha I\right)-S P D, \alpha>0, \quad m>n \\
& \left(H H^{\top}+\alpha I\right) y=Z \text { and } x=H^{\top} y, \quad\left(H H^{\top}+\alpha I\right)-S P D, \alpha>0, m<n
\end{aligned}
$$

- On-line, ordinary linear, full rank case: Module - 10

$$
\begin{aligned}
& \mathrm{X}^{*}(\mathrm{~m}+1)=\mathrm{X}^{*}(\mathrm{~m})+\mathrm{K}_{\mathrm{m}+1} \mathrm{~h}_{\mathrm{m}+1}\left[\mathrm{z}_{\mathrm{m}+1}-h_{m+1}^{T} \mathrm{x}^{*}(\mathrm{~m})\right] \\
& K_{m}^{-1}=\mathrm{H}^{\top} \mathrm{H} \\
& K_{m+1}^{-1}=K_{m}^{-1}+\mathrm{h}_{\mathrm{m}+1} \mathrm{~h}_{\mathrm{m}+1}^{\mathrm{T}}
\end{aligned}
$$

- $\mathrm{K}_{\mathrm{m}+1}$ is obtained by Sherman-Morrison-Woodbury formula

PATH WAYS TO SOLUTION - NONLINEAR CASE

- Off-line, ordinary, nonlinear case: Module - 3.4
- Solve a set of non-linear equations:

$$
\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\mathrm{D}_{\mathrm{x}}^{\mathrm{T}}(\mathrm{~h})[\mathrm{h}(\mathrm{x})-\mathrm{Z}]=0
$$

- On-line, ordinary, nonlinear case:
- Use first-order approximation to $\mathrm{h}(\mathrm{x})$

$$
\begin{aligned}
& {\left[D_{x_{c}}^{T}(h) D_{x_{c}}(h)\right]\left(x-x_{c}\right)=D_{x_{c}}^{T}(h) Z} \\
& x_{c}{ }^{\text {new }}<--x_{c}+\left(x-x_{c}\right)
\end{aligned}
$$

- Use second-order approximation to $\mathrm{h}(\mathrm{x})$
$\left[\mathrm{D}_{\mathrm{x}_{\mathrm{c}}}^{\mathrm{T}}(\mathrm{h}) \mathrm{D}_{\mathrm{x}_{\mathrm{c}}}(\mathrm{h})-\sum_{i=1}^{m} g_{i} \nabla_{x}^{2} \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{c}}\right)\right]\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)=\mathrm{D}_{\mathrm{x}_{\mathrm{c}}}^{\mathrm{T}}(\mathrm{h}) \mathrm{Z}$
$\mathrm{g}=\mathrm{z}-\mathrm{h}\left(\mathrm{x}_{\mathrm{c}}\right), \mathrm{x}_{\mathrm{c}}{ }^{\text {new }}<-\mathrm{x}_{\mathrm{c}}+\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)$

A WAY FORWARD - COMING ATTRACTIONS:

- Method of normal equations
- At its core, need methods for solving

$$
\left(H^{\top} H\right) x=H^{\top} Z \text { or }\left(H H^{\top}\right) y=Z
$$

- These are linear systems of the form

$$
A x=b
$$

with A as a symmetric positive definite (SPD) matrix

- A stand method to linear systems with SPD matrix is the Cholesky decomposition method - (Module 4.2)

ALTERNATE DECOMPOSITION (QR AND SVD) METHODS

- Instead of decomposing $\left(\mathrm{H}^{\top} \mathrm{H}\right)$ or $\left(\mathrm{HH}^{\top}\right)$ using cholesky method, we can directly decompose H that will simplify the form of the least squares solution
- QR - decomposition - (Module 4.2)
- (SVD) - (Module 4.2)

DIRECT MINIMIZATION OF $f(x)$

- Use well known iterative methods to directly minimize $\mathrm{f}(\mathrm{x})$: (Module 4.3):
- Gradient method
- Conjugate gradient method
- Quasi-Newton methods

REFERENCES

- This Module is a summary of Chapters 5-7 in LLD (2006)

