Module – 3.6

EXAMPLES OF STATIC INVERSE PROBLEMS

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, Ok – 73069, USA

varahan@ou.edu

THREE EXAMPLES

- Recovery of vertical temperature profile of the atmosphere from satellite radiance measurement – linear problem
- 1-D Spatial linear and 2-D bilinear interpolation linear problem
- A nonlinear least squares problem

VERTICAL TEMPERATURE PROFILE

• Problem is to retrieve the vertical temperature profile of the atmosphere from satellite radiance measurements

PROBLEM 1: SATELLITE RADIANCE – A MODEL

 Energy R_f received by a satellite at a frequency, f is related to the vertical temperature profile, T(Þ) at the pressure level Þ of the atmosphere through a formula given by

$$R_{f} = \exp[-\gamma_{f}] + \int_{0}^{1} T(\flat) W(\flat, \gamma_{f}) d\flat \qquad -> (1)$$

where $W(P, \gamma_f)$ is the weight function given by

$$W(\flat, \gamma_{\rm f}) = \flat \gamma_{\rm f} \exp(\gamma_{\rm f} \flat) \qquad -> (2)$$

and $\gamma_{\rm f}$ is a constant that depends on f

INPUT DATA

• The values of f and $\gamma_{\rm f}$ relevant to the problem are given by

i	1	2	3	4	5
f _i	0.9	1.0	1.1	1.2	1.3
γ_{f_i}	$\frac{1}{0.9}$	$\frac{1}{0.7}$	$\frac{1}{0.5}$	$\frac{1}{0.3}$	$\frac{1}{0.2}$

A DISCRETE MODEL

- The problem is to recover the function T(Þ) from a set of discrete measurements of R_{f_i} , $1 \le i \le 5 an$ underdetermined system
- We discretize the atmosphere by considering it as a 3-layered system

- T₀ is the temperature of the earth's surface
- T_i is the average temperature of the layer i, $1 \le i \le 3$
- Layers are bounded by isobaric surfaces at P = 1.0, 0.5, 0.2, and 0.0

A DISCRETE RELATION

Discretizing (1) for the frequency f_i, 1 ≤ i ≤ 5 using the 3-layer approximation:

$$Z_{i} = R_{f_{i}} - \exp[-\gamma_{f_{i}}]$$

$$= T_{1} \int_{0.5}^{1.0} \flat \gamma_{f_{i}} \exp[-\flat \gamma_{f_{i}}] d\flat = T_{1} a_{i1}$$

$$+ T_{2} \int_{0.2}^{0.5} \flat \gamma_{f_{i}} \exp[-\flat \gamma_{f_{i}}] d\flat + T_{2} a_{i2}$$

$$+ T_{3} \int_{0.0}^{0.2} \flat \gamma_{f_{i}} \exp[-\flat \gamma_{f_{i}}] d\flat + T_{3} a_{i3}$$

where the constant a_{i1} , a_{i2} , a_{i3} are the numerical values of the respective integrals obtained using the input data and by integration by parts

A LINEAR MODEL

• By collating the five linear relations between Z_i and T_1 , T_2 , T_3 , for each frequency f_i , $1 \le i \le 5$, we get a linear model:

$$\begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \\ Z_5 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \\ a_{51} & a_{52} & a_{53} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} \longrightarrow (3)$$

Or $Z = Hx, Z \in \mathbb{R}^5, H \in \mathbb{R}^{5\times3}, T \in \mathbb{R}^3$ -> (4)

A TWIN EXPERIMENT – COMPUTER PROJECT: GENERATE OBSERVATION

- Set $T_1 = 0.9$, $T_2 = 0.85$, $T_3 = 0.875$, set $\overline{x} = (T_1, T_2, T_3)^T$
- Evaluate a_{i1} , a_{i2} , a_{i3} for $1 \le i \le 5$ using the input data
- This gives the matrix H
- Compute $\overline{Z} \in \mathbb{R}^5$ using (3) as $\overline{Z} = H\overline{x}$
- Now generate an observation noise vector $V \in R^5$ such that V~ N(0, $\sigma^2 I_5$) where I_5 is the identity matrix of order 5 and σ^2 is the common variance of the radiance measurement
- Let $Z = \overline{Z} + V$, be the noisy observation

A TWIN EXPERIMENT – RECOVER T FROM NOISY OBSERVATION

- Using this noisy observation vector Z, now solve the overdetermined linear least squares problem Z = Hx and recover x
- Compute the $||x x_{LS}||_2$ and plot it as a function of σ^2 by repeatedly solving the problem for $\sigma^2 = 0.0, 0.1, 0.4, 0.8, 1.0, 1.2$
- Comment on your result

PROBLEM 2: SPATIAL INTERPOLATION – 1-D

• Consider a uniform spatial computational grid in 1-D with n points:

- The grid interval is assumed to be unity
- Let $x = (x_1, x_2, x_3, ..., x_n)^T \in \mathbb{R}^n$ be the unknown state vector
- Let z₁, z₂, ... z_m be the m observations of a scalar field variable such as, say temperature, concentration of a pollutant, to name a few, where m < n

DISTRIBUTION OF THE OBSERVATIONS

- Let the jth observation z_i be contained in the interval [i, i + 1]
- Referring to the Figure above, m = 4, n = 8, z₁ is in [2, 3], z₂ is in [4, 5], z₃ is in [5, 6] and z₄ is in [7, 8]
- <u>Problem</u>: Given Z ∈ R^m, find x ∈ Rⁿ where Z and x refer to the same quantities such as temperature, concentration, etc

A LINEAR INTERPOLATION

• Consider the interval [i, i + 1] containing z_i

- a_i is the distance of z_i from the left and i
- Relate x_i , x_{i+1} and z_i using a simple linear relation as:

$$\frac{z_j - x_i}{a_j} = \frac{x_{i+1} - z_j}{\overline{a_j}} \qquad \qquad -> (4)$$

• That is, $z_j = \overline{a_j} x_i + a_j x_{i+1}$ -> (5)

A LINEAR INVERSE PROBLEM: UNDERDETERMINED CASE

• Applying (5) to each of the m = 4 observations on the uniform grid with n = 8 points: $\begin{bmatrix} x_1 \end{bmatrix}$

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 0 & \overline{a}_1 & a_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \overline{a}_2 & a_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \overline{a}_3 & a_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \overline{a}_4 & a_4 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} -> (7)$$

- That is,1-D interpolation matrix H is such that row sum is 1 and Z = Hx
- We can solve for $x_{LS} = H^T(HH^T)^{-1}Z$
- We can estimate the temperature, concentration at the computational grid from the observation

SPATIAL INTERPOLATION – 2D

• Consider 2-D version with $n = n_x n_y$ grid points arranged in an n_x by n_y uniform grid:

- n_x= 4
 The left numbering is row major order scheme and the right is the standard (i, j) notation
- The node label k in row major order related to the (i, j) scheme as $k = (i 1)n_x + j$

• With $n_x = 4$, the node label 7 correspond to (2,3) since 7 = (2-1)*4+3¹⁵

A BILINEAR INTERPOLATION

 Let the jth observation z_j be contained in the 2D-grid box whose south-east corner node has label i:

• Again, by 1-D linear interpolation

$$\eta_{i} = \mathbf{x}_{i}\overline{b}_{j} + \mathbf{x}_{i+nx}\mathbf{b}_{j} \qquad -> (8)$$

$$\eta_{i+1} = \mathbf{x}_{i+1}\overline{b}_{j} + \mathbf{x}_{i+nx+1}\mathbf{b}_{j} \qquad -> (9)$$

A LINEAR INVERSE PROBLEM

• Hence $x_{LS} = H^{T}(HH^{T})^{-1}Z$ is the optimal estimate

PROBLEM 3: A NON LINEAR PROBLEM

• Con sider a three layered atmosphere

• Let
$$T(\flat) = x_1(\flat - x_2)^2 + x_3$$
, $0 \le \flat \le 1$ -> (9)

• Let
$$x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$$
 be the unknown

RELATION BETWEEN TEMPERATURE AND RADIANCE

• The observations are measures of overlapping fractions of the area under the curve:

$$\overline{Z_{ij}} = \int_{\mathsf{P}_i}^{\mathsf{P}_j} T(\mathsf{P}) d\mathsf{P} \qquad -> (10)$$

• The observations are given by

Þ _i	Þ _j	$\overline{Z_{ij}}$
0.00	0.25	0.21
0.20	0.50	0.15
0.30	0.70	0.51
0.6	0.80	0.11

THE MODEL EQUATIONS

• After integration:

$$\overline{Z_{ij}} = \int_{\mathsf{P}_i}^{\mathsf{P}_j} [x_1(\mathsf{P} - x_2)^2 + x_3] d\mathsf{P}$$
$$= \frac{x_1}{3} [(\mathsf{P}_j - \mathsf{x}_2)^3 - (\mathsf{P}_i - \mathsf{x}_2)^3] + x_3 (\mathsf{P}_j - \mathsf{P}_i)$$

• Referring to the Table in slide 19:

$$z_{1} = 0.21 = \frac{x_{1}}{3} [(0.25 - x_{2})^{3} - x_{2}^{3}] + 0.25x_{3} = h_{1}(x)$$

$$z_{2} = 0.15 = \frac{x_{1}}{3} [(0.5 - x_{2})^{3} - (0.2 - x_{2})^{3}] + 0.3x_{3} = h_{2}(x)$$

$$z_{3} = 0.51 = \frac{x_{1}}{3} [(0.7 - x_{2})^{3} - (0.3 - x_{2})^{3}] + 0.4x_{3} = h_{3}(x)$$

$$z_{2} = 0.11 = \frac{x_{1}}{3} [(0.8 - x_{2})^{3} - (0.6 - x_{2})^{3}] + 0.2x_{3} = h_{4}(x)$$

NONLINEAR INVERSE PROBLEM

• Let Z = h(x) with Z = $(z_1, z_2, z_3, z_4)^T$

 $h(x) = (h_1(x), h_2(x), h_3(x), h_4(x))^T$

- Compute r(x) = Z h(x)
- compute $f(x) = (Z h(x))^{T}(Z h(x))$
- Set $\nabla_x f(x) = 0$ and solve for x
- Check if $\nabla_x^2 f(x)$ is PD

APPROXIMATIONS

- Compute the Jacobian $D_x(h)$ and $D_x^2(h, y)$
- Build first and second order approximation to h(x)
- Solve the minimization arising from the first and second-order approximation

EXERCISES

- 11.1) (a) Compute the solution of $V_x f(x) = 0$ for the non linear problem described in slides 18-21, by using the nonlinear solvers in MATLAB
- (b) Evaluate the Hessian $\nabla_x^2 f(x)$ at each of the solution obtained in (a) and find the maxima and minima of f(x)
- 11.2) (a) Compute the Jacobian and the Hessian of h(x) described in slide 21
- (b) Using these develop a first order and second order approximation to f(x)
- (c) Starting from $x_c = (1, 1, 1)^T$, iterate twice and comment on the progress of your algorithm

REFERENCES

• This module follows closely chapters 5 through 7 of LLD (2006)