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THREE EXAMPLES
• Recovery of vertical temperature profile of the atmosphere from 

satellite radiance measurement – linear problem

• 1-D Spatial linear and 2-D bilinear interpolation – linear problem

• A nonlinear least squares problem 
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VERTICAL TEMPERATURE PROFILE

• Problem is to retrieve the vertical temperature profile of the 
atmosphere from satellite radiance measurements
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PROBLEM 1: SATELLITE RADIANCE – A MODEL

• Energy Rf received by a satellite at a frequency, f is related to the 
vertical temperature profile, T(Ϸ) at the pressure level Ϸ of the 
atmosphere through a formula given by

Rf = exp[-𝛾f] +  0
1
𝑇 Ϸ 𝑊(Ϸ, 𝛾f)dϷ -> (1)

where 𝑊(Ϸ, 𝛾f) is the weight function given by 

𝑊(Ϸ, 𝛾f) = Ϸ𝛾fexp(𝛾fϷ) -> (2)

and 𝛾f is a constant that depends on f
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INPUT DATA
• The values of f and 𝛾f relevant to the problem are given by
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i 1 2 3 4 5

fi 0.9 1.0 1.1 1.2 1.3

𝛾𝑓𝑖 1

0.9

1

0.7

1

0.5

1

0.3

1

0.2



A DISCRETE MODEL
• The problem is to recover the function T(Ϸ) from a set of discrete 

measurements of 𝑅𝑓𝑖 , 1 ≤ i ≤ 5 – an underdetermined system

• We discretize the atmosphere by considering it as a 3-layered system

• T0 is the temperature of the earth’s surface

• Ti is the average temperature of the layer i, 1 ≤ i ≤ 3

• Layers are bounded by isobaric surfaces at Ϸ = 1.0, 0.5, 0.2, and 0.0  
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A DISCRETE RELATION
• Discretizing (1) for the frequency fi, 1 ≤ i ≤ 5 using the 3-layer 

approximation:

Zi = 𝑅𝑓𝑖- exp[-𝛾𝑓𝑖]

= T1 0.5
1.0

Ϸ𝛾𝑓𝑖exp[−Ϸ𝛾𝑓𝑖]dϷ = T1ai1

+ T2 0.2
0.5

Ϸ𝛾𝑓𝑖exp[−Ϸ𝛾𝑓𝑖]dϷ + T2ai2

+ T3 0.0
0.2

Ϸ𝛾𝑓𝑖exp[−Ϸ𝛾𝑓𝑖]dϷ + T3ai3

where the constant ai1, ai2, ai3 are the numerical values of the   
respective integrals obtained using the input data and by integration    
by parts
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A LINEAR MODEL
• By collating the five linear relations between Zi and T1, T2, T3, for each 

frequency fi, 1 ≤ i ≤ 5, we get a linear model:
𝑍1
𝑍2
𝑍3
𝑍4
𝑍5

= 

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
𝑎41 𝑎42 𝑎43
𝑎51 𝑎52 𝑎53

𝑇1
𝑇2
𝑇3

-> (3)

Or Z = Hx, Z ∈ R5, H ∈ R5x3, T ∈ R3 -> (4)
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A TWIN EXPERIMENT – COMPUTER PROJECT: GENERATE 
OBSERVATION

• Set T1 = 0.9, T2 = 0.85, T3 = 0.875, set  x = (T1, T2, T3)T

• Evaluate ai1, ai2, ai3 for 1 ≤ i ≤ 5 using the input data

• This gives the matrix H 

• Compute  Z ∈ R5 using (3) as  Z = H x

• Now generate an observation noise vector V ∈ R5 such that V  ̴ N(0, 
σ2I5) where I5 is the identity matrix of order 5 and σ2 is the common 
variance of the radiance measurement

• Let Z =   Z + V, be the noisy observation
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A TWIN EXPERIMENT – RECOVER T FROM NOISY OBSERVATION

• Using this noisy observation vector Z, now solve the overdetermined 
linear least squares problem Z = Hx and recover x

• Compute the 𝑥 − 𝑥𝐿𝑆 2 and plot it as a function of σ2 by repeatedly 
solving the problem for σ2 = 0.0, 0.1, 0.4, 0.8, 1.0, 1.2

• Comment on your result 

10



PROBLEM 2: SPATIAL INTERPOLATION – 1-D
• Consider a uniform spatial computational grid in 1-D with n points:    

n = 8

• The grid interval is assumed to be unity 

• Let x = (x1, x2, x3, … xn)T ∈ Rn be the unknown state vector

• Let z1, z2, … zm be the m observations of a scalar field variable such as, 
say temperature, concentration of a pollutant, to name a few, where 
m < n 11

1 2 3 4 5 6 7 8
a1

z1

a2

z2

a3 a4

z3 z4



DISTRIBUTION OF THE OBSERVATIONS
• Let the jth observation zj be contained in the interval [i, i + 1]

• Referring to the Figure above, m = 4, n = 8, z1 is in [2, 3], z2 is in [4, 5], 
z3 is in [5, 6] and z4 is in [7, 8]

• Problem: Given Z ∈ Rm, find x ∈ Rn where Z and x refer to the same 
quantities such as temperature, concentration, etc
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A LINEAR INTERPOLATION
• Consider the interval [i, i + 1] containing zj

• aj is the distance of zj from the left and i

• Relate xi, xi+1 and zj using a simple linear relation as:
𝑧𝑗− 𝑥𝑖

𝑎𝑗
= 
𝑥𝑖+1− 𝑧𝑗

𝑎𝑗
-> (4)

• That is, zj=  𝑎𝑗xi+ ajxi+1 -> (5)
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xi

i aj

zj xi+1

i + 1
 𝑎𝑗

aj +  aj = 1



A LINEAR INVERSE PROBLEM: UNDERDETERMINED CASE

• Applying (5) to each of the m = 4 observations on the uniform grid 
with n = 8 points:

𝑧1
𝑧2
𝑧3
𝑧4

= 

0 𝑎1 𝑎1 0 0 0 0 0

0 0 0 𝑎2 𝑎2 0 0 0

0 0 0 0 𝑎3 𝑎3 0 0

0 0 0 0 0 0 𝑎4 𝑎4

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8

-> (7)

• That is,1-D interpolation matrix H is such that row sum is 1 and Z = Hx

• We can solve for xLS = HT(HHT)-1Z

• We can estimate the temperature, concentration at the 
computational grid from the observation 14

1        2          3           4 5           6 7 8



SPATIAL INTERPOLATION – 2D
• Consider 2-D version with n = nxny grid points arranged in an nx by ny

uniform grid:

• The left numbering is row major order scheme and the right is the 
standard (i, j) notation

• The node label k in row major order related to the (i, j) scheme as 

k = (i -1)nx + j

• With nx = 4, the node label 7 correspond to (2,3) since 7 = (2-1)*4+3 15

1 2 3 4

5 6 7 8

9
10 11 12

13

z2

14 15 16

z4

z3

z1

ny = 4

nx= 4
11 12 13 14

21 22 23 24

31
32 33 34

41 42 43 44

ny = 4

nx= 4



A BILINEAR INTERPOLATION

• Let the jth observation zj be contained in the 2D-grid box whose south-east 
corner node has label i:

• By 1-D linear interpolation:

zj = 𝑎j𝜂𝑖+ aj𝜂𝑖+1 -> (7)

• Again, by 1-D linear interpolation

𝜂𝑖 = xi𝑏j + xi+nxbj -> (8)

𝜂𝑖+1 = xi+1𝑏j + xi+nx+1bj -> (9) 16

i + nx
i + nx + 1

zj

aj 𝑎j

𝑏j

bj

i i + 1

𝜂𝑖+1
𝜂𝑖

aj + 𝑎j = 1

bj + 𝑏j = 1



A LINEAR INVERSE PROBLEM
• Substituting (8) – (9) in (7) and simplifying 

zj = 𝑎j𝑏jxi + aj𝑏jxi+1 + 𝑎jbjxi+nx + ajbjxi+nx+1 -> (10)

• By collating the four relations for the four observation in the 2-D and:

𝑧1
𝑧2
𝑧3
𝑧4

=

∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
⋮
𝑥8
𝑥9
⋮
𝑥12
𝑥13
⋮
𝑥16

• The 2-D interpolation matrix is such that the row sum is 1 and Z = Hx

• Hence xLS = HT(HHT)-1Z is the optimal estimate
17
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* - represents non-zero element based on (10)



PROBLEM 3: A NON LINEAR PROBLEM
• Con sider a three layered atmosphere

• Let T(Ϸ) = x1(Ϸ - x2)2 + x3 , 0 ≤ Ϸ ≤ 1                 -> (9)

• Let x = (x1, x2, x3)T ∈ R3 be the unknown
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Ϸ = 0.0

Ϸ = 0.2

Ϸ = 0.5

Ϸ = 0.0

T3 Layer 3

T2 Layer 2

T1 Layer 1
T0



RELATION BETWEEN TEMPERATURE AND RADIANCE

• The observations are measures of overlapping fractions of the area 
under the curve:

𝑍𝑖𝑗 =  Ϸ𝑖
Ϸ𝑗 𝑇 Ϸ 𝑑Ϸ -> (10)

• The observations are given by
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Ϸi Ϸj 𝑍𝑖𝑗

0.00 0.25 0.21

0.20 0.50 0.15

0.30 0.70 0.51

0.6 0.80 0.11



THE MODEL EQUATIONS
• After integration:

𝑍𝑖𝑗 =  
Ϸ𝑖

Ϸ𝑗
[𝑥1 Ϸ − 𝑥2

2 + 𝑥3]𝑑Ϸ

= 
𝑥1

3
[(Ϸj – x2)3 – (Ϸi – x2)3] + x3(Ϸj - Ϸi))

• Referring to the Table in slide 19:

z1 = 0.21 = 
𝑥1

3
[(0.25 – x2)3 - x2

3] + 0.25x3 = h1(x)

z2 = 0.15 = 
𝑥1

3
[(0.5 – x2)3 – (0.2 – x2)3] + 0.3x3 = h2(x)

z3 = 0.51 = 
𝑥1

3
[(0.7 – x2)3 – (0.3 – x2)3] + 0.4x3 = h3(x)

z2 = 0.11 = 
𝑥1

3
[(0.8 – x2)3 – (0.6 – x2)3] + 0.2x3 = h4(x)
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NONLINEAR INVERSE PROBLEM
• Let Z = h(x) with Z = (z1, z2, z3, z4)T

h(x) = (h1(x), h2(x), h3(x), h4(x))T

• Compute r(x) = Z – h(x)

• compute f(x) = (Z- h(x))T(Z – h(x))

• Set 𝛻xf(x) = 0 and solve for x

• Check if 𝛻𝑥
2f(x) is PD
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APPROXIMATIONS
• Compute the Jacobian Dx(h) and Dx

2(h, y)

• Build first and second order approximation to h(x)

• Solve the minimization arising from the first and second-order 
approximation
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EXERCISES
11.1) (a) Compute the solution of 𝛻𝑥f(x) = 0 for the non linear problem 
described in slides 18-21, by using the nonlinear solvers in MATLAB

(b) Evaluate the Hessian 𝛻𝑥
2f(x) at each of the solution obtained in (a) 

and find the maxima and minima of f(x)

11.2) (a) Compute the Jacobian and the Hessian of h(x) described in 
slide 21

(b) Using these develop a first order and second order approximation 
to f(x)

(c) Starting from xc = (1, 1, 1)T, iterate twice and comment on the 
progress of your algorithm
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REFERENCES
• This module follows closely chapters 5 through 7 of LLD (2006)
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