EXAMPLES OF STATIC INVERSE PROBLEMS

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

THREE EXAMPLES

- Recovery of vertical temperature profile of the atmosphere from satellite radiance measurement - linear problem
- 1-D Spatial linear and 2-D bilinear interpolation - linear problem
- A nonlinear least squares problem

VERTICAL TEMPERATURE PROFILE

- Problem is to retrieve the vertical temperature profile of the atmosphere from satellite radiance measurements

PROBLEM 1: SATELLITE RADIANCE - A MODEL

- Energy R_{f} received by a satellite at a frequency, f is related to the vertical temperature profile, $T(\mathrm{P})$ at the pressure level P of the atmosphere through a formula given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{f}}=\exp \left[-\gamma_{\mathrm{f}}\right]+\int_{0}^{1} T(\mathrm{p}) W\left(\mathrm{p}, \gamma_{\mathrm{f}}\right) \mathrm{dp} \tag{1}
\end{equation*}
$$

where $W\left(\mathrm{P}, \gamma_{\mathrm{f}}\right)$ is the weight function given by

$$
W\left(\mathrm{P}, \gamma_{\mathrm{f}}\right)=\mathrm{P} \gamma_{\mathrm{f}} \exp \left(\gamma_{\mathrm{f}} \mathrm{P}\right)
$$

-> (2)
and γ_{f} is a constant that depends on f

INPUT DATA

- The values of f and γ_{f} relevant to the problem are given by

i	1	2	3	4	5
f_{i}	0.9	1.0	1.1	1.2	1.3
$\gamma_{f_{i}}$	$\frac{1}{0.9}$	$\frac{1}{0.7}$	$\frac{1}{0.5}$	$\frac{1}{0.3}$	$\frac{1}{0.2}$

A DISCRETE MODEL

- The problem is to recover the function $T(P)$ from a set of discrete measurements of $R_{f_{i}}, 1 \leq \mathrm{i} \leq 5$ - an underdetermined system
- We discretize the atmosphere by considering it as a 3-layered system

		$\mathrm{P}=0.0$
$\mathrm{~T}_{3}$	Layer 3	$\mathrm{p}=0.2$
$\mathrm{~T}_{2}$	Layer 2	$\mathrm{p}=0.5$
$\mathrm{~T}_{0}$$\mathrm{T}_{1}$ Layer 1	$\mathrm{p}=1.0$	

- T_{0} is the temperature of the earth's surface
- T_{i} is the average temperature of the layer $i, 1 \leq i \leq 3$
- Layers are bounded by isobaric surfaces at $\mathrm{P}=1.0,0.5,0.2$, and 0.0

A DISCRETE RELATION

- Discretizing (1) for the frequency $f_{i}, 1 \leq i \leq 5$ using the 3-layer approximation:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i}} & =R_{f_{i}}-\exp \left[-\gamma_{f_{i}}\right] \\
& =\mathrm{T}_{1} \int_{0.5}^{1.0} \mathrm{P} \gamma_{f_{i}} \exp \left[-\mathrm{P} \gamma_{f_{i}}\right] \mathrm{dp}=\mathrm{T}_{1} \mathrm{a}_{\mathrm{i} 1} \\
& +\mathrm{T}_{2} \int_{0.2}^{0.5} \mathrm{P} \gamma_{f_{i}} \exp \left[-\mathrm{P} \gamma_{f_{i}}\right] \mathrm{dp}+\mathrm{T}_{2} \mathrm{a}_{\mathrm{i} 2} \\
& +\mathrm{T}_{3} \int_{0.0}^{0.2} \mathrm{P} \gamma_{f_{i}} \exp \left[-\mathrm{P} \gamma_{f_{i}}\right] \mathrm{dp}+\mathrm{T}_{3} \mathrm{a}_{\mathrm{i}}
\end{aligned}
$$

where the constant $\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i} 2}, \mathrm{a}_{\mathrm{i}}$ are the numerical values of the respective integrals obtained using the input data and by integration by parts

A LINEAR MODEL

- By collating the five linear relations between Z_{i} and $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, for each frequency $f_{j}, 1 \leq i \leq 5$, we get a linear model:

$$
\text { Or } Z=H x, Z \in R^{5}, H \in R^{5 \times 3}, T \in R^{3}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
Z_{1} \\
Z_{2} \\
Z_{3} \\
Z_{4} \\
Z_{5}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43} \\
a_{51} & a_{52} & a_{53}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right] \quad \rightarrow(3)} \\
& \mathrm{R}^{5}, \mathrm{H} \in \mathrm{R}^{5 \times 3}, \mathrm{~T} \in \mathrm{R}^{3} \quad \rightarrow(4)
\end{aligned}
$$

A TWIN EXPERIMENT - COMPUTER PROJECT: GENERATE OBSERVATION

- Set $T_{1}=0.9, T_{2}=0.85, T_{3}=0.875$, set $\bar{x}=\left(T_{1}, T_{2}, T_{3}\right)^{\top}$
- Evaluate $\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i} 2}, \mathrm{a}_{\mathrm{i} 3}$ for $1 \leq \mathrm{i} \leq 5$ using the input data
- This gives the matrix H
- Compute $\bar{Z} \in R^{5}$ using (3) as $\bar{Z}=H \bar{X}$
- Now generate an observation noise vector $V \in R^{5}$ such that $V \sim N(0$, $\sigma^{2} I_{5}$) where I_{5} is the identity matrix of order 5 and σ^{2} is the common variance of the radiance measurement
- Let $Z=\bar{Z}+V$, be the noisy observation

A TWIN EXPERIMENT - RECOVER T FROM NOISY OBSERVATION

- Using this noisy observation vector Z, now solve the overdetermined linear least squares problem $Z=H x$ and recover x
- Compute the $\left\|x-x_{L S}\right\|_{2}$ and plot it as a function of σ^{2} by repeatedly solving the problem for $\sigma^{2}=0.0,0.1,0.4,0.8,1.0,1.2$
- Comment on your result

PROBLEM 2: SPATIAL INTERPOLATION - 1-D

- Consider a uniform spatial computational grid in 1-D with n points: n = 8

- The grid interval is assumed to be unity
- Let $x=\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)^{\top} \in R^{n}$ be the unknown state vector
- Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \mathrm{z}_{\mathrm{m}}$ be the m observations of a scalar field variable such as, say temperature, concentration of a pollutant, to name a few, where $\mathrm{m}<\mathrm{n}$

DISTRIBUTION OF THE OBSERVATIONS

- Let the $j^{\text {th }}$ observation z_{j} be contained in the interval $[\mathrm{i}, \mathrm{i}+1]$
- Referring to the Figure above, $m=4, n=8, z_{1}$ is in $[2,3], z_{2}$ is in $[4,5]$, z_{3} is in $[5,6]$ and z_{4} is in [7, 8]
- Problem: Given $Z \in R^{m}$, find $x \in R^{n}$ where Z and x refer to the same quantities such as temperature, concentration, etc

A LINEAR INTERPOLATION

- Consider the interval $[i, i+1]$ containing z_{j}

- a_{j} is the distance of z_{j} from the left and i
- Relate $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}$ and z_{j} using a simple linear relation as:

$$
\begin{equation*}
\frac{z_{j}-x_{i}}{a_{j}}=\frac{x_{i+1}-z_{j}}{\overline{a_{j}}} \tag{4}
\end{equation*}
$$

- That is, $\mathrm{z}_{\mathrm{j}}=\bar{a}_{j} \mathrm{x}_{\mathrm{i}}+\mathrm{a}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}+1}$
-> (5)

A LINEAR INVERSE PROBLEM: UNDERDETERMINED CASE

- Applying (5) to each of the $m=4$ observations on the uniform grid with $\mathrm{n}=8$ points:

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & \bar{a}_{1} & a_{1} & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{a}_{2} & a_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \bar{a}_{3} & a_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \bar{a}_{4} & a_{4}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]->\text { (7) }
$$

- That is,1-D interpolation matrix H is such that row sum is 1 and $\mathrm{Z}=\mathrm{Hx}$
- We can solve for $\mathrm{x}_{\mathrm{LS}}=\mathrm{H}^{\top}\left(\mathrm{HH}^{\top}\right)^{-1} \mathrm{Z}$
- We can estimate the temperature, concentration at the computational grid from the observation

SPATIAL INTERPOLATION - 2D

- Consider 2-D version with $n=n_{x} n_{y}$ grid points arranged in an n_{x} by n_{y} uniform grid:

41	42	43	44
31		33	34
21		23	24
11	$\begin{aligned} & 12 \\ & n_{x}= \end{aligned}$	13	14

- The left numbering is row major order scheme and the right is the standard (i, j) notation
- The node label k in row major order related to the (i, j) scheme as

$$
k=(i-1) n_{x}+j
$$

- With $n_{x}=4$, the node label 7 correspond to $(2,3)$ since $7=(2-1)^{*} 4+3$

A BILINEAR INTERPOLATION

- Let the $\mathrm{j}^{\text {th }}$ observation z_{j} be contained in the 2D-grid box whose south-east corner node has label i:

- By 1-D linear interpolation:

$$
\mathrm{z}_{\mathrm{j}}=\bar{a}_{\mathrm{j}} \eta_{i}+\mathrm{a}_{\mathrm{j}} \eta_{i+1} \quad->(7)
$$

- Again, by 1-D linear interpolation

$$
\begin{array}{ll}
\eta_{i}=\mathrm{x}_{\mathrm{i}} \bar{b}_{\mathrm{j}}+\mathrm{x}_{\mathrm{i}+\mathrm{nx}} \mathrm{~b}_{\mathrm{j}} & ->(8) \\
\eta_{i+1}=\mathrm{x}_{\mathrm{i}+1} \bar{b}_{\mathrm{j}}+\mathrm{x}_{\mathrm{i}+\mathrm{nx}+1} \mathrm{~b}_{\mathrm{j}} & ->(9)
\end{array}
$$

A LINEAR INVERSE PROBLEM

- Substituting (8) - (9) in (7) and simplifying

$$
\mathrm{z}_{\mathrm{j}}=\bar{a}_{\mathrm{j}} \bar{b}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}}+\mathrm{a}_{\mathrm{j}} \bar{b}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}+1}+\bar{a}_{\mathrm{j}} \mathrm{~b}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}+n \mathrm{x}}+\mathrm{a}_{\mathrm{j}} \mathrm{~b}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}+n \mathrm{x}+1} \quad \quad->\text { (10) }
$$

$$
\begin{aligned}
& \text { - By collating the four relations for the four observation in the 2-D and: } \\
& \qquad\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
0 & * & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & 0 & 0 & 0 & * & * & 0 & * & * & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & * & *
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
\vdots \\
x_{8} \\
x_{9} \\
\vdots \\
x_{12} \\
x_{13} \\
\vdots \\
x_{16}
\end{array}\right] \\
& \quad * \text { - represents non-zero element based on (10) }
\end{aligned}
$$

- The 2-D interpolation matrix is such that the row sum is 1 and $Z=H x$
- Hence $\mathrm{x}_{\mathrm{LS}}=\mathrm{H}^{\top}\left(\mathrm{HH}^{\top}\right)^{-1} Z$ is the optimal estimate

PROBLEM 3: A NON LINEAR PROBLEM

- Con sider a three layered atmosphere

		$\mathrm{P}=0.0$
$\mathrm{~T}_{3}$	Layer 3	$\mathrm{P}=0.2$
$\mathrm{~T}_{2}$	Layer 2	$\mathrm{P}=0.5$
$\mathrm{~T}_{0}$$\mathrm{T}_{1}$ Layer 1	$\mathrm{P}=0.0$	

- Let $T(P)=x_{1}\left(P-x_{2}\right)^{2}+x_{3}, 0 \leq P \leq 1$
-> (9)
- Let $x=\left(x_{1}, x_{2}, x_{3}\right)^{\top} \in R^{3}$ be the unknown

RELATION BETWEEN TEMPERATURE AND RADIANCE

- The observations are measures of overlapping fractions of the area under the curve:

$$
\overline{Z_{i j}}=\int_{\mathrm{P}_{i}}^{\mathrm{P}_{j}} T(\mathrm{p}) d \mathrm{p} \quad->(10)
$$

- The observations are given by

p_{i}	p_{j}	$\overline{Z_{i j}}$
0.00	0.25	0.21
0.20	0.50	0.15
0.30	0.70	0.51
0.6	0.80	0.11

THE MODEL EQUATIONS

- After integration:

$$
\begin{aligned}
\overline{Z_{i j}} & =\int_{\mathrm{P}_{i}}^{\mathrm{P}_{j}}\left[x_{1}\left(\mathrm{p}-x_{2}\right)^{2}+x_{3}\right] d \mathrm{p} \\
& \left.=\frac{x_{1}}{3}\left[\left(\mathrm{P}_{\mathrm{j}}-\mathrm{x}_{2}\right)^{3}-\left(\mathrm{p}_{\mathrm{i}}-\mathrm{x}_{2}\right)^{3}\right]+\mathrm{x}_{3}\left(\mathrm{P}_{\mathrm{j}}-\mathrm{P}_{\mathrm{i}}\right)\right)
\end{aligned}
$$

- Referring to the Table in slide 19:

$$
\begin{aligned}
& \mathrm{z}_{1}=0.21=\frac{x_{1}}{3}\left[\left(0.25-\mathrm{x}_{2}\right)^{3}-\mathrm{x}_{2}^{3}\right]+0.25 \mathrm{x}_{3}=\mathrm{h}_{1}(\mathrm{x}) \\
& \mathrm{z}_{2}=0.15=\frac{x_{1}}{3}\left[\left(0.5-\mathrm{x}_{2}\right)^{3}-\left(0.2-\mathrm{x}_{2}\right)^{3}\right]+0.3 \mathrm{x}_{3}=\mathrm{h}_{2}(\mathrm{x}) \\
& \mathrm{z}_{3}=0.51=\frac{x_{1}}{3}\left[\left(0.7-\mathrm{x}_{2}\right)^{3}-\left(0.3-\mathrm{x}_{2}\right)^{3}\right]+0.4 \mathrm{x}_{3}=\mathrm{h}_{3}(\mathrm{x}) \\
& \mathrm{z}_{2}=0.11=\frac{x_{1}}{3}\left[\left(0.8-\mathrm{x}_{2}\right)^{3}-\left(0.6-\mathrm{x}_{2}\right)^{3}\right]+0.2 \mathrm{x}_{3}=\mathrm{h}_{4}(\mathrm{x})
\end{aligned}
$$

NONLINEAR INVERSE PROBLEM

- Let $Z=h(x)$ with $Z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\top}$

$$
h(x)=\left(h_{1}(x), h_{2}(x), h_{3}(x), h_{4}(x)\right)^{\top}
$$

- Compute $r(x)=Z-h(x)$
- compute $f(x)=(Z-h(x))^{\top}(Z-h(x))$
- Set $\nabla_{x} f(x)=0$ and solve for x
- Check if $\nabla_{x}^{2} f(x)$ is PD

APPROXIMATIONS

- Compute the Jacobian $D_{x}(h)$ and $D_{x}^{2}(h, y)$
- Build first and second order approximation to $\mathrm{h}(\mathrm{x})$
- Solve the minimization arising from the first and second-order approximation

EXERCISES

11.1) (a) Compute the solution of $\nabla_{x} f(x)=0$ for the non linear problem described in slides 18-21, by using the nonlinear solvers in MATLAB (b) Evaluate the Hessian $\nabla_{\chi}^{2} f(x)$ at each of the solution obtained in (a) and find the maxima and minima of $f(x)$
11.2) (a) Compute the Jacobian and the Hessian of $h(x)$ described in slide 21
(b) Using these develop a first order and second order approximation to $f(x)$
(c) Starting from $x_{c}=(1,1,1)^{\top}$, iterate twice and comment on the progress of your algorithm

REFERENCES

- This module follows closely chapters 5 through 7 of LLD (2006)

