A GEOMETRIC VIEW OF LEAST SQUARES -PROJECTIONS AN OVERVIEW

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, Ok – 73069, USA **varahan@ou.edu**

PROJECTIONS

 \hat{Z} - Shadow of Z on the x₁- axis

PROJECTION MATRICES/OPERATORS

- P₁ <u>orthogonal</u> projection matrix
- P₂ <u>oblique</u> projection matrix
- Every projection matrix is <u>idempotent</u>: $P_1^2 = P_1$

$$P_{2}^{2} = P_{2}$$

- Every <u>orthogonal</u> projection matrix is <u>symmetric</u>: $P_1^T = P_1$
- Every <u>oblique</u> projection matrix is <u>not symmetric</u>: $P_2^T \neq P_2$
- Every projection matrix is <u>singular</u>, that is, rank deficient: det(P₁) = 0, det(P₂) = 0

ORDINARY LEAST SQUARES AND ORTHOGONAL PROJECTION

- r = (Z Ź) ⊥ H
- \hat{Z} is the orthogonal projection Z onto H

- <u>A geometric fact</u>: The shortest distance between a line and a point <u>not</u> on the line, is the length of the perpendicular from the point to the line
- Referring to the figure, let \hat{Z} be the point where the perpendicular line from the point Z (tip of the vector Z) intersects the vector H

• Then,
$$r = Z - \hat{Z}$$
 is perpendicular to H

ORTHOGONAL PROJECTION

- Since \hat{Z} is a vector in the direction H, there is a scalar $x \in R$ such that $\hat{Z} = Hx$
- Combining: $r = Z \hat{Z} = (Z Hx) \perp H$
- That is: $H^{T}(Z Hx) = 0$ leads to the least square solution => $(H^{T}H)x = H^{T}Z$ or $x_{LS} = (H^{T}H)^{-1}H^{T}Z$
- Then $\hat{Z} = Hx_{LS} = H(H^TH)^{-1}H^TZ = P_HZ$
- P_H = H(H^TH)⁻¹H^T ∈ R^{mxm} is called the <u>orthogonal projection matrix</u> induced by H

GENERALIZATION

• Let $H \in \mathbb{R}^{m \times n}$, $z \in \mathbb{R}^m$ and $m > n \ge 1$

- $r = (Z \hat{Z}) \perp SPAN(H)$
- Î is the orthogonal projection Z onto the SPAN(H)
- $x \in \mathbb{R}^n$

• Referring to the figure:

 $r = (Z - \hat{Z}) \perp columns of H$

- Since $\hat{Z} \in SPAN(H)$, there exist $x \in R^n$: $\hat{Z} = Hx$
- Combining: $r = (Z Hx) \perp H$

GENERALIZATION

• That is, $H^{T}(Z - Hx) = 0$

 $=> (H^TH)x = H^TZ - Normal equation [refer to Module 3.1]$

- Therefore: $x_{LS} = H^{T}(H^{T}H)^{-1}Z$, the least square solution
- $\hat{Z} = Hx_{LS} = H(H^TH)^{-1}H^TZ = P_HZ$
- $P_H = H(H^TH)^{-1}H^T = HH^+ \in R^{m \times m}$ is an orthogonal projection matrix
- $H^+ = (H^T H)^{-1} H^T$ is the generalized inverse of H

PROPERTIES OF P_H

- $P_{\rm H}^2 = P_{\rm H} \underline{\text{idempotent}}$
- $P_{H}^{T} = P_{H} \underline{symmetric}$
- P_H is the <u>orthogonal projection operator</u> from R^m to $R^n = SPAN(H)$ where $m > n \ge 1$

WEIGHTED LEAST SQUARES

- Consider Z = Hx, Z $\in \mathbb{R}^m$, H $\in \mathbb{R}^{m \times n}$, x $\in \mathbb{R}^n$, W $\in \mathbb{R}^{m \times m}$ SPD
- r(x) = Z H(x) residual vector
- $f(x) = r^{T}(x)Wr(x)$ weighted sum of squared residuals
- $X_{Ls} = (H^TWH)^{-1}H^TWZ$
- $\hat{Z} = Hx_{Ls} = H(H^TWH)^{-1}H^TWZ = P_H(W)Z$
- $P_H(W) = H(H^TWH)^{-1}H^TW = HH^+(W) \in R^{mxn} Projection matrix$
- $H^+(W) = (H^TWH)^{-1}H^TW Weighted generalized inverse$

P_H(W) – OBLIQUE PROJECTION MATRIX

- Verify $P_{H}^{2}(W) = P_{H}(W) idempotent$
- Verify $P_{H}^{T}(W) \neq P_{H}(W)$ not symmetric
- Hence, P_H(W) is an oblique projection matrix

ILLUSTRATION: m = 2, n = 1

• Let
$$H = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$
, $Z = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$, $x \in R$, $W = \begin{bmatrix} W_1 & a \\ a & W_2 \end{bmatrix}$

- $H^{T}WH = (W_{1}h_{1}^{2} + 2ah_{1}h_{2} + W_{2}h_{2}^{2}) \in R$
- $P_{H}(W) = \frac{1}{(H^{T}WH)} HH^{T}W$ $=\frac{1}{(H^T W H)} \begin{bmatrix} W_1 h_1^2 + a h_1 h_2 & a h_1^2 + W_2 h_1 h_2 \\ a h_2^2 + W_1 h_1 h_2 & W_2 h_2^2 + a h_1 h_2 \end{bmatrix}$ • Set $h_1 = 1$, $h_2 = 0 \Rightarrow h = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $=> P_{H}(W) = \frac{1}{W_{1}} \begin{bmatrix} W_{1} & a \\ 0 & 0 \end{bmatrix}$ $\hat{Z} = P_{H}(W)Z = \begin{bmatrix} Z_{1} + \overline{a}Z_{2} \\ 0 \end{bmatrix}, \overline{a} = \frac{a}{W_{1}}$

ILLUSTRATION - CONTINUED

•
$$r(x) = Z - \hat{Z} = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} - \begin{bmatrix} Z_1 + \bar{a}Z_2 \\ 0 \end{bmatrix} = \begin{pmatrix} -\bar{a} \\ 1 \end{pmatrix} z_2$$

• $r^{T}(x)H = ||r(x)||_2 ||H||_2 \cos\theta$
 $-\bar{a}z_2 = z_2(1 + \bar{a}^2)^{\frac{1}{2}}\cos\theta$
 $=> \cos\theta = -\frac{\bar{a}}{(1 + \bar{a}^2)^{\frac{1}{2}}} = -\frac{a}{(a^2 + w_1^2)^{\frac{1}{2}}}$

- That is, $\theta > 90^{\circ}$ and r(x) makes an obtuse angle θ with H see the illustration
- When a = 0, $\cos\theta$ = 0 and θ = 90 => Projection is orthogonal

EXERCISES

8.1) Recall the formula

 $\cos\theta = -\frac{\overline{a}}{(1+\overline{a}^2)^{\frac{1}{2}}}$. Plot the value of θ as \overline{a} ranges in the interval [-1, 1]

8.2) Let $H^+(W) = (H^TWH)^{-1}H^TW$ is the expression for the weighted generalized inverse. Check if satisfies the Moore – Penrose condition in Module 2.2

REFERENCES

• This module follows Chapter 6 of LLD (2006)