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WELL AND ILL-POSED PROBLEMS
• Let Z = Hx, Z ∈ Rm, x ∈ Rn, H ∈ Rmxn

• Module 3.1 contains solution to the well-posed linear least squares problems 
when the matrix H is full rank, that is Rank(H) = min{m, n}

• If the Rank(H) < min{m, n}, then H is rank-deficient and the problem is ill-posed

• In this case, the Grammian matrices HTH and HHT are singular
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ILL-POSED PROBLEM – TIKHONOV REGULARIZATION

• When is H is rank deficient, we cannot use the formula

H+ = (HTH)-1HT or H+ = HT(HHT)-1

for the generalized inverse of H in computing XLS

• While we could still compute H+ using the method of singular value 
decomposition (SVD) (Module – 4.2), we seek alternate formulation 
of the least squares problem

• The method of regularization due to Tikhonov is used to get around 
the rank deficiency of H 
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TIKHONOV’S METHOD
• Define 

f(x) = α 𝑥 2
2 + 𝑍 − 𝐻𝑥 2

2 -> (1)

• The addition of α 𝑥 2
2 to the traditional sum of squared error term 

helps to avoid the challenges resulting from the rank deficiency of H

• Rewriting

f(x) = αxTx + (Z – Hx)T(Z – Hx)                        -> (2)

It readily follows that (Verify!)

𝛻xf(x) = (HTH + αI)x – HTZ

XLS(α) = (HTH + αI)-1HTZ                                  -> (3)
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TIKHONOV’S METHOD
• Since HTH is singular, by adding a diagonal perturbation αI to HTH, we 

can ensure that (HTH + αI) is non-singular

• One could use the Gershgorin Circle theorem to HTH to estimate the 
least value of α that would render (HTH + αI) non-singular

• If H is of full rank, then we can set α = 0 and obtain the known least 
square solution

5



A MATRIX IDENTITY 
• A well known matrix identity:

[ATB-1A + D-1]-1ATB-1 = DAT[B + ADAT]-1 -> (4)

• Setting A = H, B = I, D-1 = αI, this identity becomes:

[HTH + αI]-1HT = α-1HT[I + α-1HHT]-1

= α-1HT[α-1(αI + HHT)]-1

= HT[αI + HHT]-1 -> (5)
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A UNIFIED APPROACH
• Substituting (5) in (3):

XLS(α) = (HTH + αI)-1HTZ,   m > n                -> (6)

= HT[αI + HHT]Z,     m < n                -> (7)

• Setting α = 0 in (6) leads the optimal solution to the full rank problem 
when m > n – Refer to Module – 3.1

• Setting α = 0 in (7) leads to the optimal solution to the full rank 
problem when m < n – Refer to Module – 3.1
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PERFECT VS IMPERFECT MODEL
• The saying goes: “no model is perfect, but some models are useful”

• Often assume that a model is perfect

• Imperfection is a model come from various directions:

- complete physics, wrong parametrization, etc

• Irrespective of whether the model is perfect or not, in the 
overdetermined case, the model is inconsistent in the sense we saw 
in Module 3.1

• In the underdetermined case, the choice of the method depends on 
whether or not the model is perfect

8



STRONG VS WEAK CONSTRAINED FORMULATION: m < n

• When m < n, and the model is perfect, we strictly enforce the model 
constraint using the Lagrangian multiplier method – see Module 3.1 
for details

• This is often called the Strong Constraint formulation

• If the model is not perfect, it is pointless to enforce it strictly

• We require the model equation to be satisfied only approximately

• This is known as the Weak Constraint formulation
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STRONG CONSTRAINT FORMULATION - REVISITED
• Let Z = Hx with z ∈ Rm, x ∈ Rn, H ∈ Rmxn and m < n

• Assume that H is of full rank and recall that there are infinitely many 
solutions

• Seek an unique solution that minimizes the following cost functional:

J(x) = 
1

2
xTAx – bTx + c                                        -> (8) 

• Strong constraint formulation:

Minimize L(x, λ) where λ ∈ Rm and 

L(x, λ) = J(x) + λT(Z – Hx)                                                       -> (9)
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STRONG CONSTRAINT - CONTINUED
• The necessary condition are:

𝛻xL(x, λ) = 2Ax – b - HT λ = 0                  -> (10)

𝛻λL(x, λ) = Z – Hx = 0                               -> (11)

• Express x in terms of λ using (10), substitute in (11), it can be verified 
that the strong solutions are

λs = (HA-1HT)-1[Z – HA-1b]

Xs = A-1b + A-1HT[HA-1HT]-1[Z – HA-1b]

• Setting b = 0, c = 0 and A = I, we get the solution

λs = (HHT)-1Z

Xs = HT(HHT)-1Z 

as given in Module 3.1
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WEAK CONSTRAINED FORMULATION
• Let α > 0 and define a Penalty function

Pα(x) = J(x) + α

2
(Z –Hx)T(Z – Hx)               -> (14)

• The necessary condition for minimum is given by

𝛻xPα(x) = Ax – b + αHT(Hx – Z) = 0         -> (15)

• Solving:

x(α) = x1(α) + x2(α)                                  -> (16)

x1(α) = (A + αHTH)-1b                              -> (17)

x2(α) = α(A + αHTH)-1HTZ -> (18)
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SHERMAN – MORRISON – WOODBURY (SMW) FORMULA

• Let H ∈ Rmxn, εx ∈ Rnxn, εV ∈ Rmxm m < n

• SMW Formula – (two versions)

• [HTεv
−1H + εv

−1]-1 = εx – εxH
T[HεxH

T + εv]
-1Hεx -> (19)

• [HεxH
T + εv]

-1 = εv
−1– εv

−1H[HTεv
−1H+ εv

−1]-1HTεv -> (20)

• Multiplying both side of (20) on the left by εxH
T and simplifying    

(refer to LLD (2006) – Chapter 17), obtain the matrix identity

εxH
T[HεxH

T + εv]
-1 = [HTεv

−1H+ εv
−1]HTεv

−1 -> (21)
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RELATING WEAK AND STRONG SOLUTION
• Applying (20) to (17) with εx

−1 = A, εv
−1= αIm:

(A + αHHT)-1 = A-1- A-1HT[HA-1H + α-1Im]-1HA-1

-> A-1 – A-1HT[HA-1H]-1HA-1 as α -> ∞             -> (22)

• Hence, from (17)

X1* = lim
𝛼→∞

𝑥1(𝛼) = A-1b – A-1HT(HA-1HT)-1HA-1b             -> (23)         
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RELATING WEAK AND STRONG SOLUTIONS
• Applying (21) to (18) with εx

−1 = A, εv
−1= αIm:

α(A + αHHT)-1HT = A-1HT[HA-1H + α-1Im]-1

-> A-1HT[HA-1H]-1 as α -> ∞ -> (24)

• Hence, from (18)

X2* = lim
𝛼→∞

𝑥2(𝛼) = A-1HT(HA-1HT)-1Z                      -> (25) 

• X1* + X2* =  A-1b + A-1HT(HA-1HT)-1[Z – HA-1b]        -> (26)

= Xs in (12)

• That is, in the limit as the penalty parameter α increases without 
bund, the weak solution converges to the strong solution
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EXERCISES
(7.1) Compute the Gradient and Hessian

f(x) = αxTx + (Z – Hx)T(Z – Hx)

and verify the relation (3) 

(7.2) Verify that (12) gives the solution of (10) and (11)

(7.3) Let H = 
1 1
1 1
1 1 + 𝜀

with 𝜀 > 0

Compute the eigenvalues of HTH and plot them as a function of 𝜀 for 

-1 ≤ 𝜀 ≤ 1
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EXERCISES

(7.4) Let A = 
1 1
1 2

, b = 
1
1

, H = 
1 1
1 2
1 3

, x =  
𝑥1
𝑥2

and z = (3, 4, 5)T

a) Compute the unique minizer x* of J(x) = 
1

2
xTAx – bTx when Z = Hx

using Lagrangian multiplier

b) Compute the unique minimizer x(α) of 

Pα(x) = J(x) + 
𝛼

2
(Z – Hx)T(Z – Hx) as a function of α

c) Plot the norm of x(α) Vs α and show lim
𝛼→∞

𝑥(𝛼) = x*
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