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WELL AND |LL-POSED PROBLEMS

e letZ=Hx,Z€R™ x € R", He& R™"

 Module 3.1 contains solution to the well-posed linear least squares problems
when the matrix H is full rank, that is Rank(H) = min{m, n}

* If the Rank(H) < min{m, n}, then H is rank-deficient and the problem is ill-posed

* |n this case, the Grammian matrices H'H and HH' are singular




ILL-POSED PROBLEM — TIKHONOV REGULARIZATION

* When is H is rank deficient, we cannot use the formula
H* = (HTH)H" or H* = HT(HHT)1
for the generalized inverse of H in computing X

* While we could still compute H* using the method of singular value
decomposition (SVD) (Module —4.2), we seek alternate formulation
of the least squares problem

* The method of regularization due to Tikhonov is used to get around
the rank deficiency of H



TIKHONOV’S METHOD

* Define
f(x) = allx]l5 + [1Z — Hx||5 -> (1)

* The addition of al|x]||5 to the traditional sum of squared error term
helps to avoid the challenges resulting from the rank deficiency of H

* Rewriting
f(x) = ax™x + (Z — Hx)"(Z — Hx) -> (2)
It readily follows that (Verify!)
V. f(x) = (HH + al)x —H'Z
X s(a) = (H™H + al)tH'Z -> (3)



TIKHONOV’S METHOD

* Since H™H is singular, by adding a diagonal perturbation al to H'H, we
can ensure that (H™H + al) is non-singular

* One could use the Gershgorin Circle theorem to H'H to estimate the
least value of a that would render (H'H + al) non-singular

* |f His of full rank, then we can set a = 0 and obtain the known least
square solution



A MATRIX IDENTITY

* A well known matrix identity:
[ATB-'A + D1]-1ATB-1 = DAT[B + ADA"]?

 Setting A=H, B=1, D! = al, this identity becomes:

[HTH + al]*HT = atHT[I + o tHHT]
= a'H[a}(al + HHT)]*
= H'[al + HHT]

> (4)

-> (5)



A UNIFIED APPROACH

 Substituting (5) in (3):
X (a) =(HH + al)*H'Z, m>n -> (6)
=H'[al + HH"]Z, m<n -> (7)

e Setting a =0 in (6) leads the optimal solution to the full rank problem
when m > n — Refer to Module — 3.1

e Setting a =0in (7) leads to the optimal solution to the full rank
problem when m < n — Refer to Module — 3.1



PERFECT VS IMPERFECT MODEL

III

* The saying goes: “no model is perfect, but some models are usefu

e Often assume that a model is perfect
* Imperfection is a model come from various directions:

- complete physics, wrong parametrization, etc

* Irrespective of whether the model is perfect or not, in the
overdetermined case, the model is inconsistent in the sense we saw

in Module 3.1

* In the underdetermined case, the choice of the method depends on
whether or not the model is perfect




STRONG VS WEAK CONSTRAINED FORMULATION: m < n

* When m < n, and the model is perfect, we strictly enforce the model
constraint using the Lagrangian multiplier method — see Module 3.1
for details

e This is often called the Strong Constraint formulation

* If the model is not perfect, it is pointless to enforce it strictly
* We require the model equation to be satisfied only approximately
* This is known as the Weak Constraint formulation




STRONG CONSTRAINT FORMULATION - REVISITED

e letZ=HxwithzeR™ xe€R", HER™and m<n

* Assume that H is of full rank and recall that there are infinitely many
solutions

* Seek an unique solution that minimizes the following cost functional:
1
J(x) = EXTAX —b™x + C -> (8)
e Strong constraint formulation:

Minimize L(x, A) where A € R™ and
L(x, A) = J(x) + AT(Z — Hx) -> (9)



STRONG CONSTRAINT - CONTINUED

* The necessary condition are:
V.L(x,\)=2Ax—b-HTA=0 -> (10)
ViL(x, ) =Z—-Hx=0 -> (11)

* Express x in terms of A using (10), substitute in (11), it can be verified
that the strong solutions are

A= (HATHT)L[Z — HA D]
X, = Alb + ATHT[HATHT][Z — HA D]
e Setting b =0, c=0and A =1, we get the solution
A= (HHT)1Z
X, = HT(HHT) 1z
as given in Module 3.1

->(12)

-> (11)



WEAK CONSTRAINED FORMULATION

* Let a > 0 and define a Penalty function
P, (x) =J(x) + %(Z —Hx)"(Z — Hx) -> (14)
* The necessary condition for minimum is given by
V.P,(x)=Ax—b+aHT(Hx-2Z)=0 -> (15)
* Solving:
x(a) = x,(a) + x,(a) -> (16)
X,(a) = (A + aH™H)1b -> (17)
X,(a) = a(A + aH™H)1HTZ -> (18)



SHERMAN — MORRISON — WOODBURY (SMW) FORMULA

* Let HeE R™", g, € R™, g, ER™™ m<n

e SMW Formula — (two versions)

* [HTe; ' H + e51] 1= ¢, — g HT[He HT + £ ] 'He, > (19)
e [He HT + & ]t = g5 1= e, T H[HTe, 1 H+ g5 1] 1H e, -> (20)

* Multiplying both side of (20) on the left by € H" and simplifying
(refer to LLD (2006) — Chapter 17), obtain the matrix identity

e HT[He HT + £ ] 1 = [HTey 1H+ e, 1[HTe ! > (21)




RELATING WEAK AND STRONG SOLUTION

e Applying (20) to (17) with ezt = A, £, 1= alm:

(A + aHHT)™ = AL- ATHT[HATH + alIm]THAL
> Al — AHTTHAH]'HA as o -> oo -> (22)

* Hence, from (17)

X;*= lim x;(a)=Atb—-AtH(HAHT)IHAb -> (23)
a— ©O



RELATING WEAK AND STRONG SOLUTIONS

e Applying (21) to (18) with ezt = A, £51= alm:
a(A + aHHT)H" = ATHT[HAIH + atIm]™?

-> ATHT[HAH]t as a -> oo -> (24)
* Hence, from (18)
X,* = lim x,(a) = ATHT(HA1HT)1Z -> (25)
a— 0O
. X.* +X,* = Alb + ATHT(HATHT)[Z - HAlb]  ->(26)
=X, in (12)

* That is, in the limit as the penalty parameter a increases without
bund, the weak solution converges to the strong solution



EXERCISES

(7.1) Compute the Gradient and Hessian
f(x) = ax™x + (Z — Hx)"(Z — Hx)
and verify the relation (3)
(7.2) Verify that (12) gives the solution of (10) and (11)

1 1
(7.3) LetH = |1 1 |withe>0
1 1+ &l

Compute the eigenvalues of H'H and plot them as a function of & for

-1€<1



EXERCISES

(7.4) Let A = H %] b = [ﬂ H = ; X = [;2] and z = (3, 4, 5)7
3.

NN

a) Compute the unique minizer x* of J(x) = %XTAX — b when Z = Hx
using Lagrangian multiplier
b) Compute the unique minimizer x(a) of
P,(x) =J(x) + %(Z — Hx)"(Z — Hx) as a function of a

c) Plot the norm of x(a) Vs a and show lim x(a) = x*

a— 00
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