STATIC, DETERMINISTIC LINEAR INVERSE PROBLEM ILL-POSED PROBLEM AND IMPERFECT MODEL

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

WELL AND ILL-POSED PROBLEMS

- Let $Z=H x, Z \in R^{m}, x \in R^{n}, H \in R^{m \times n}$
- Module 3.1 contains solution to the well-posed linear least squares problems when the matrix H is full rank, that is $\operatorname{Rank}(H)=\min \{m, n\}$
- If the $\operatorname{Rank}(H)<\min \{m, n\}$, then H is rank-deficient and the problem is ill-posed
- In this case, the Grammian matrices $\mathrm{H}^{\top} \mathrm{H}$ and HH^{\top} are singular

ILL-POSED PROBLEM - TIKHONOV REGULARIZATION

- When is H is rank deficient, we cannot use the formula

$$
\mathrm{H}^{+}=\left(\mathrm{H}^{\top} \mathrm{H}\right)^{-1} \mathrm{H}^{\top} \text { or } \mathrm{H}^{+}=\mathrm{H}^{\top}\left(H H^{\top}\right)^{-1}
$$

for the generalized inverse of H in computing X_{LS}

- While we could still compute H^{+}using the method of singular value decomposition (SVD) (Module - 4.2), we seek alternate formulation of the least squares problem
- The method of regularization due to Tikhonov is used to get around the rank deficiency of H

TIKHONOV'S METHOD

- Define

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\alpha\|x\|_{2}^{2}+\|Z-H x\|_{2}^{2} \tag{1}
\end{equation*}
$$

- The addition of $\alpha\|x\|_{2}^{2}$ to the traditional sum of squared error term helps to avoid the challenges resulting from the rank deficiency of H
- Rewriting

$$
\begin{equation*}
f(x)=\alpha x^{\top} x+(Z-H x)^{\top}(Z-H x) \tag{2}
\end{equation*}
$$

It readily follows that (Verify!)

$$
\begin{align*}
& \nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\left(\mathrm{H}^{\top} \mathrm{H}+\alpha \mathrm{I}\right) \mathrm{x}-\mathrm{H}^{\top} \mathrm{Z} \\
& \mathrm{X}_{\mathrm{LS}}(\alpha)=\left(\mathrm{H}^{\top} \mathrm{H}+\alpha \mathrm{I}\right)^{-1} \mathrm{H}^{\top} Z \tag{3}
\end{align*}
$$

TIKHONOV'S METHOD

- Since $\mathrm{H}^{\top} \mathrm{H}$ is singular, by adding a diagonal perturbation $\alpha \mathrm{I}$ to $\mathrm{H}^{\top} H$, we can ensure that ($\mathrm{H}^{\top} \mathrm{H}+\alpha \mathrm{I}$) is non-singular
- One could use the Gershgorin Circle theorem to $\mathrm{H}^{\top} \mathrm{H}$ to estimate the least value of α that would render ($\mathrm{H}^{\top} \mathrm{H}+\alpha \mathrm{I}$) non-singular
- If H is of full rank, then we can set $\alpha=0$ and obtain the known least square solution

A MATRIX IDENTITY

- A well known matrix identity:

$$
\left[A^{\top} B^{-1} A+D^{-1}\right]^{-1} A^{\top} B^{-1}=D A^{\top}\left[B+A D A^{\top}\right]^{-1}
$$

$$
->(4)
$$

- Setting $A=H, B=I, D^{-1}=\alpha I$, this identity becomes:

$$
\begin{align*}
{\left[H^{\top} H+\alpha I\right]^{-1} H^{\top} } & =\alpha^{-1} H^{\top}\left[I+\alpha^{-1} H H^{\top}\right]^{-1} \\
& =\alpha^{-1} H^{\top}\left[\alpha^{-1}\left(\alpha I+H H^{\top}\right)\right]^{-1} \\
& =H^{\top}\left[\alpha I+H H^{\top}\right]^{-1} \tag{5}
\end{align*}
$$

A UNIFIED APPROACH

- Substituting (5) in (3):

$$
\begin{array}{rlrl}
X_{\text {LS }}(\alpha) & =\left(H^{\top} H+\alpha I\right)^{-1} H^{\top} Z, & m>n & \\
& =H^{\top}\left[\alpha I+H H^{\top}\right] Z, & m<n & \\
\hline
\end{array}
$$

- Setting $\alpha=0$ in (6) leads the optimal solution to the full rank problem when m > n - Refer to Module - 3.1
- Setting $\alpha=0$ in (7) leads to the optimal solution to the full rank problem when m < n - Refer to Module - 3.1

PERFECT VS IMPERFECT MODEL

- The saying goes: "no model is perfect, but some models are useful"
- Often assume that a model is perfect
- Imperfection is a model come from various directions:
- complete physics, wrong parametrization, etc
- Irrespective of whether the model is perfect or not, in the overdetermined case, the model is inconsistent in the sense we saw in Module 3.1
- In the underdetermined case, the choice of the method depends on whether or not the model is perfect

STRONG VS WEAK CONSTRAINED FORMULATION: $\mathrm{m}<\mathrm{n}$

- When $m<n$, and the model is perfect, we strictly enforce the model constraint using the Lagrangian multiplier method - see Module 3.1 for details
- This is often called the Strong Constraint formulation
- If the model is not perfect, it is pointless to enforce it strictly
- We require the model equation to be satisfied only approximately
- This is known as the Weak Constraint formulation

STRONG CONSTRAINT FORMULATION - REVISITED

- Let $Z=H x$ with $z \in R^{m}, x \in R^{n}, H \in R^{m x n}$ and $m<n$
- Assume that H is of full rank and recall that there are infinitely many solutions
- Seek an unique solution that minimizes the following cost functional:

$$
\begin{equation*}
J(x)=\frac{1}{2} x^{\top} A x-b^{\top} x+c \tag{8}
\end{equation*}
$$

- Strong constraint formulation:

Minimize $L(x, \lambda)$ where $\lambda \in R^{m}$ and

$$
\begin{equation*}
L(x, \lambda)=J(x)+\lambda^{\top}(Z-H x) \tag{9}
\end{equation*}
$$

STRONG CONSTRAINT - CONTINUED

- The necessary condition are:

$$
\begin{array}{ll}
\nabla_{x} L(x, \lambda)=2 A x-b-H^{\top} \lambda=0 & ->(10) \\
\nabla_{\lambda} L(x, \lambda)=Z-H x=0 & ->(11)
\end{array}
$$

- Express x in terms of λ using (10), substitute in (11), it can be verified that the strong solutions are

$$
\begin{align*}
& \lambda_{s}=\left(H A^{-1} H^{\top}\right)^{-1}\left[Z-H A^{-1} b\right] \tag{12}\\
& X_{s}=A^{-1} b+A^{-1} H^{\top}\left[H A^{-1} H^{\top}\right]^{-1}\left[Z-H A^{-1} b\right]
\end{align*}
$$

- Setting $b=0, c=0$ and $A=I$, we get the solution

$$
\begin{align*}
& \lambda_{\mathrm{s}}=\left(\mathrm{HH}^{\top}\right)^{-1} \mathrm{Z} \tag{11}\\
& \mathrm{X}_{\mathrm{s}}=\mathrm{H}^{\top}\left(H H^{\top}\right)^{-1} \mathrm{Z}
\end{align*}
$$

as given in Module 3.1

WEAK CONSTRAINED FORMULATION

- Let $\alpha>0$ and define a Penalty function

$$
\begin{equation*}
P_{\alpha}(x)=J(x)+\frac{\alpha}{2}(Z-H x)^{\top}(Z-H x) \tag{14}
\end{equation*}
$$

- The necessary condition for minimum is given by

$$
\nabla_{\mathrm{x}} \mathrm{P}_{\alpha}(\mathrm{x})=\mathrm{Ax}-\mathrm{b}+\alpha \mathrm{H}^{\top}(\mathrm{Hx}-\mathrm{Z})=0 \quad->(15)
$$

- Solving:

$$
\begin{array}{ll}
x(\alpha)=x_{1}(\alpha)+x_{2}(\alpha) & ->(16) \tag{16}\\
x_{1}(\alpha)=\left(A+\alpha H^{\top} H\right)^{-1} b & ->(17) \\
x_{2}(\alpha)=\alpha\left(A+\alpha H^{\top} H\right)^{-1} H^{\top} Z & ->(18)
\end{array}
$$

SHERMAN - MORRISON - WOODBURY (SMW) FORMULA

- Let $H \in R^{m \times n}, \varepsilon_{x} \in R^{n \times n}, \varepsilon_{V} \in R^{m x m} m<n$
- SMW Formula - (two versions)
- $\left[H^{\top} \varepsilon_{\mathrm{v}}^{-1} \mathrm{H}+\varepsilon_{\mathrm{v}}^{-1}\right]^{-1}=\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{x}} \mathrm{H}^{\top}\left[H \varepsilon_{\mathrm{x}} \mathrm{H}^{\top}+\varepsilon_{\mathrm{v}}\right]^{-1} \mathrm{H} \varepsilon_{\mathrm{x}}$
- $\left[H \varepsilon_{\mathrm{x}} \mathrm{H}^{\top}+\varepsilon_{\mathrm{v}}\right]^{-1}=\varepsilon_{\mathrm{v}}^{-1}-\varepsilon_{\mathrm{v}}^{-1} \mathrm{H}\left[\mathrm{H}^{\top} \varepsilon_{\mathrm{v}}^{-1} \mathrm{H}+\varepsilon_{\mathrm{v}}^{-1}\right]^{-1} \mathrm{H}^{\top} \varepsilon_{\mathrm{v}}$
- Multiplying both side of (20) on the left by $\varepsilon_{x} H^{\top}$ and simplifying (refer to LLD (2006) - Chapter 17), obtain the matrix identity

$$
\begin{equation*}
\varepsilon_{\mathrm{x}} \mathrm{H}^{\top}\left[\mathrm{H} \varepsilon_{\mathrm{x}} \mathrm{H}^{\top}+\varepsilon_{\mathrm{v}}\right]^{-1}=\left[\mathrm{H}^{\top} \varepsilon_{\mathrm{v}}^{-1} \mathrm{H}+\varepsilon_{\mathrm{v}}^{-1}\right] \mathrm{H}^{\top} \varepsilon_{\mathrm{v}}^{-1} \tag{21}
\end{equation*}
$$

RELATING WEAK AND STRONG SOLUTION

- Applying (20) to (17) with $\varepsilon_{\mathrm{x}}^{-1}=\mathrm{A}, \varepsilon_{\mathrm{v}}^{-1}=\alpha \mathrm{Im}$:

$$
\begin{aligned}
\left(A+\alpha H H^{\top}\right)^{-1} & =A^{-1}-A^{-1} H^{\top}\left[H A^{-1} H+\alpha^{-1} I m\right]^{-1} H A^{-1} \\
& ->A^{-1}-A^{-1} H^{\top}\left[H A^{-1} H\right]^{-1} H A^{-1} \text { as } \alpha->\infty \quad \quad->(22)
\end{aligned}
$$

- Hence, from (17)

$$
\mathrm{X}_{1}^{*}=\lim _{\alpha \rightarrow \infty} x_{1}(\alpha)=\mathrm{A}^{-1} \mathrm{~b}-\mathrm{A}^{-1} \mathrm{H}^{\top}\left(\mathrm{HA}^{-1} \mathrm{H}^{\top}\right)^{-1} H \mathrm{~A}^{-1} \mathrm{~b} \quad \quad->(23)
$$

RELATING WEAK AND STRONG SOLUTIONS

- Applying (21) to (18) with $\varepsilon_{\mathrm{x}}^{-1}=\mathrm{A}, \varepsilon_{\mathrm{v}}^{-1}=\alpha \mathrm{Im}$:

$$
\begin{array}{r}
\alpha\left(A+\alpha H H^{\top}\right)^{-1} H^{\top}=A^{-1} H^{\top}\left[H A^{-1} H+\alpha^{-1} I m\right]^{-1} \\
->A^{-1} H^{\top}\left[H A^{-1} H\right]^{-1} \text { as } \alpha->\infty
\end{array}
$$

-> (24)

- Hence, from (18)

$$
\begin{array}{rlr}
\mathrm{X}_{2}^{*}=\lim _{\alpha \rightarrow \infty} x_{2}(\alpha)=\mathrm{A}^{-1} \mathrm{H}^{\top}\left(\mathrm{HA}^{-1} \mathrm{H}^{\top}\right)^{-1} \mathrm{Z} & ->(25) \\
\mathrm{X}_{1}^{*}+\mathrm{X}_{2}^{*}=\mathrm{A}^{-1} \mathrm{~b}+\mathrm{A}^{-1} \mathrm{H}^{\top}\left(\mathrm{HA}^{-1} \mathrm{H}^{\top}\right)^{-1}\left[\mathrm{Z}-\mathrm{HA}^{-1} \mathrm{~b}\right] & & ->(26) \\
& =\mathrm{X}_{\mathrm{s}} \operatorname{in}(12) &
\end{array}
$$

- That is, in the limit as the penalty parameter α increases without bund, the weak solution converges to the strong solution

EXERCISES

(7.1) Compute the Gradient and Hessian

$$
f(x)=\alpha x^{\top} x+(Z-H x)^{\top}(Z-H x)
$$

and verify the relation (3)
(7.2) Verify that (12) gives the solution of (10) and (11)
(7.3) Let $\mathrm{H}=\left[\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 & 1+\varepsilon\end{array}\right]$ with $\varepsilon>0$

Compute the eigenvalues of $\mathrm{H}^{\top} \mathrm{H}$ and plot them as a function of ε for $-1 \leq \varepsilon \leq 1$

EXERCISES

(7.4) Let $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], \mathrm{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{H}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right], \mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathrm{z}=(3,4,5)^{\top}$
a) Compute the unique minizer x^{*} of $J(x)=\frac{1}{2} x^{\top} A x-b^{\top} x$ when $Z=H x$ using Lagrangian multiplier
b) Compute the unique minimizer $x(\alpha)$ of

$$
P_{\alpha}(x)=J(x)+\frac{\alpha}{2}(Z-H x)^{\top}(Z-H x) \text { as a function of } \alpha
$$

c) Plot the norm of $\mathrm{x}(\alpha)$ Vs α and show $\lim _{\alpha \rightarrow \infty} x(\alpha)=\mathrm{x}^{*}$

REFERENCES

- This module follows from Chapter 5 LLD (2006) and the following report
S.Lakshmivarahan (2015) "On the convergence of class of weak solution to the strong solution of an equality constraint minimization. Problem: A direct proof using matrix identities, School of Computer Science, University of Oklahoma, Norman, Ok - 73019 USA

