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PROBLEM STATEMENT — A ST.LINE PROBLEM

* A particle is moving in a st. line:
e Constant velocity, V— Not known
* |Initial position, Z, — Not known

* Observations of position Z; at time t; for 1 <i < m are available

TIME t, t, ot T
POSITION|  Z, Z, Z .. Z

* Problem: Given the pair (t, Z), 1 < i< m, estimate the unknowns Z,, V



BUILD A LINEAR MODEL

* To enable estimation of the unknowns, we need to build a relation — called the model
between the known and unknowns

* From basic Physics relating time and motion:
Z,=Z7,+Vt (1)

must hold foreach1<i<m

In matrix-vector notation (6.1) becomes

Z11 1 tq7

_ : _ : : ZO B

=z 7l [V]'HX 2)
Zm. 1

e Or Z=HX Z€R™HERM™2 x € R? (3)
Equation (3) is a linear model
Given (Z, H), find x, is the linear inverse problem



A GENERALIZATION — LINEAR MODEL

e Let Z € R™ be the observation vector

e RMjs called the observation space

e Let x € R" be the unknown vector

* R"is called the model space

* H € R™" js the relation between the model space and observation
space

X, N € R" R R™ Z,GER" Z = Hx

Z n=H'¢
&

Model space HT Observation space




ON SOLVING Z = Hx

* When m = n and H is non-singular, then
X =H?1Z (4)

* When m # n, H is a rectangular matrix and the standard notion of
non-singularity does not apply

* TWO cases arise:
m > n — overdetermined case — Inconsistent case
m < n —underdetermined case — Infinity many solution



OVERDETERMINED CASE: m >n

1 1
em=3andn=2, H=|1 2
1 3.

* Columns are H are linearly independent

* SPAN(H) = 2-D plane defined by these two columns which is a subset
of R3

0 1 1
°letZ= (1), since Z = (-1)(1) + 1(2), Z € SPAN(H)
2 1 3

e 7 =Hx has a solution x = (_11)



INCONSISTENT CASE: m >n

e Recall that columns of H are defined by the mathematical model but
the column Z of observation that come from the real world

measurement

* Generally, observations have noise embedded in them and models
are only approximations to reality

* Hence, move often than not, Z does not belong to the SPAN(H)

e In such cases Z = HX has no solution in the sense that there is no
vector x that will satisfy equation Z = Hx



ANOTHER LOOK AT INCONSISTENT CASE: m > n

1 1
m=3,n=2,H=|1 2
1 3.

*Z=(2,3.5,4.2)!

*Z=Hx => X;+X,=2,%X;+2X,=3.5,%x, +3x,=4.2

* Verify that x, = % and x, = % is the solution of the first two, but this
does not satisfy the third

* Verify that solution of any two out of these three equations, does not
satisfy the remaining equation

* In this sense there is no solution to Z = Hx when m > n



UNDERDETERMINED CASE: m<n

1 2 3

*m=2,n=3, H= 1 4 =
e /= Hx becomes
L1 =Xy + 2%, + 3X;3
Z, =Xy + 4%, + 5X%3
* Rewrite:
Xy + 2Xy =7, —3x,
Xy +4X, = Z, — 5%
» Foreachx; ER, there is a pair (x,(x;), X,(x3))" that is the solution of this
pair
* Z = Hx has infinite solution (x,(x3), X,(X3),%3)"
* Hence, there is no uniqgueness in this case when m < n



SUMMARY — LINEAR INVERSE PROBLEM

e Z=Hx and H is of full rank

Mm: N
m>n m=n m<n
* Overdetermined * Underdetemined
 Rank(H)=n  Rank(H)=n  Rank(H)=m
* Inconsistent system * Infinitely many solution
* No solution * Unique solution X=H?'z <+ Nouniqueness

* Thus, we need to generalize the concept of solution for the two extreme cases
whenm>nand m<n

* This generalized solution in called the lease square solution




UNWEIGHTED LEAST SQUARES SOLUTION: m > n

* Define A(x) =Z — Hx € R™ — residual vector <- r(x)
e Recall when m > n, there is no x € R" for whichr (x) =0

* As a compromise, we seek x € R" for which the vector r (x) will have a
minimum length

* To this end, define f(x) = |[r(x)]|5 = r"(x) r(x) = X™ , r¥ (x) which is the
square of the norm of the residual

* 1:(x) =Z — H.x where H., is the it" row of H
= it" component of the residual vector

* Hence, f(x) = sum of the squares of the components of the residual
vector

* The vector x € R" that minimizes f(x) is called the least squares
solution




LEAST SQUQARES METHOD: m > n

* f(x) = rT(x)r(x) = (Z - Hx)"(Z — Hx)
= (Z" = (Hx)")(Z — Hx)
= (Z" = x"H")(Z — Hx)
=7'7—-Z"Hx = x"H'Z + x"(H"H)x
» ZTHx being a scalar: ZTHx = (Z"THx)'
=x"H'Z
* Therefore, f(x) =22 — 2Z"Hx + x"(HH)x
* Find x that minimizes f(x) in (7)

(5)

(6)
(7)



H™H SPD WHEN H IS OF FULL RANK

e Since H'H = (H™H)T, H'H is symmetric
e Consider x"(H™H)x = (x"HT)(Hx) = (Hx)"(Hx)
= ||HxI3 (8)

* Since m > n, Rank(H) = n and the columns of H are linearly

independent
* That is, Hx = 0 exactly when x=0
# 0 otherwise
 Hence x"(H'H)x >0 forx # 0
=0onlywhenx=0 > )

* (H'H) is positive definite



GRADIENT AND HESSIAN OF f(x)

» Refer to f(x) in (7)
*V.(272)=0, V2(Z72) = 0
* V.(2Z"Hx) = 2V, (a"x) with a = H'Z
=2a=2H'Z
e V2(2Z™Hx) = 0
e V.(x"(H™H)x) = 2(H"H)x
« V2(x"(H™H)x) = 2H™H — SPD
* Combining
 Gradient of f = V. f(x) =-2H'Z + 2(HH)x ->(10)
* Hessian of f = V,2f(x) = 2(HTH) > (11)



UNCONSTRAINED MINIMIZATION OF f(x) — NORMAL EQUATION

e Setting V.f(x) =-2H'Z + 2(H™H)x =0

 Least square solution is the solution of the Normal equations which is
linear symmetric, positive definite system: (H'H)x = H'Z -> (12)

* Or X, = (HTH)J'H'Z=H*Z  ->(13)
H* = (H'H)'HT — Generalized inverse of H -> (14)

e Since the Hessian V2f(x) = 2(H™H) is SPD, f(x) is a convex function and
hence the minimum is unique



MINIMUM RESIDUAL

* The minimum residual r(x.s) = Z — Hxc
* By (14): r(x,) = [I - H(H'H)*HT]Z 2 O -> (15)

* Here in lies the difference between the classical solution where
r(x) = 0 and the least squares solution where r(x,) # O for the

overdetermined case

e Verify f(x,.) = [[r(x)[|5 = Z'[I - H(HTH)'H™]Z  -> (16)
which is the minimum value of sum of square errors (SSE)



AN ILLUSTRATION — ST.LINE PROBLEM

[T €]
1ty
1ty
1 1 1 o
°HTH=[ ]1 2l Zm‘lz
tl t2 tm . . Z_lt 2_1
1 ¢,
7,
S e Rt
ty t - tp . Zi=1Ziti
L.




ILLUSTRATION CONTINUED

* Normal equations: (H'H)x = HTZ

[Z i 1 “ZO] élzzl;l]

* Dividing by n >[ _[ ]
t t2[LVI |zt

- 1 — 1 25 1 - 1
t=— ?;1£irf2_=; "ilti,Z_E ?;1Zi:Zt—; i=1Zit;
. Zt—t2Z
e Solution: V*=_t _t
tZ_(t)Z
Z* =7 - tV*

« SSE =f(Z,*, V¥*)= X% [Z; —(Zy + V*t;)]? is the minimum value of the
sum of squared errors

SSE-L  _f(z& v

e =[]

m m

/m is a measure of the linear fit

* RMS error = |



NUMERICAL EXAMPLE — ALGEBRAIC METHOD

1 1] 1.0

1 2| . [3.0
m4n-2H-13,Z-20
B 1 4 3.0

e« t=15,t2=3.57 =2.25,7t =4

. : 1 Z()] [2.25]
Normal equation: 15 3 5] [ 4

* Solution: V* =0.5, Z,* = 1.5
e Filted/assimilated model: |Z;=1.5+ 0.5t
* SSE=1.5, RMS error =0.6124




CONTOURS OF f(x) — GRAPHICAL METHOD

* Using the data in slide (19) we can get
f(Z,, V) =2'2 —2Z"Hx + x"(H"H)x
=75 +3Z,V +3.5V2—97,— 25V + 23
* The contours of f(Z,, V) using MATLAB is given below
* The minimum is Zy = 1.5, V* = 0.5




WEIGHTED LEAST SQUARES: m > n

* Let W € R™™ be a SPD matrix
* The weighted sum of squared errors:
f.(x) = (Z—=Hx)"W(Z — Hx)

* W — could be a diagonal matrix with different weights along the
diagonal or a general SPD

 Verify that the normal equations in this case is
(H'WH)x =H'™WZ
* The weighted least square solution is:
X, = (H'WH)*HTWZ -> (17)



UNDERDETERMINED CASE: m<n

e Recall: There are infinitely many solutions
* r(x) = 0 for infinitely many x € R"
e Unlike when m > n, in this case f(x) = [|[r(x)||5 =0

* Need a new approach

* To get an unique solution, formulate it as a constrained minimization
problem using the standard Lagrangian multiplier methods for
equality constrained problem (Module 5)



LAGRANGIAN FORMULATION: m < n

* Problem statement: Find x € R" such that | |x| |2 is a minimum when Z
satisfies Z = Hx

* Let A € R™ and define the Lagrangian
L(x, A) = | | x| |? + AT(Z — Hx) -> (18)

* Now the above constrained minimization is solved by minimizing
L(x, A) with respect to x € R"and A € R™ as an unconstrained problem




LAGRANGIAN METHOD: m<n

* A necessary conditions for the minimum are:
V.L(x,\)=0
VAL(X, }\) =0

* By solving these two equations in the two unknowns x, A, we get the
optimal x and A

* For Lin (18)
V.L(x,\) =2x—H'A=0

7,L(x, \) =Z — Hx = 0 > (19)



LEAST SQUARES SOLUTION: m < n

* Solving (19): x = %HT?\ -> (20)
Z = Hx = %HHT?\ > (21)
* From (21): A = 2(HH")1Z -> (22)
* Using (22) in (19)
X,. = HT(HHT)2Z > (23)
e If His of full rank, Rank(H) = m then it can be verified (HH') is SPD

* X, sis computed in two steps:
 Solve normal equations: (HH")y =Z and find y = (HHT)-1Z
* X, =Hly




RESIDUAL AT X<

* r(x,) =Z—Hx
=7 —HHT(HHT)1Z
=7/-72=0

* This is to be expected since we start with the infinitely many solutions
for which r(x) =0



EXERCISES

6.1) Let x; +x, =1, x; + 2x, = 3.5, x; + 3x, = 4.2

Solve any two and verify that this solution is not consistent with the
third equation

6.2) Solve [} L [Z(’] = [E]
t t2|LV I [zt
: L Zt—tZ e
and verify that the solution is given: V* = () /* =7 -tV*
6.3) Using MATLAB, plot the contours of
f(z,, V) = Z& + 32,V + 3.5V2—9Z,-25V + 23
Find the minimizer (Z*, V*) graphically




EXERCISES

6.4) Find the minimizer of
f,(x) = (Z—=Hx)"W(Z — Hx)
and verify that
X.s = (HTWH)H™WZ
6.5) The generalized inverse of H is
H* = (H™H)*HT if m > n
=H'(HH")1ifm<n
when H is of full rank
Verify that H* satisfies the Moore-Penrose Condition: (Module — 3)
a) HH*H=H
b) H*HH*=H*
c) (HH*)"=HH*
d) (H*H)"=H*H
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