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PROBLEM STATEMENT – A ST.LINE PROBLEM
• A particle is moving in a st. line:

• Constant velocity, V – Not known

• Initial position, Z0 – Not known

• Observations of position Zi at time ti for 1 ≤ i ≤ m are available

• Problem: Given the pair (ti, Zi), 1 ≤ i ≤ m, estimate the unknowns Z0, V
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TIME t1 t2 … ti... Tm

POSITION Z1 Z2 … Zi … Zm



BUILD A LINEAR MODEL
• To enable estimation of the unknowns, we need to build a relation – called the model

between the known and unknowns

• From basic Physics relating time and motion:

Zi = Z0 + Vti (1)

must hold for each 1 ≤ i ≤ m

• In matrix-vector notation (6.1) becomes

Z = 

𝑍1
𝑍2
⋮
𝑍𝑖
⋮
𝑍𝑚

= 

1 𝑡1
1 𝑡2
⋮ ⋮
1 𝑡𝑖
⋮ ⋮
1 𝑡𝑚

𝑍0
𝑉

= Hx (2)

• Or                                                 Z = Hx Z ∈ Rm, H ∈ Rmx2, x ∈ R2                                (3)

• Equation (3) is a linear model

• Given (Z, H), find x, is the linear inverse problem 3



A GENERALIZATION – LINEAR MODEL
• Let Z ∈ Rm be the observation vector

• Rm is called the observation space

• Let x ∈ Rn be the unknown vector

• Rn is called the model space

• H ∈ Rmxn is the relation between the model space and observation 
space
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ON SOLVING Z = Hx
• When m = n and H is non-singular, then

x = H-1Z                     (4)

• When m ≠ n, H is a rectangular matrix and the standard notion of 
non-singularity does not apply

• Two cases arise:
m > n – overdetermined case – Inconsistent case

m < n – underdetermined case – Infinity many solution
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OVERDETERMINED CASE: m > n

• m = 3 and n = 2,  H = 
1 1
1 2
1 3

• Columns are H are linearly independent

• SPAN(H) = 2-D plane defined by these two columns which is a subset 
of R3

• Let Z = 
0
1
2

, since Z = (-1)
1
1
1

+ 1
1
2
3

, Z ∈ SPAN(H)

• Z = Hx has a solution x = 
−1
1
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INCONSISTENT CASE: m > n

• Recall that columns of H are defined by the mathematical model but 
the column Z of observation that come from the real world 
measurement 

• Generally, observations have noise embedded in them and models 
are only approximations to reality

• Hence, move often than not, Z does not belong to the SPAN(H)

• In such cases Z = HX has no solution in the sense that there is no 
vector x that will satisfy equation Z = Hx
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ANOTHER LOOK AT INCONSISTENT CASE: m > n

• m = 3, n = 2, H = 
1 1
1 2
1 3

• Z = (2, 3.5, 4.2)T

• Z = Hx =>  x1 + x2 = 2, x1 + 2x2 = 3.5, x1 + 3x2 = 4.2

• Verify that x1 = 
1

2
and x2 = 

3

2
is the solution of the first two, but this 

does not satisfy the third

• Verify that solution of any two out of these three equations, does not 
satisfy the remaining equation

• In this sense there is no solution to Z = Hx when m > n
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UNDERDETERMINED CASE: m < n

• m = 2, n = 3,  H = 
1 2 3
1 4 5

• Z = Hx becomes

Z1 = x1 + 2x2 + 3x3

Z2 = x1 + 4x2 + 5x3

• Rewrite:

x1 + 2x2 = Z1 – 3x3

x1 + 4x2 = Z2 – 5x3

• For each x3 ∈ R, there is a pair (x1(x3), x2(x3))T that is the solution of this 
pair

• Z = Hx has infinite solution (x1(x3), x2(x3),x3)T

• Hence, there is no uniqueness in this case when m < n 9



SUMMARY – LINEAR INVERSE PROBLEM
• Z = Hx and H is of full rank

m : n

• Thus, we need to generalize the concept of solution for the two extreme cases 
when m > n and m < n

• This generalized solution in called the lease square solution
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m > n m = n m < n

• Overdetermined • Underdetemined

• Rank(H) = n • Rank(H) = n • Rank(H) = m

• Inconsistent system • Infinitely many solution

• No solution • Unique solution X = H-1z • No uniqueness



UNWEIGHTED LEAST SQUARES SOLUTION: m > n
• Define Λ(x) = Z – Hx ∈ Rm – residual vector <- r(x)

• Recall when m > n, there is no x ∈ Rn for which r (x) = 0

• As a compromise, we seek x ∈ Rn for which the vector r (x) will have a 
minimum length

• To this end, define f(x) = r(𝑥) 2
2 = rT(x) r(x) =  𝑖=1

𝑛 r𝑖
2 (𝑥) which is the 

square of the norm of the residual

• ri(x) = Zi – Hi*x where Hi* is the ith row of H

= ith component of the residual vector

• Hence, f(x) = sum of the squares of the components of the residual 
vector

• The vector x ∈ Rn that minimizes f(x) is called the least squares 
solution
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• f(x) = rT(x)r(x) = (Z – Hx)T(Z – Hx)

= (ZT – (Hx)T)(Z – Hx)

= (ZT – xTHT)(Z – Hx)

= ZTZ – ZTHx – xTHTZ + xT(HTH)x           (5)

• ZTHx being a scalar: ZTHx = (ZTHx)T

= xTHTZ (6)

• Therefore, f(x) = ZTZ – 2ZTHx + xT(HTH)x        (7)

• Find x that minimizes f(x) in (7)
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LEAST SQUQARES METHOD: m > n



HTH SPD WHEN H IS OF FULL RANK
• Since HTH = (HTH)T, HTH is symmetric

• Consider xT(HTH)x = (xTHT)(Hx) = (Hx)T(Hx)

= 𝐻𝑥 2
2 (8)

• Since m > n, Rank(H) = n and the columns of H are linearly 
independent

• That is, Hx = 0 exactly when x = 0

≠ 0 otherwise

• Hence xT(HTH)x > 0 for x ≠ 0

= 0 only when x = 0 

• (HTH) is positive definite
13
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GRADIENT AND HESSIAN OF f(x)
• Refer to f(x) in (7)

• 𝛻𝑥(ZTZ) = 0, 𝛻𝑥
2(ZTZ) = 0

• 𝛻𝑥(2ZTHx) = 2𝛻𝑥(aTx) with a = HTZ

= 2a = 2HTZ

• 𝛻𝑥
2(2ZTHx) = 0

• 𝛻𝑥(xT(HTH)x) = 2(HTH)x

• 𝛻𝑥
2(xT(HTH)x) = 2HTH – SPD

• Combining

• Gradient of f = 𝛻𝑥f(x) = -2HTZ + 2(HTH)x                   -> (10)

• Hessian of f = 𝛻𝑥
2f(x) = 2(HTH)                                     -> (11)
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UNCONSTRAINED MINIMIZATION OF f(x) – NORMAL EQUATION

• Setting 𝛻𝑥f(x) = -2HTZ + 2(HTH)x = 0

• Least square solution is the solution of the Normal equations which is 
linear symmetric, positive definite system: (HTH)x = HTZ          -> (12)

• Or Xls = (HTH)-1HTZ = H+Z      -> (13)

H+ = (HTH)-1HT – Generalized inverse of H  -> (14)

• Since the Hessian 𝛻𝑥
2f(x) = 2(HTH) is SPD, f(x) is a convex function and 

hence the minimum is unique
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MINIMUM RESIDUAL
• The minimum residual r(xLS) = Z – HxLS

• By (14): r(xLS) = [I - H(HTH)-1HT]Z ≠ 0            -> (15)

• Here in lies the difference between the classical solution where       
r(x) = 0 and the least squares solution where r(xls) ≠ 0 for the 
overdetermined case

• Verify f(xls) = r(𝑥) 2
2 = ZT[I - H(HTH)-1HT]Z -> (16)

which is the minimum value of sum of square errors (SSE)
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AN ILLUSTRATION – ST.LINE PROBLEM

• H = 

1 𝑡1
1 𝑡2
⋮ ⋮
1 𝑡𝑚

• HTH = 
1 1 ⋯ 1
𝑡1 𝑡2 ⋯ 𝑡𝑚

1 𝑡1
1 𝑡2
⋮ ⋮
1 𝑡𝑚

= 
𝑚  𝑖=1

𝑚 𝑡𝑖
 𝑖=1
𝑚 𝑡𝑖  𝑖=1

𝑚 𝑡𝑖
2

• HTZ = 
1 1 ⋯ 1
𝑡1 𝑡2 ⋯ 𝑡𝑚

𝑍1
𝑍2
⋮
𝑍𝑚

= 
 𝑖=1
𝑚 𝑍𝑖

 𝑖=1
𝑚 𝑍𝑖𝑡𝑖
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ILLUSTRATION CONTINUED
• Normal equations: (HTH)x = HTZ

𝑚  𝑖=1
𝑚 𝑡𝑖

 𝑖=1
𝑚 𝑡𝑖  𝑖=1

𝑚 𝑡𝑖
2
𝑍0
𝑉

= 
 𝑖=1
𝑚 𝑍𝑖

 𝑖=1
𝑚 𝑍𝑖𝑡𝑖

• Dividing by n =>
1 𝑡

𝑡 𝑡2
𝑍0
𝑉

= 𝑍

𝑍𝑡

𝑡 = 
1

𝑚
 𝑖=1
𝑚 𝑡𝑖 , 𝑡2 = 

1

𝑚
 𝑖=1
𝑚 𝑡𝑖

2, 𝑍 = 
1

𝑚
 𝑖=1
𝑚 𝑍𝑖, 𝑍𝑡 = 

1

𝑚
 𝑖=1
𝑚 𝑍𝑖𝑡𝑖

• Solution: V* = 
𝑍𝑡 − 𝑡 𝑍

𝑡2−(𝑡)2

Z* = 𝑍 - 𝑡V*

• SSE  = f(Z0*, V*) =    𝑖=1
𝑚 [𝑍𝑖 −(𝑍0

∗ + 𝑉∗𝑡𝑖)]
2 is the minimum value of the 

sum of squared errors

• RMS error = [
𝑆𝑆𝐸

𝑚
]
1

2 =[
𝑓(𝑍0

∗, 𝑉∗)

𝑚
]  
1
𝑚 is a measure of the linear fit 18



NUMERICAL EXAMPLE – ALGEBRAIC METHOD

• m = 4, n = 2, H = 

1 1
1 2
1 3
1 4

,  Z = 

1.0
3.0
2.0
3.0

• 𝑡 = 1.5, 𝑡2 = 3.5, 𝑍 = 2.25, 𝑍𝑡 = 4

• Normal equation: 
1 1.5
1.5 3.5

𝑍0
𝑉

=
2.25
4

• Solution: V* = 0.5, Z0* = 1.5

• Filted/assimilated model: 

• SSE = 1.5, RMS error = 0.6124 
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Zi = 1.5 + 0.5ti



CONTOURS OF f(x) – GRAPHICAL METHOD
• Using the data in slide (19) we can get

f(Z0, V) = ZTZ – 2ZTHx + xT(HTH)x 

= Z0
2 + 3Z0V + 3.5V2 – 9Z0 – 25V + 23

• The contours of f(Z0, V) using MATLAB is given below

• The minimum is Z0
∗ = 1.5, V* = 0.5
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WEIGHTED LEAST SQUARES: m > n
• Let W ∈ Rmxm be a SPD matrix

• The weighted sum of squared errors:

fw(x) = (Z – Hx)TW(Z – Hx)

• W – could be a diagonal matrix with different weights along the 
diagonal or a general SPD

• Verify that the normal equations in this case is

(HTWH)x =HTWZ

• The weighted least square solution is:

Xls = (HTWH)-1HTWZ             -> (17)
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UNDERDETERMINED CASE: m < n
• Recall: There are infinitely many solutions

• r(x) = 0 for infinitely many x ∈ Rn

• Unlike when m > n, in this case f(x) = r(𝑥) 2
2 = 0

• Need a new approach

• To get an unique solution, formulate it as a constrained minimization 
problem using the standard Lagrangian multiplier methods for 
equality constrained problem (Module 5)
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LAGRANGIAN FORMULATION: m < n
• Problem statement: Find x ∈ Rn such that ||x||2 is a minimum when Z 

satisfies Z = Hx

• Let λ ∈ Rm and define the Lagrangian

L(x, λ) = ||x||2 + λT(Z – Hx)                     -> (18)

• Now the above constrained minimization is solved by minimizing     
L(x, λ) with respect to x ∈ Rn and λ ∈ Rm as an unconstrained problem
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LAGRANGIAN METHOD: m < n
• A necessary conditions for the minimum are:

𝛻𝑥L(x, λ) = 0

𝛻𝜆L(x, λ) = 0

• By solving these two equations in the two unknowns x, λ, we get the 
optimal x and λ

• For L in (18)

𝛻𝑥L(x, λ) = 2x – HTλ = 0

𝛻𝜆L(x, λ) =Z – Hx = 0
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-> (19)



LEAST SQUARES SOLUTION: m < n

• Solving (19): x = 
1

2
HTλ -> (20)

Z = Hx = 
1

2
HHTλ -> (21)

• From (21): λ = 2(HHT)-1Z           -> (22)

• Using (22) in (19)

XLs = HT(HHT)-1Z                 -> (23)

• If H is of full rank, Rank(H) = m then it can be verified (HHT) is SPD

• XLS is computed in two steps:
• Solve normal equations: (HHT)y = Z and find y = (HHT)-1Z

• XLs = HTy
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RESIDUAL AT XLS

• r(xLS) = Z – HxLS

= Z – HHT(HHT)-1Z

= Z – Z = 0

• This is to be expected since we start with the infinitely many solutions 
for which r(x) = 0
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EXERCISES
6.1) Let x1 + x2 = 1, x1 + 2x2 = 3.5, x1 + 3x2 = 4.2

Solve any two and verify that this solution is not consistent with the 
third equation

6.2) Solve  
1 𝑡

𝑡 𝑡2
𝑍0
𝑉

= 𝑍

𝑍𝑡

and verify that the solution is given: V* = 
𝑍𝑡 − 𝑡 𝑍

𝑡2−(𝑡)2
,  Z* = 𝑍 - 𝑡V*

6.3) Using MATLAB, plot the contours of 

f(Z0, V) = 𝑍0
2 + 3Z0V + 3.5V2 – 9Z0 -25V + 23

Find the minimizer (Z*, V*) graphically
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EXERCISES
6.4) Find the minimizer of

fw(x) = (Z – Hx)TW(Z – Hx)
and verify that 

xLS = (HTWH)-1HTWZ
6.5) The generalized inverse of H is

H+ = (HTH)-1HT if m > n
= HT(HHT)-1 if m < n

when H is of full rank
Verify that H+ satisfies the Moore-Penrose Condition: (Module – 3)
a) HH+H = H
b) H+HH+ = H+

c) (HH+)T = HH+

d) (H+H)T = H+H 28
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