STATIC, DETERMINISTIC LINEAR INVERSE (WELL - POSED) PROBLEM

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

PROBLEM STATEMENT - A ST.LINE PROBLEM

- A particle is moving in a st. line:
- Constant velocity, V - Not known
- Initial position, Z_{0} - Not known
- Observations of position Z_{i} at time t_{i} for $1 \leq i \leq m$ are available

TIME	t_{1}	t_{2}	$\ldots \mathrm{t}_{\mathrm{i}} \ldots$	T_{m}
POSITION	Z_{1}	Z_{2}	$\ldots \mathrm{Z}_{\mathrm{i}} \ldots$	Z_{m}

- Problem: Given the pair $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m}$, estimate the unknowns $\mathrm{Z}_{0}, \mathrm{~V}$

BUILD A LINEAR MODEL

- To enable estimation of the unknowns, we need to build a relation - called the model between the known and unknowns
- From basic Physics relating time and motion:

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{0}+\mathrm{Vt}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

must hold for each $1 \leq \mathrm{i} \leq \mathrm{m}$

- In matrix-vector notation (6.1) becomes

- Equation (3) is a linear model
- Given (Z, H), find x, is the linear inverse problem

A GENERALIZATION - LINEAR MODEL

- Let $Z \in R^{m}$ be the observation vector
- R^{m} is called the observation space
- Let $x \in R^{n}$ be the unknown vector
- R^{n} is called the model space
- $H \in R^{m \times n}$ is the relation between the model space and observation space

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{Hx} \\
\eta & =\mathrm{H}^{\top} \xi
\end{aligned}
$$

ON SOLVING Z = Hx

- When $\mathrm{m}=\mathrm{n}$ and H is non-singular, then

$$
\begin{equation*}
\mathrm{x}=\mathrm{H}^{-1} \mathrm{Z} \tag{4}
\end{equation*}
$$

- When $\mathrm{m} \neq \mathrm{n}, \mathrm{H}$ is a rectangular matrix and the standard notion of non-singularity does not apply
- Two cases arise:
$\mathrm{m}>\mathrm{n}$ - overdetermined case - Inconsistent case
$\mathrm{m}<\mathrm{n}$ - underdetermined case - Infinity many solution

OVERDETERMINED CASE: $\mathrm{m}>\mathrm{n}$

- $\mathrm{m}=3$ and $\mathrm{n}=2, \mathrm{H}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$
- Columns are H are linearly independent
- SPAN(H) = 2-D plane defined by these two columns which is a subset of R^{3}
- Let $Z=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$, since $Z=(-1)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+1\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), Z \in \operatorname{SPAN}(H)$
- $Z=H x$ has a solution $x=\binom{-1}{1}$

INCONSISTENT CASE: $\mathrm{m}>\mathrm{n}$

- Recall that columns of H are defined by the mathematical model but the column Z of observation that come from the real world measurement
- Generally, observations have noise embedded in them and models are only approximations to reality
- Hence, move often than not, Z does not belong to the $\operatorname{SPAN}(H)$
- In such cases $\mathrm{Z}=\mathrm{HX}$ has no solution in the sense that there is no vector x that will satisfy equation $Z=H x$

ANOTHER LOOK AT INCONSISTENT CASE: m > n

- $m=3, n=2, H=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$
- $Z=(2,3.5,4.2)^{\top}$
- $\mathrm{Z}=\mathrm{Hx} \quad \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=2, \mathrm{x}_{1}+2 \mathrm{x}_{2}=3.5, \mathrm{x}_{1}+3 \mathrm{x}_{2}=4.2$
- Verify that $x_{1}=\frac{1}{2}$ and $x_{2}=\frac{3}{2}$ is the solution of the first two, but this does not satisfy the third
- Verify that solution of any two out of these three equations, does not satisfy the remaining equation
- In this sense there is no solution to $\mathrm{Z}=\mathrm{Hx}$ when $\mathrm{m}>\mathrm{n}$

UNDERDETERMINED CASE: $\mathrm{m}<\mathrm{n}$

- $m=2, n=3, H=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 5\end{array}\right]$
- $\mathrm{Z}=\mathrm{Hx}$ becomes

$$
\begin{aligned}
& Z_{1}=x_{1}+2 x_{2}+3 x_{3} \\
& Z_{2}=x_{1}+4 x_{2}+5 x_{3}
\end{aligned}
$$

- Rewrite:

$$
\begin{aligned}
& x_{1}+2 x_{2}=z_{1}-3 x_{3} \\
& x_{1}+4 x_{2}=z_{2}-5 x_{3}
\end{aligned}
$$

- For each $x_{3} \in R$, there is a pair $\left(x_{1}\left(x_{3}\right), x_{2}\left(x_{3}\right)\right)^{\top}$ that is the solution of this pair
- $Z=H x$ has infinite solution $\left(x_{1}\left(x_{3}\right), x_{2}\left(x_{3}\right), x_{3}\right)^{\top}$
- Hence, there is no uniqueness in this case when $m<n$

SUMMARY - LINEAR INVERSE PROBLEM

- $\mathrm{Z}=\mathrm{Hx}$ and H is of full rank

- Overdetermined
- $\operatorname{Rank}(\mathrm{H})=\mathrm{n}$
- Inconsistent system
- No solution
- $\operatorname{Rank}(\mathrm{H})=\mathrm{n}$
- Unique solution $\mathrm{X}=\mathrm{H}^{-1} \mathrm{Z}$
- Underdetemined
- $\operatorname{Rank}(\mathrm{H})=\mathrm{m}$
- Infinitely many solution
- No uniqueness
- Thus, we need to generalize the concept of solution for the two extreme cases when $\mathrm{m}>\mathrm{n}$ and $\mathrm{m}<\mathrm{n}$
- This generalized solution in called the lease square solution

UNWEIGHTED LEAST SQUARES SOLUTION: $\mathrm{m}>\mathrm{n}$

- Define $\Lambda(x)=Z-H x \in R^{m}$ - residual vector $<-r(x)$
- Recall when $m>n$, there is no $x \in R^{n}$ for which $r(x)=0$
- As a compromise, we seek $x \in R^{n}$ for which the vector $r(x)$ will have a minimum length
- To this end, define $\mathrm{f}(\mathrm{x})=\|\mathrm{r}(x)\|_{2}^{2}=\mathrm{r}^{\top}(\mathrm{x}) \mathrm{r}(\mathrm{x})=\sum_{i=1}^{n} \mathrm{r}_{i}^{2}(x)$ which is the square of the norm of the residual
- $r_{i}(x)=Z_{i}-H_{i} * x$ where $H_{i *}$ is the $i^{\text {th }}$ row of H $=\mathrm{i}^{\text {th }}$ component of the residual vector
- Hence, $f(x)=$ sum of the squares of the components of the residual vector
- The vector $x \in R^{n}$ that minimizes $f(x)$ is called the least squares solution

LEAST SQUQARES METHOD: $m>n$

$$
\text { - } \begin{align*}
f(x) & =r^{\top}(x) r(x)=(Z-H x)^{\top}(Z-H x) \\
& =\left(Z^{\top}-(H x)^{\top}\right)(Z-H x) \\
& =\left(Z^{\top}-x^{\top} H^{\top}\right)(Z-H x) \\
& =Z^{\top} Z-Z^{\top} H x-x^{\top} H^{\top} Z+x^{\top}\left(H^{\top} H\right) x \tag{5}
\end{align*}
$$

- $Z^{\top} H x$ being a scalar: $Z^{\top} H x=\left(Z^{\top} H x\right)^{\top}$

$$
\begin{equation*}
=x^{\top} H^{\top} Z \tag{6}
\end{equation*}
$$

- Therefore, $f(x)=Z^{\top} Z-2 Z^{\top} H x+x^{\top}\left(H^{\top} H\right) x$
- Find x that minimizes $f(x)$ in (7)

$H^{\top} H$ SPD WHEN H IS OF FULL RANK

- Since $H^{\top} H=\left(H^{\top} H\right)^{\top}, H^{\top} H$ is symmetric
- Consider $\mathrm{x}^{\top}\left(\mathrm{H}^{\top} \mathrm{H}\right) \mathrm{x}=\left(\mathrm{x}^{\top} \mathrm{H}^{\top}\right)(\mathrm{Hx})=(\mathrm{Hx})^{\top}(\mathrm{Hx})$

$$
\begin{equation*}
=\|H x\|_{2}^{2} \tag{8}
\end{equation*}
$$

- Since $m>n, \operatorname{Rank}(H)=n$ and the columns of H are linearly independent
- That is, $\mathrm{Hx}=0$ exactly when $\mathrm{x}=0$

$$
\neq 0 \text { otherwise }
$$

- Hence $x^{\top}\left(H^{\top} H\right) x>0$ for $x \neq 0$

$$
\begin{equation*}
=0 \text { only when } \mathrm{x}=0 \tag{9}
\end{equation*}
$$

- $\left(\mathrm{H}^{\top} \mathrm{H}\right)$ is positive definite

GRADIENT AND HESSIAN OF $\mathrm{f}(\mathrm{x})$

- Refer to $f(x)$ in (7)
- $\nabla_{x}\left(Z^{\top} Z\right)=0, \nabla_{x}^{2}\left(Z^{\top} Z\right)=0$
- $\nabla_{x}\left(2 Z^{\top} H x\right)=2 \nabla_{x}\left(a^{\top} x\right)$ with $\mathrm{a}=\mathrm{H}^{\top} Z$ $=2 \mathrm{a}=2 \mathrm{H}^{\top} \mathrm{Z}$
- $\nabla_{x}^{2}\left(2 Z^{\top} H x\right)=0$
- $\nabla_{x}\left(x^{\top}\left(H^{\top} H\right) x\right)=2\left(H^{\top} H\right) x$
- $\nabla_{x}^{2}\left(x^{\top}\left(H^{\top} H\right) x\right)=2 H^{\top} H-S P D$
- Combining
- Gradient of $\mathrm{f}=\nabla_{x} \mathrm{f}(\mathrm{x})=-2 \mathrm{H}^{\top} \mathrm{Z}+2\left(\mathrm{H}^{\top} \mathrm{H}\right) \mathrm{x}$
-> (10)
- Hessian of $f=\nabla_{x}^{2} f(x)=2\left(H^{\top} H\right)$
-> (11)

UNCONSTRAINED MINIMIZATION OF $\mathrm{f}(\mathrm{x})$ - NORMAL EQUATION

- Setting $\nabla_{x} f(x)=-2 H^{\top} Z+2\left(H^{\top} H\right) x=0$
- Least square solution is the solution of the Normal equations which is linear symmetric, positive definite system: $\left(H^{\top} H\right) x=H^{\top} Z \quad->(12)$
- Or $\mathrm{X}_{\mathrm{IS}}=\left(\mathrm{H}^{\top} \mathrm{H}\right)^{-1} \mathrm{H}^{\top} \mathrm{Z}=\mathrm{H}^{+} \mathrm{Z} \quad->$ (13)

$$
\mathrm{H}^{+}=\left(\mathrm{H}^{\top} H\right)^{-1} \mathrm{H}^{\top}-\text { Generalized inverse of } \mathrm{H} \rightarrow(14)
$$

- Since the Hessian $\nabla_{x}^{2} f(x)=2\left(H^{\top} H\right)$ is SPD, $f(x)$ is a convex function and hence the minimum is unique

MINIMUM RESIDUAL

- The minimum residual $r\left(x_{L S}\right)=Z-H x_{L S}$
- By (14): $\mathrm{r}\left(\mathrm{x}_{\mathrm{LS}}\right)=\left[I-\mathrm{H}\left(\mathrm{H}^{\top} \mathrm{H}\right)^{-1} \mathrm{H}^{\top}\right] Z \neq 0 \quad$-> (15)
- Here in lies the difference between the classical solution where $r(x)=0$ and the least squares solution where $r\left(x_{15}\right) \neq 0$ for the overdetermined case
- Verify $\mathrm{f}\left(\mathrm{x}_{\mathrm{I}}\right)=\|\mathrm{r}(x)\|_{2}^{2}=\mathrm{Z}^{\top}\left[I-\mathrm{H}\left(\mathrm{H}^{\top} \mathrm{H}\right)^{-1} \mathrm{H}^{\top}\right] \mathrm{Z} \quad->(16)$ which is the minimum value of sum of square errors (SSE)

AN ILLUSTRATION - ST.LINE PROBLEM

$\cdot \mathrm{H}=\left[\begin{array}{cc}1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{m}\end{array}\right]$

- $\mathrm{H}^{\top} \mathrm{H}=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ t_{1} & t_{2} & \cdots & t_{m}\end{array}\right]\left[\begin{array}{cc}1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{m}\end{array}\right]=\left[\begin{array}{cc}m & \sum_{i=1}^{m} t_{i} \\ \sum_{i=1}^{m} t_{i} & \sum_{i=1}^{m} t_{i}^{2}\end{array}\right]$
- $\mathrm{H}^{\top} \mathrm{Z}=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ t_{1} & t_{2} & \cdots & t_{m}\end{array}\right]\left[\begin{array}{c}Z_{1} \\ Z_{2} \\ \vdots \\ Z_{m}\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{m} Z_{i} \\ \sum_{i=1}^{m} Z_{i} t_{i}\end{array}\right]$

ILLUSTRATION CONTINUED

- Normal equations: $\left(\mathrm{H}^{\top} \mathrm{H}\right) \mathrm{x}=\mathrm{H}^{\top} \mathrm{Z}$
- Dividing by $\mathrm{n}=>\left[\begin{array}{cc}\sum_{i=1}^{m} t_{i} & \sum_{i=1}^{m} t_{i}^{2} \\ \bar{t} & \frac{\bar{t}}{t^{2}}\end{array}\right]\left[\begin{array}{c}Z_{0} \\ V\end{array}\right]=\left[\begin{array}{c}\bar{Z} \\ \frac{Z}{t}\end{array}\right]$

$$
\bar{t}=\frac{1}{m} \sum_{i=1}^{m} t_{i}, \overline{t^{2}}=\frac{1}{m} \sum_{i=1}^{m} t_{i}^{2}, \bar{Z}=\frac{1}{m} \sum_{i=1}^{m} Z_{i}, \overline{Z t}=\frac{1}{m} \sum_{i=1}^{m} Z_{i} t_{i}
$$

- Solution: $\mathrm{V}^{*}=\frac{\overline{Z t}-\bar{t} \bar{Z}}{\overline{t^{2}}-(\bar{t})^{2}}$

$$
\mathrm{Z}^{*}=\bar{Z}-\bar{t} \mathrm{~V}^{*}
$$

- $\operatorname{SSE}=\mathrm{f}\left(Z_{0}{ }^{*}, \mathrm{~V}^{*}\right)=\sum_{i=1}^{m}\left[Z_{i}-\left(Z_{0}^{*}+V^{*} t_{i}\right)\right]^{2}$ is the minimum value of the sum of squared errors
- RMS error $=\left[\frac{S S E}{m}\right]^{\frac{1}{2}}=\left[\frac{f\left(Z_{0}^{*}, V^{*}\right)}{m}\right]^{1 / m}$ is a measure of the linear fit

NUMERICAL EXAMPLE - ALGEBRAIC METHOD

- $m=4, n=2, H=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4\end{array}\right], Z=\left[\begin{array}{l}1.0 \\ 3.0 \\ 2.0 \\ 3.0\end{array}\right]$
- $\bar{t}=1.5, \overline{t^{2}}=3.5, \bar{Z}=2.25, \overline{Z t}=4$
- Normal equation: $\left[\begin{array}{cc}1 & 1.5 \\ 1.5 & 3.5\end{array}\right]\left[\begin{array}{c}Z_{0} \\ V\end{array}\right]=\left[\begin{array}{c}2.25 \\ 4\end{array}\right]$
- Solution: $\mathrm{V}^{*}=0.5, \mathrm{Z}_{0}{ }^{*}=1.5$
- Filted/assimilated model: $Z_{i}=1.5+0.5 t_{i}$
- SSE = 1.5, RMS error $=0.6124$

CONTOURS OF $\mathrm{f}(\mathrm{x})$ - GRAPHICAL METHOD

- Using the data in slide (19) we can get

$$
\begin{aligned}
f\left(Z_{0}, V\right) & =Z^{\top} Z-2 Z^{\top} H x+x^{\top}\left(H^{\top} H\right) x \\
& =Z_{0}^{2}+3 Z_{0} V+3.5 V^{2}-9 Z_{0}-25 V+23
\end{aligned}
$$

- The contours of $f\left(Z_{0}, V\right)$ using MATLAB is given below
- The minimum is $\mathrm{Z}_{0}^{*}=1.5, \mathrm{~V}^{*}=0.5$

WEIGHTED LEAST SQUARES: $m>n$

- Let $W \in R^{m x m}$ be a SPD matrix
- The weighted sum of squared errors:

$$
f_{w}(x)=(Z-H x)^{\top} W(Z-H x)
$$

- W - could be a diagonal matrix with different weights along the diagonal or a general SPD
- Verify that the normal equations in this case is

$$
\left(H^{\top} W H\right) x=H^{\top} W Z
$$

- The weighted least square solution is:

$$
X_{I s}=\left(H^{\top} W H\right)^{-1} H^{\top} W Z \quad->(17)
$$

UNDERDETERMINED CASE: $\mathrm{m}<\mathrm{n}$

- Recall: There are infinitely many solutions
- $r(x)=0$ for infinitely many $x \in R^{n}$
- Unlike when $\mathrm{m}>\mathrm{n}$, in this case $\mathrm{f}(\mathrm{x})=\|\mathrm{r}(x)\|_{2}^{2}=0$
- Need a new approach
- To get an unique solution, formulate it as a constrained minimization problem using the standard Lagrangian multiplier methods for equality constrained problem (Module 5)

LAGRANGIAN FORMULATION: $m<n$

- Problem statement: Find $x \in R^{n}$ such that $\|x\|^{2}$ is a minimum when Z satisfies $\mathrm{Z}=\mathrm{Hx}$
- Let $\lambda \in \mathrm{R}^{\mathrm{m}}$ and define the Lagrangian

$$
L(x, \lambda)=\|x\|^{2}+\lambda^{\top}(Z-H x) \quad->(18)
$$

- Now the above constrained minimization is solved by minimizing $L(x, \lambda)$ with respect to $x \in R^{n}$ and $\lambda \in R^{m}$ as an unconstrained problem

LAGRANGIAN METHOD: m < n

- A necessary conditions for the minimum are:

$$
\begin{aligned}
& \nabla_{x} L(x, \lambda)=0 \\
& \nabla_{\lambda} L(x, \lambda)=0
\end{aligned}
$$

- By solving these two equations in the two unknowns x, λ, we get the optimal x and λ
- For Lin (18)

$$
\begin{aligned}
& \nabla_{x} L(x, \lambda)=2 x-H^{\top} \lambda=0 \\
& \nabla_{\lambda} L(x, \lambda)=Z-H x=0
\end{aligned}
$$

-> (19)

LEAST SQUARES SOLUTION: m < n

- Solving (19): $x=\frac{1}{2} H^{\top} \lambda \quad->(20)$

$$
Z=H x=\frac{1}{2} H H^{\top} \lambda \quad->(21)
$$

- From (21): $\lambda=2\left(\mathrm{HH}^{\top}\right)^{-1} \mathrm{Z} \quad->(22)$
- Using (22) in (19)

$$
\mathrm{X}_{\mathrm{Ls}}=\mathrm{H}^{\top}\left(\mathrm{HH}^{\top}\right)^{-1} \mathrm{Z} \quad->(23)
$$

- If H is of full rank, $\operatorname{Rank}(\mathrm{H})=m$ then it can be verified $\left(\mathrm{HH}^{\top}\right)$ is SPD
- X_{LS} is computed in two steps:
- Solve normal equations: $\left(\mathrm{HH}^{\top}\right) \mathrm{y}=\mathrm{Z}$ and find $\mathrm{y}=\left(\mathrm{HH}^{\top}\right)^{-1} \mathrm{Z}$
- $\mathrm{X}_{\mathrm{LS}}=\mathrm{H}^{\top} \mathrm{y}$

RESIDUAL AT $\mathrm{X}_{\text {LS }}$

- $r\left(x_{L S}\right)=Z-H x_{L S}$

$$
\begin{aligned}
& =\mathrm{Z}-H H^{\top}\left(H H^{\top}\right)^{-1} \mathrm{Z} \\
& =\mathrm{Z}-\mathrm{Z}=0
\end{aligned}
$$

- This is to be expected since we start with the infinitely many solutions for which $r(x)=0$

EXERCISES

6.1) Let $x_{1}+x_{2}=1, x_{1}+2 x_{2}=3.5, x_{1}+3 x_{2}=4.2$

Solve any two and verify that this solution is not consistent with the third equation
6.2) Solve $\left[\begin{array}{ll}1 & \bar{t} \\ \bar{t} & \overline{t^{2}}\end{array}\right]\left[\begin{array}{c}Z_{0} \\ V\end{array}\right]=\left[\begin{array}{c}\bar{Z} \\ Z t\end{array}\right]$
and verify that the solution is given: $\mathrm{V}^{*}=\frac{\overline{Z t}-\bar{t} \bar{Z}}{\overline{t^{2}}-(\bar{t})^{2}}, \mathrm{Z}^{*}=\bar{Z}-\bar{t} \mathrm{~V}^{*}$
6.3) Using MATLAB, plot the contours of
$f\left(Z_{0}, V\right)=Z_{0}^{2}+3 Z_{0} V+3.5 V^{2}-9 Z_{0}-25 V+23$
Find the minimizer $\left(Z^{*}, V^{*}\right)$ graphically

EXERCISES

6.4) Find the minimizer of

$$
f_{w}(x)=(Z-H x)^{\top} W(Z-H x)
$$

and verify that

$$
x_{L S}=\left(H^{\top} W H\right)^{-1} H^{\top} W Z
$$

6.5) The generalized inverse of H is

$$
\begin{aligned}
\mathrm{H}^{+} & =\left(H^{\top} H\right)^{-1} H^{\top} \text { if } \mathrm{m}>\mathrm{n} \\
& =\mathrm{H}^{\top}\left(H H^{\top}\right)^{-1} \text { if } \mathrm{m}<\mathrm{n}
\end{aligned}
$$

when H is of full rank
Verify that H^{+}satisfies the Moore-Penrose Condition: (Module - 3)
a) $\mathrm{HH}^{+} \mathrm{H}=\mathrm{H}$
b) $\mathrm{H}^{+} \mathrm{HH}^{+}=\mathrm{H}^{+}$
c) $\left(\mathrm{HH}^{+}\right)^{\top}=\mathrm{HH}^{+}$
d) $\left(\mathrm{H}^{+} \mathrm{H}\right)^{\top}=\mathrm{H}^{+} \mathrm{H}$

REFERENCES

- J. Lewis, S. Lakshmivarahan, S. Dhall (2006), Dynamic Data Assimilation: a least squares approach, Cambridge University Press Chapter 5

