OPTIMIZATION IN FINITE DIMENSIONAL VECTOR SPACES: AN OVERVIEW

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

A CLASSIFICATION - MINIMUN AND MAXIMUM

- Let $f: R^{n}->R$ and $f \in C^{2}\left(R^{n}\right)$
- f is twice continuously differentiable functional

$$
\min _{x \in R^{n}} f(x)=\max _{x \in R^{n}}\{-f(x)\}
$$

- Consider only minimization

A CLASSIFICATION - UNI VS MULTI MODAL

- $\mathrm{N}_{\varepsilon}(\mathrm{x})=\left\{\mathrm{y} \in \mathrm{R}^{\mathrm{n}} \mid\|y-x\| \leq \varepsilon\right\} \subset R^{n}$ called $\underline{\varepsilon}$-neighborhood
- If $x^{*} \in R^{n}$ is such that $f\left(x^{*}\right) \leq f(y)$ for all $y \in N_{\varepsilon}\left(x^{*}\right)$, then x^{*} is a local minimum
- If $x^{*} \in R^{n}$ is such that $f\left(x^{*}\right) \leq f(y)$ for all y, then x^{*} is a global minimum
- A function that has a unique minimum is a unimodal function
- Otherwise, it is a multimodal function
- $f(x)=x\left(x^{2}-1\right)$ is multimodal, $f(x)=x^{2}$ is unimodal

A CLASSIFICATION - CONSTRAINED VS UNCONSTRAINED

- Let $C \subset R^{n}$ defined by a set of equations or inequalities
- $C_{1}=\left\{x \in R^{2} \mid x_{1}+x_{2}=1\right\}$
x_{2}
- $\mathrm{C}_{2}=\left\{\mathrm{x} \in \mathrm{R}^{2} \mid \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{1}+\mathrm{x}_{2} \leq 1\right\}$
- Let $\mathrm{f}(\mathrm{x})=x_{1}^{2}+x_{2}^{2}$
C_{1}
- $\operatorname{Min}_{x \in R^{2}} f(x)$ is an unconstrained minimization
- $\operatorname{Min}_{x \in C_{1}} f(x)$ is a constrained minimization with equality constraints
- $\operatorname{Min}_{x \in C_{2}} f(x)$ is a constrained minimization with inequality constraints
- Linear and non linear programing deal with minimization under inequality constraints

A CLASSIFICATION - UNI VS MULTI-OBJECTIVE OPTIMIZATION

- If $\mathrm{f}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}$ is the only function to be minimized, it is known as uniobjective minimization
- If $f: R^{n}->R^{m}$ with $f(x)=\left(f_{1}(x), f_{2}(x), \ldots f_{m}(x)\right)^{\top}$ where we want to minimize some and maximize others, it is called multi-objective optimization
- Automobile design - Maximize fuel efficiency, minimize cost, maximize safety and comfort is an example of multi-objective optimization
- In this course we only deal with uni-objective minimization

ROLE OF CONVEXITY IN MINIMIZATION

- Let S be a subset of R^{n}
- S is called a convex set if for every pair of points x and y in S, the points along the line segment joining x and y are also in S

$$
\alpha x+(1-\alpha) y \in S \text { if } x, y \in S
$$

Convex sets

Non-Convex set

ROLE OF CONVEXITY IN MINIMIZATION

- Let S be a convex set in R^{n} and let $x, y \in S$
- A function $f: S->R$ is said to be a convex function if

$$
\begin{gathered}
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \\
\text { for all } \alpha \in[0,1]
\end{gathered}
$$

- A convex function lies below the chord
- Let $z=\alpha x+(1-\alpha) y$
- If $f(x)$ is convex, $-f(x)$ is concave
- $f(x)=x^{2}$ is convex but $g(x)=x^{3}$ is not

CHARACTERIZATION OF CONVEXITY

- If $f \in C^{1}(S)$ be a continuously differential function defined on a convex set S
- f is convex if and only if, for $x, y \in S$

$$
f(y) \geq f(x)+(y-x)^{\top} \nabla_{x} f(x)->\text { curve lies above the tangent }
$$

- $f(x)$ is strictly convex if strict inequality holds
- If $f \in C^{2}(S)$ be twice continuously differentiable function on a convex set S
- Then f is convex if and only if the Hessian $\nabla_{x}^{2} f(x)$ is positive semidefinite. f is strictly convex if $\nabla_{\chi}^{2} f(x)$ is positive definite

CONVEXITY AND UNIMODALITY

- $f: S$-> R and S is a convex set
- Then f has a unique minimum
- If $\mathrm{f} \in \mathrm{C}^{2}(\mathrm{~S})$, then at this minimum $\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=0$ and $\nabla_{x}^{2} \mathrm{f}(\mathrm{x})$ is positive definite
- $f=x^{\top} A x-b^{\top} x$ is a typical convex function in $C^{2}\left(R^{n}\right)$ when A is symmetric and positive definite

CONDITIONS FOR UNCONSTRAINED MINIMUM

- $f: R^{n}->R$ and $f \in C^{2}(R)$
- A necessary condition for the minimum is that at the minimum

$$
\nabla_{x} f(x)=0->\text { Gradient Vanishes }
$$

- A sufficient condition for the minimum is that at the minimum $\nabla_{x}^{2} f(x)$ SPD -> Hessian is a (symmetric) positive definite matrix

EQUALITY CONSTRAINED MINIMUM - ELIMINATION

- Method of elimination : Illustration
- Maximize $A=a b$ when $2(a+b)=L$ is fixed
- Eliminate b in $\mathrm{A}: \mathrm{b}=\frac{L}{2}-\mathrm{a}$ and $\mathrm{A}=\mathrm{a}\left(\frac{L}{2}-\mathrm{a}\right)=\frac{L a}{2}-\mathrm{a}^{2}$

$$
\frac{d A}{d a}=\frac{L}{2}-2 a \text { and } \frac{d^{2} A}{d a^{2}}=-2<0
$$

- At the maximum $\mathrm{a}^{*}=\frac{L}{4}$ and $\mathrm{b}^{*}=\frac{L}{4}$ and $\mathrm{A}_{\max }=\frac{L^{2}}{16}$

EQUALITY CONSTRAINED MINIMIZATION - LAGRANGIAN MULTIPLIER

- Method of Lagrangian multiplier
- Let $g: R^{n}->R^{m}$ and $g \in C^{2}\left(R^{n}\right)$
- $g(x)=\left(g_{1}(x), g_{2}(x), \ldots g_{m}(x)\right)^{\top}$
- $\operatorname{Min} f(x)$ when $g(x)=b$ where $b \in R^{m}$
- Define the Lagrangian

$$
L(x, \lambda)=f(x)+\lambda^{\top}(b-g(x))
$$

- $\lambda \in \mathrm{R}^{\mathrm{m}}$ is the vector of undetermined Lagrangian multiplier
- At the minimum:

$$
\begin{aligned}
& \nabla_{x} \mathrm{~L}(\mathrm{x}, \lambda)=\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})-\sum_{i=1}^{m} \lambda_{i} \nabla_{x} g_{i}(x)=0 \\
& \nabla_{\mathrm{x}} \mathrm{~L}(\mathrm{x}, \lambda)=\mathrm{b}-\mathrm{g}(\mathrm{x})=0
\end{aligned}
$$

- A necessary condition for the minimum is that at the minimum the gradient $\nabla_{x} f(x)$ must be a linear combination of the gradients of the constraints

SUFFICIENT CONDITION FOR EQUALITY CONSTRAINTS

- The Hessian of $L(x, \lambda)$ is given by

$$
\nabla_{x}^{2} \mathrm{~L}(\mathrm{x}, \lambda)=\nabla_{x}^{2} \mathrm{f}(\mathrm{x})-\sum_{i=1}^{m} \lambda_{i} \nabla_{x}^{2} g_{i}(x)
$$

- Let $T=\left\{y \in R^{n} \mid y^{\top} \nabla g_{i}(x)=0,1 \leq i \leq m\right\}$
- T consists of all vectors that are orthogonal to $\nabla \mathrm{g}_{\mathrm{i}}(\mathrm{x}), 1 \leq \mathrm{i} \leq \mathrm{m}$. Indeed, T is the tangent plane to $\mathrm{g}_{\mathrm{i}}(\mathrm{x}), 1 \leq \mathrm{i} \leq \mathrm{m}$
- Let x^{*} be such that there exists $\lambda^{*} \in \mathrm{R}^{\mathrm{m}}$ with
a) $\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\sum_{i=1}^{m} \lambda_{i}^{*} \nabla_{x} g_{i}(x)$
b) $\nabla_{x}^{2} \mathrm{~L}\left(\mathrm{x}^{*}, \lambda\right)$ is positive definite on T

$$
y^{\top} \nabla_{x}^{2} \mathrm{~L}\left(\mathrm{x}^{*}, \lambda\right) \mathrm{y}>0 \text { for all } \mathrm{y} \in \mathrm{~T}
$$

Then, x^{*} is a relative constrained minimum

ILLUSTRATION - EQUALITY CONSTRAINT

- Let $\mathrm{n}=2, \mathrm{f}(\mathrm{x})=x_{1}+x_{1} x_{2}+3 x_{2}^{2}$ - to be minimized

$$
\mathrm{g}(\mathrm{x})=x_{1}+2 x_{2}-3=0-\text { constraint }
$$

- $\mathrm{L}(\mathrm{x}, \lambda)=\left(x_{1}+x_{1} x_{2}+3 x_{2}^{2}\right)-\lambda\left(x_{1}+2 x_{2}-3\right)$
- First-order necessary condition:

$$
\begin{gathered}
\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})-\lambda \nabla_{\mathrm{x}} \mathrm{~g}(\mathrm{x})=\left[\begin{array}{c}
1+x_{2}-\lambda \\
x_{1}+6 x_{2}-2 \lambda
\end{array}\right]=0 \\
x_{1}+2 x_{2}-3=0
\end{gathered}
$$

- Solution: $x_{1}^{*}=4, x_{2}^{*}=-\frac{1}{2}, \lambda^{*}=\frac{1}{2}$
- $\nabla_{x}^{2} \mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 6\end{array}\right], \nabla_{x}^{2} \mathrm{~g}(\mathrm{x})=\left[\begin{array}{rr}0 & 0 \\ 0 & 0\end{array}\right]^{2}, \nabla_{x}^{2} \mathrm{~L}(\mathrm{x}, \lambda)=\nabla_{x}^{2} \mathrm{f}(\mathrm{x})$
- $\nabla_{\mathrm{x}} \mathrm{f}\left(\mathrm{x}^{*}\right)=\frac{1}{2}\binom{1}{2}, \Rightarrow \mathrm{~T}=\left\{\left.\frac{2 \alpha}{\sqrt{5}}\binom{-2}{1} \right\rvert\, \alpha \in \mathrm{R}\right\}$
- $\frac{2 \alpha}{\sqrt{5}}(-2,1)\left[\begin{array}{cc}0 & 1 \\ 1 & 6\end{array}\right] \frac{2 \alpha}{\sqrt{5}}\binom{-2}{1}=\frac{8 \alpha^{\frac{1}{2}}}{5}>0$
- Hence $\left(x_{1}^{*}=4, x_{2}^{*}=-\frac{1}{2}\right)$ is a constrained minimum

PENALTY FUNCTION METHOD - EQUALITY CONSTRAINT

- Let $\mathrm{f}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}, \mathrm{g}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$
- Minimize $f(x)$ when $g(x)=b$
- Consider $\mathrm{P}_{\alpha}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\alpha \mathrm{g}^{\top}(\mathrm{x}) \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\frac{\alpha}{2} \sum_{i=1}^{m} g_{i}^{2}(x)$
- $\alpha>0$ is called the penalty constant
- $\nabla_{\mathrm{x}} \mathrm{P}_{\alpha}(\mathrm{x})=\nabla_{\mathrm{x}}^{\mathrm{f}}(\mathrm{x})+\alpha \mathrm{D}_{\mathrm{x}}^{\mathrm{T}}(\mathrm{g}) \mathrm{g}(\mathrm{x})$
where $D_{x}(g) \in R^{m \times n}$ is the Jacobian of $g(x)$
- Let $x^{*}(\alpha)$ be the solution of $\nabla_{x} P_{\alpha}(x)=0$

PENALTY FUNCTION METHOD - EQUALITY CONSTRAINT

- It can be shown $\lim _{\alpha \rightarrow \infty} x^{*}(\alpha) \rightarrow x^{*}$, the constrained minimum
- Rewrite

$$
\begin{aligned}
\nabla_{\mathrm{x}} \mathrm{P}_{\alpha}(\mathrm{x}) & =\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})+\sum_{i=1}^{m} \nabla_{x} g_{i}(x)\left[\alpha g_{i}(x)\right] \\
& =\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})+\sum_{i=1}^{m} \nabla_{x} g_{i}(x) \lambda_{i}(\alpha)
\end{aligned}
$$

where $\lambda_{i}(\alpha)=\alpha g_{i}(x), 1 \leq \mathrm{i} \leq \mathrm{m}$ plays the role of the Lagrangian multiplier

- It can be shown $\lim _{\alpha \rightarrow \infty} \lambda_{i}(\alpha)=\lambda_{i}^{*}$, the value of the Lagrangian multiplier at the minimun

ILLUSTRATION

- $\mathrm{n}=2, \mathrm{f}(\mathrm{x})=x_{1}^{2}+x_{2}^{2}$ - to be minimized

$$
\mathrm{g}(\mathrm{x})=x_{1}+x_{2}-1 \text { - constraint }
$$

- $\mathrm{P}_{\alpha}(\mathrm{x})=x_{1}^{2}+x_{2}^{2}+\frac{\alpha}{2}\left[x_{1}+x_{2}-1\right]^{2}$

$$
\begin{aligned}
& \nabla_{\mathrm{x}} \mathrm{P}_{\alpha}(\mathrm{x})=\left[\begin{array}{c}
x_{1}(2+\alpha)+\alpha x_{2}-\alpha \\
e x_{1}+(2+\alpha)-\alpha
\end{array}\right]=0 \\
& \Rightarrow \mathrm{x}^{*}(\alpha)=\left(\frac{1}{2+\alpha^{-1}}, \frac{1}{2+\alpha^{-1}}\right)^{\top}
\end{aligned}
$$

- Multiplier $\lambda(\alpha)=\alpha g\left(x^{*}(\alpha)\right)=\frac{1}{1+\alpha^{-1}}$
- As $\alpha->\infty, x^{*}=\left(\frac{1}{2}, \frac{1}{2}\right)^{\top}$ and $\lambda^{*}=1$ which is the minimizer obtained using Lagrangian multiplier method

STRONG VS WEAK CONSTRAINED FORMULATION

- $\operatorname{Min} f(x)$ when $g(x)=b$
- Lagrangian multiplier method is called strong constraint formulation which forces the exact equality condition
- Penalty function method is called weak constraint formulation which only forces approximate equality depending on the value of α, the solution is more closer the constraint and $\alpha->\infty$, the constraint is exactly satisfied
- We will use both of these formulations

EXERCISES

5.1) Plot $f(\alpha)=x\left(x^{2}-1\right)$ for $-2 \leq x \leq 2$ and identify the minima and maxima
5.2) Let $f(x)$ has a minimum at x^{*} then show that $a f(x), f(x)+c$, and $\mathrm{af}(\mathrm{x})+\mathrm{c}$ all have a minimum at x^{*}
5.3) Find the minimizer of $\mathrm{f}(\mathrm{x})=x_{1}^{2}+x_{2}^{2}$ when $\mathrm{x}_{1}+\mathrm{x}_{2}=1$ using Lagrangian multiplier method
5.4) Find the x that minimizes $\frac{\alpha}{2}\|x\|^{2}$ under the constraint $\mathrm{Z}=\mathrm{Hx}$ using
(a) Lagrangian multiplier and (b) Penalty function method
5.5) Find the minimizer of

$$
\begin{aligned}
& \text { 1) } f_{1}(x)=(Z-H x)^{\top} W(Z-H x) \\
& \text { 2) } f(x)=f_{1}(x)+\left(x-x_{b}\right)^{\top} B^{-1}\left(x-x_{b}\right)
\end{aligned}
$$

REFERENCES

- D. G. Luenberger (1969) Otimization in Vector Spaces, Wiley
- D. G. Luenberger (1973) Introduction to Linear and Nonlinear Programming, Addison Wesley
- S. G. Nash and A. Sofer (1996) Linear and Nonlinear Programming, McGraw Hill

