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A CLASSIFICATION – MINIMUN AND MAXIMUM
• Let f: Rn -> R and f ∈ C2(Rn)

• f is twice continuously differentiable functional

min
𝑥 ∈ 𝑅𝑛

𝑓(𝑥) = max
𝑥 ∈ 𝑅𝑛

{−𝑓 𝑥 }

• Consider only minimization
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A CLASSIFICATION – UNI VS MULTI MODAL
• Nε(x) = { y ∈ Rn | 𝑦 − 𝑥 ≤ 𝜀 } ⊂ 𝑅𝑛 called ε – neighborhood

• If x* ∈ Rn is such that f(x*) ≤ f(y) for all y ∈ Nε(x*), then x* is a local 
minimum

• If x* ∈ Rn is such that f(x*) ≤ f(y) for all y, then x* is a global minimum

• A function that has a unique minimum is a unimodal function

• Otherwise, it is a multimodal function

• f(x) = x(x2 – 1) is multimodal, f(x) = x2 is unimodal
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A CLASSIFICATION – CONSTRAINED VS UNCONSTRAINED

• Let C ⊂ Rn defined by a set of equations or inequalities

• C1 = { x ∈ R2 | x1 + x2 = 1 }

• C2 = { x ∈ R2 | x1 ≥ 0, x2 ≥ 0,  x1 + x2 ≤ 1 }

• Let f(x) = 𝑥1
2 + 𝑥2

2

• Min
𝑥 ∈ 𝑅2

𝑓(𝑥) is an unconstrained minimization

• Min
𝑥 ∈ 𝐶1

𝑓(𝑥) is a constrained minimization with equality constraints

• Min
𝑥 ∈ 𝐶2

𝑓(𝑥) is a constrained minimization with inequality constraints

• Linear and non linear programing deal with minimization

under inequality constraints

• In this course we will deal with unconstrained and 

equality constrained minimization problem only
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A CLASSIFICATION – UNI VS MULTI-OBJECTIVE OPTIMIZATION

• If f: Rn -> R is the only function to be minimized, it is known as uni-
objective minimization

• If f: Rn -> Rm with f(x) = (f1(x), f2(x), … fm(x))T where we want to 
minimize some and maximize others, it is called multi-objective 
optimization

• Automobile design – Maximize fuel efficiency, minimize cost, 
maximize safety and comfort is an example of multi-objective 
optimization

• In this course we only deal with uni-objective minimization
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ROLE OF CONVEXITY IN MINIMIZATION
• Let S be a subset of Rn

• S is called a convex set if for every pair of points x and y in S, the 
points along the line segment joining x and y are also in S

αx + (1 – α)y ∈ S if x, y ∈ S

Convex sets Non-Convex set
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ROLE OF CONVEXITY IN MINIMIZATION
• Let S be a convex set in Rn and let x, y ∈ S

• A function f: S -> R is said to be a convex function if 

f(αx + (1 – α)y) ≤ αf(x) + (1 – α)f(y) 

for all α ∈ [0, 1]

• A convex function lies below the chord 

• Let z = αx + (1 – α)y

• If f(x) is convex, -f(x) is concave

• f(x) = x2 is convex but g(x) = x3 is not
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CHARACTERIZATION OF CONVEXITY
• If f ∈ C1(S) be a continuously differential function defined on a convex 

set S

• f is convex if and only if, for x, y ∈ S

f(y) ≥ f(x) + (y – x)T𝛻xf(x)  -> curve lies above the tangent

• f(x) is strictly convex if strict inequality holds

• If f ∈ C2(S) be twice continuously differentiable function on a convex 
set S

• Then f is convex if and only if the Hessian 𝛻𝑥
2f(x) is positive semi-

definite. f is strictly convex if 𝛻𝑥
2f(x) is positive definite
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CONVEXITY AND UNIMODALITY
• f: S -> R and S is a convex set

• Then f has a unique minimum

• If f ∈ C2(S), then at this minimum 𝛻xf(x) = 0 and 𝛻𝑥
2f(x) is positive 

definite

• f = xTAx – bTx is a typical convex function in C2(Rn) when A is 
symmetric and positive definite
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CONDITIONS FOR UNCONSTRAINED MINIMUM

• f: Rn -> R and f ∈ C2(R)

• A necessary condition for the minimum is that at the minimum

𝛻xf(x) = 0 -> Gradient Vanishes

• A sufficient condition for the minimum is that at the minimum

𝛻𝑥
2f(x) SPD -> Hessian is a (symmetric) positive definite matrix
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EQUALITY CONSTRAINED MINIMUM - ELIMINATION
• Method of elimination : Illustration

• Maximize A = ab when 2(a + b) = L is fixed

• Eliminate b in A: b = 
𝐿

2
- a and A = a(

𝐿

2
− a) =

𝐿𝑎

2
− a2

𝑑𝐴

𝑑𝑎
= 
𝐿

2
− 2a and 

𝑑2𝐴

𝑑𝑎2
= -2 < 0

• At the maximum a*= 
𝐿

4
and b* = 

𝐿

4
and Amax = 

𝐿2

16
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EQUALITY CONSTRAINED MINIMIZATION – LAGRANGIAN MULTIPLIER

• Method of Lagrangian multiplier
• Let g: Rn -> Rm and g ∈ C2(Rn)
• g(x) = (g1(x), g2(x), … gm(x))T

• Min f(x) when g(x) = b where b ∈ Rm

• Define the Lagrangian
L(x, λ) = f(x) + λT(b – g(x))

• λ ∈ Rm is the vector of undetermined Lagrangian multiplier
• At the minimum:

𝛻xL(x, λ) = 𝛻xf(x) -  𝑖=1
𝑚 𝜆𝑖𝛻𝑥𝑔𝑖(𝑥) = 0

𝛻xL(x, λ) = b – g(x) = 0
• A necessary condition for the minimum is that at the minimum the 

gradient 𝛻xf(x) must be a linear combination of the gradients of the 
constraints
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SUFFICIENT CONDITION FOR EQUALITY CONSTRAINTS

• The Hessian of L(x, λ) is given by 

𝛻𝑥
2L(x, λ) = 𝛻𝑥

2f(x) -  𝑖=1
𝑚 𝜆𝑖𝛻𝑥

2𝑔𝑖(𝑥)

• Let T = { y ∈ Rn | yT 𝛻gi(x) = 0, 1 ≤ i ≤ m }

• T consists of all vectors that are orthogonal to 𝛻gi(x), 1 ≤ i ≤ m. 
Indeed, T is the tangent plane to gi(x), 1 ≤ i ≤ m

• Let x* be such that there exists λ* ∈ Rm with
a) 𝛻xf(x) =  𝑖=1

𝑚 𝜆𝑖
∗𝛻𝑥𝑔𝑖(𝑥)

b) 𝛻𝑥
2L(x*, λ) is positive definite on T

yT 𝛻𝑥
2L(x*, λ)y > 0 for all y ∈ T

Then, x* is a relative constrained minimum
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ILLUSTRATION – EQUALITY CONSTRAINT
• Let n = 2, f(x) = 𝑥1 + 𝑥1𝑥2 + 3𝑥2

2 - to be minimized

g(x) = 𝑥1 + 2𝑥2 − 3 = 0 – constraint

• L(x, λ) = 𝑥1 + 𝑥1𝑥2 + 3𝑥2
2 − 𝜆(𝑥1+2𝑥2 − 3)

• First-order necessary condition:

𝛻xf(x) - λ𝛻xg(x) = 
1 + 𝑥2 − 𝜆

𝑥1 + 6𝑥2 − 2𝜆
= 0

𝑥1 + 2𝑥2 − 3 = 0

• Solution: 𝑥1
∗ = 4, 𝑥2

∗ = −
1

2
, 𝜆*= 

1

2

• 𝛻𝑥
2f(x) = 

0 1
1 6

, 𝛻𝑥
2g(x) = 

0 0
0 0

, 𝛻𝑥
2L(x, λ) = 𝛻𝑥

2f(x)

• 𝛻xf(x*) = 
1

2

1
2

, => T = { 
2𝛼

5

−2
1

| 𝛼 ∈ R}

•
2𝛼

5
(-2,1)

0 1
1 6

2𝛼

5

−2
1

= 
8𝛼2

5
> 0

• Hence (𝑥1
∗ = 4, 𝑥2

∗ = −
1

2
) is a constrained minimum

14



PENALTY FUNCTION METHOD – EQUALITY CONSTRAINT

• Let f: Rn -> R, g: Rn -> Rm

• Minimize f(x) when g(x) = b

• Consider Pα(x) = f(x)  + αgT(x)g(x) = f(x) + 
𝛼

2
 𝑖=1
𝑚 𝑔𝑖

2 𝑥

• α > 0 is called the penalty constant

• 𝛻xPα(x) = 𝛻xf(x) + αDx
T(g)g(x) 

where Dx(g) ∈ Rmxn is the Jacobian of g(x)

• Let x*(α) be the solution of 𝛻xPα(x) = 0
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PENALTY FUNCTION METHOD – EQUALITY CONSTRAINT

• It can be shown lim
𝛼→∞

𝑥∗(𝛼) → 𝑥∗, the constrained minimum

• Rewrite

𝛻xPα(x) = 𝛻xf(x) +  𝑖=1
𝑚 𝛻𝑥𝑔𝑖 𝑥 [𝛼 𝑔𝑖 𝑥 ]

= 𝛻xf(x) +  𝑖=1
𝑚 𝛻𝑥𝑔𝑖 𝑥 𝜆𝑖 𝛼

where 𝜆𝑖 𝛼 = 𝛼𝑔𝑖 𝑥 , 1 ≤ i ≤ m plays the role of the Lagrangian
multiplier

• It can be shown lim
𝛼→∞

𝜆𝑖(𝛼) = 𝜆𝑖
∗, the value of the Lagrangian

multiplier at the minimun
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ILLUSTRATION
• n = 2, f(x) = 𝑥1

2 + 𝑥2
2 - to be minimized

g(x) =  𝑥1 + 𝑥2 − 1 - constraint

• Pα(x) = 𝑥1
2 + 𝑥2

2 + 
𝛼

2
[𝑥1 + 𝑥2 − 1]

2

𝛻xPα(x) = 
𝑥1 2 + 𝛼 + 𝛼𝑥2 − 𝛼

𝑒𝑥1 + 2 + 𝛼 − 𝛼
= 0

=> x*(α) = (
1

2+ 𝛼−1
, 

1

2+ 𝛼−1
)T

• Multiplier λ(α) = αg(x*(α)) = 
1

1+ 𝛼−1

• As α -> ∞, x* = (
1

2
, 
1

2
)T and λ* = 1 which is the minimizer obtained 

using Lagrangian multiplier method
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STRONG VS WEAK CONSTRAINED FORMULATION
• Min f(x) when g(x) = b

• Lagrangian multiplier method is called strong constraint formulation 
which forces the exact equality condition

• Penalty function method is called weak constraint formulation which 
only forces approximate equality depending on the value of α, the 
solution is more closer the constraint and α -> ∞, the constraint is 
exactly satisfied

• We will use both of these formulations 
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EXERCISES
5.1) Plot f(α) = x(x2 – 1) for -2 ≤ x ≤ 2 and identify the minima and 
maxima

5.2) Let f(x) has a minimum at x* then show that af(x), f(x) + c, and   
af(x) + c all have a minimum at x*

5.3) Find the minimizer of f(x) = 𝑥1
2 + 𝑥2

2 when x1 + x2 = 1 using 
Lagrangian multiplier method

5.4) Find the x that minimizes 
𝛼

2
𝑥 2 under the constraint Z = Hx using 

(a) Lagrangian multiplier and (b) Penalty function method

5.5) Find the minimizer of

1) f1(x) = (Z – Hx)TW(Z – Hx)

2) f(x) = f1(x) + (x – xb)TB-1(x – xb) 19
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