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A CLASSIFICATION — MINIMUN AND MAXIMUM

* Letf: R"->R and f € C3R")

* fis twice continuously differentiable functional

min f(x) = max{—f(x)}

X ERN X ERM

* Consider only minimization



A CLASSIFICATION — UNI'VS MULTI MODAL

*N.(x)={y€R"| |ly —x|]| < ¢} € R" called € — neighborhood

* If x* € R"is such that f(x*) < f(y) for all y € N_(x*), then x* is a local
minimum

 If x* € R"is such that f(x*) < f(y) for all y, then x* is a global minimum
* A function that has a unique minimum is a unimodal function

e Otherwise, it is a multimodal function

* f(x) = x(x? — 1) is multimodal, f(x) = x? is unimodal



A CLASSIFICATION — CONSTRAINED VS UNCONSTRAINED

* Let C c R"defined by a set of equations or inequalities X3
* C,={XER? | x;+x,=1} (0, 1) :
*C,={x€ER?*|x;20,%,20, x; +%x,<1} :
e Let f(x) = x2 + x2 10 X
. Mi;?z f (x) is an unconstrained minimization '
X €
. l\/élgl f (x) is a constrained minimization with equality constraints
xelg
. l\/élg f (x) is a constrained minimization with inequality constraints
xelz
* Linear and non linear programing deal with minimization %2
: : : (0, 1)
under inequality constraints C,

* |In this course we will deal with unconstrained and
equality constrained minimization problem only (1, 0)



A CLASSIFICATION — UNI VS MULTI-OBJECTIVE OPTIMIZATION

 If f: R"-> R is the only function to be minimized, it is known as uni-
objective minimization

e If f: R" -> RM with f(x) = (f,(x), f,(x), ... f.,(x))T where we want to
minimize some and maximize others, it is called multi-objective
optimization

* Automobile design — Maximize fuel efficiency, minimize cost,

maximize safety and comfort is an example of multi-objective
optimization

* In this course we only deal with uni-objective minimization



ROLE OF CONVEXITY IN MINIMIZATION

e Let S be a subset of R"

* Sis called a convex set if for every pair of points x and y in S, the
points along the line segment joining x and y are also in S

ox+(l—a)yeSifx,y€S

SIVA

Convex sets Non-Convex set




ROLE OF CONVEXITY IN MINIMIZATION

* Let SbeaconvexsetinR"andletx,y €S
* A function f: S -> R is said to be a convex function if
flax + (1 —a)y) < af(x) + (1 — a)f(y)
forall a € [0, 1]
* A convex function lies below the chord

eletz=ax+(1—-a)y af(x) + (1~ a)f(y)
e If f(x) is convex, -f(x) is concave / f(y)
* f(x) = x? is convex but g(x) = x3 is not fx) _—" ()

X Z y



CHARACTERIZATION OF CONVEXITY

e If f € C}(S) be a continuously differential function defined on a convex
setS

* fis convex if and only if, for x, y € S
f(y) = f(x) + (y —x)"V f(x) -> curve lies above the tangent
* f(x) is strictly convex if strict inequality holds

* If f € C%(S) be twice continuously differentiable function on a convex
set S

* Then fis convex if and only if the Hessian V,2f(x) is positive semi-
definite. f is strictly convex if V2f(x) is positive definite



CONVEXITY AND UNIMODALITY

* f:S->Rand S is a convex set
* Then f has a unique minimum

* If f € C%(S), then at this minimum V f(x) = 0 and V.2f(x) is positive
definite

» f = xTAx — b'x is a typical convex function in C3(R") when A is
symmetric and positive definite



CONDITIONS FOR UNCONSTRAINED MINIMUM

e f: R"->R and f € C%(R)

* A necessary condition for the minimum is that at the minimum
V f(x) = 0 -> Gradient Vanishes

e A sufficient condition for the minimum is that at the minimum

V.2f(x) SPD -> Hessian is a (symmetric) positive definite matrix



EQUALITY CONSTRAINED MINIMUM - ELIMINATION

e Method of elimination : lllustration

 Maximize A = ab when 2(a + b) = L is fixed

. : L L L
'EllmlnatebmA:b=5-aandA=a(E—a)=7a—a2
dA L d?A
—=—--2aand—=-2<0
da 2 da?
. w_ L x L 12
e At the maximum a =Zand b =Zand Amale—6



EQUALITY CONSTRAINED MINIMIZATION — LAGRANGIAN MULTIPLIER

 Method of Lagrangian multiplier
* Let g: R"->R™and g € C%(R")
* g(x) = (g4(x), 85(x), ... (X))
* Min f(x) when g(x) = b where b € R™
* Define the Lagrangian
L(x, A) = f(x) + AT(b —g(x))
* A € RMis the vector of undetermined Lagrangian multiplier
* At the minimum:
V.L(x,\) =V f(x)- X% 4iVgi(x) =0
V.L(x,\)=b—-g(x)=0

* A necessary condition for the minimum is that at the minimum the
gradient V f(x) must be a linear combination of the gradients of the
constraints




SUFFICIENT CONDITION FOR EQUALITY CONSTRAINTS

* The Hessian of L(x, A) is given by
VEL(x, ) = VEf(x) - X%, V2 gi(x)
*letT={y€ER"|y"Vg(x)=0,1<i<m}
* T consists of all vectors that are orthogonal to VVgi(x), 1 <i<m.
Indeed, T is the tangent plane to gi(x), 1 <i<m

* Let x* be such that there exists A* € R™ with
a) V,f(x) = X% AV g: (x)
b) V.2L(x*, A) is positive definiteon T
v' VZL(x*, A)y>0forallyeT
Then, x* is a relative constrained minimum



ILLUSTRATION — EQUALITY CONSTRAINT

e Letn =2, f(x)=x; + x;x; + 3x5 - to be minimized
g(x) =xq4 + 2x, — 3 = 0 —constraint

e L(x,\) = (x; + x1x5 + 3x%) — A(x;+2x, — 3)

* First-order necessary condition:

[ 1+x,—24 ]
V. f(x) - AV g(x) = [x1 +6x, — 227 0
X1 + ZXZ — 3=
e Solution: x; = 4, x, = _ Il
» VFfix) = [O 1] V2g(x) = I OT 2L(x, N) = V;2f(x)
1 _6r 0 o)

-\7f(x*)— (;)— >T= {v_(]zz)mem

72 O éf(f) 5 >0

* Hence (x1 =4,x;, = _E) is a constrained minimum



PENALTY FUNCTION METHOD — EQUALITY CONSTRAINT

e Letf: R"->R, g: R"->RM
* Minimize f(x) when g(x) =b
* Consider P,(x) = f(x) + ag'(x)g(x) = f(x) +% mL.gf ()
* o> 0 is called the penalty constant
* V,P(x) =V f(x) + aDx (g)g(x)
where D, (g) € R™" is the Jacobian of g(x)
* Let x*(a) be the solution of V.P_(x) =0



PENALTY FUNCTION METHOD — EQUALITY CONSTRAINT

* It can be shown lim x*(a) = x7, the constrained minimum

a— O

* Rewrite
P.(x) =V f(x) + Zl 1 xgl(x) | gl(x)]
=V, f(x) + Xi21 Vegi () A; ()
where 4;(a) = ag;(x), 1 <i<m plays the role of the Lagrangian
multiplier
* It can be shown lim A;(a) = A4}, the value of the Lagrangian

a—)OO

multiplier at the minimun



ILLUSTRATION

e n=2,f(x)=x%+ x5 -to be minimized
g(x) = x4 + x, —1 - constraint
* P, (x) =x% + x% +%[x1 + x, —1]?
x12+a)+ax, —«a
ex;+2+a)—«a
1 1 i
2+ a1’ 2+ a1
1

1+ a1

V. P,(x)= =0

=>x*(a) = (

« Multiplier A(a) = ag(x*(a)) =

e As a -> 00, X* = (%, %)T and A* = 1 which is the minimizer obtained
using Lagrangian multiplier method



STRONG VS WEAK CONSTRAINED FORMULATION

* Min f(x) when g(x) =b

e Lagrangian multiplier method is called strong constraint formulation
which forces the exact equality condition

* Penalty function method is called weak constraint formulation which
only forces approximate equality depending on the value of a, the
solution is more closer the constraint and a -> oo, the constraint is
exactly satisfied

 We will use both of these formulations



EXERCISES

5.1) Plot f(a) = x(x? — 1) for -2 < x < 2 and identify the minima and
maxima

5.2) Let f(x) has a minimum at x* then show that af(x), f(x) + ¢, and
af(x) + c all have a minimum at x*

5.3) Find the minimizer of f(x) = x{ + x% when x, + x, = 1 using
Lagrangian multiplier method
5.4) Find the x that minimizes % |x]|? under the constraint Z = Hx using
(a) Lagrangian multiplier and (b) Penalty function method
5.5) Find the minimizer of

1) f,(x) = (Z—Hx)"W(Z — Hx)

2) f(x) = f,(x) + (x = x,)"B(x — x,)
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