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FUNCTIONS
• f: A -> B, A - Domain, B – range

• f is defined for all members of the domain and by definition it is single-valued, 
that is, f(x) ∈ B is unique for x ∈ A

• f is 1-1 ( injective) if f(x) ≠ f(y) for x ≠ y (|A| ≤ |B|)

• f is onto (surjective) if B = {f(x) | x ∈ A} (|A| ≥ |B|)

• f is 1-1 and onto (bijective) if f is both injective and surjective

Examples of functions: f(x) = |x|, x2, sinx, ex

2

y

fA B

x
x ∈ A f(x) ∈ B

f(∙)



TYPES OF FUNCTIONS
1. f is a scalar valued function of a scalar: f: R -> R 

• Examples: f(x) = xlog2 𝑥 , 2
𝑥, 𝑒𝑥

2. f is a scalar valued function of a vector: f: Rn -> R
• This is also called a functional
• Examples: 

• f(x) = ||x||, xTAx
• f(x) = <a, x> for a fixed a ∈ Rn

3. f is a vector valued function of a vector: f: Rn -> Rm

• f(x) = (f1(x), f2(x), … fm(x))T

• Examples: n = 3, m = 2, x = (x1, x2, x3)T

𝑓 𝑥 =
𝑓1(𝑥)
𝑓2(𝑥)

=
𝑥1
2 + 𝑥2

2 + 𝑥3
2

𝑥1𝑥2𝑥3
4. c[a, b] – set of all continuous functions defined on [a, b]

ck[a, b] – set of all functions with continuous derivative of order up to k.
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THE GRADIENT
• Let f: Rn -> R. Let x, z ∈ Rn

• f(x) is differentiable at x if and only if there exists a vector u ∈ Rn such that 

f(x + z) – f(x) = <u, z> + HOT(z)

HOT(z) = higher order term in z

lim
𝑧 →0

HOT(z)

| 𝑧 |
= 0

• The vector u ∈ Rn defined above is called the Gradient of f(x) with respect to x

• Gradient is denoted by 𝛻xf(x) and

𝛻xf(x) = ( 
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … 

𝜕𝑓

𝜕𝑥𝑛
)T

is a vector of partial derivation of f(x)
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PROPERTIES OF GRADIENT OPERATOR 𝛻
• Let f, g: Rn -> R

• 𝛻x(f + g) = 𝛻xf + 𝛻xg – Additive
• 𝛻x(cf) = c𝛻xf(x) – Homogeneous
• 𝛻x(fg) = f(x) 𝛻xg + (𝛻xf(x))g(x) – product rule
• Directional derivative of f at x in the direction z ∈ Rn:

f’(x, z) = <𝛻xf(x), z>  = || 𝛻xf|| ||z||cos𝜃
where 𝜃 is the angle between 𝛻xf and z

• A differentiable function changes at a maximum rate when z = 𝛻xf(x) by 
Cauchy-Schwarz inequality – (Module 2)

• Let x(t) = (x1(t), x2(t), … xn(t))T, then
𝑑𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝑥1

𝜕𝑥1

𝜕𝑡
+ 
𝜕𝑓

𝜕𝑥2

𝜕𝑥2

𝜕𝑡
+ … + 

𝜕𝑓

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑡
+ … + 

𝜕𝑓

𝜕𝑥𝑛

𝜕𝑥𝑛

𝜕𝑡

is called the total derivative of f with respect to t by chain rule
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THE HESSIAN MATRIX
• Let f: Rn -> R

• The Hessian matrix, denoted by 𝛻𝑥
2f is an nxn matrix of second-order 

partial derivatives

𝛻𝑥
2f = 

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 ⋯

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥𝑛
2

=
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
∈ Rnxn

• Hessian f is naturally a symmetric matrix, since
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
= 

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖 6



THE JACOBIAN MATRIX
• Let f: Rn -> Rm, x ∈ Rn, f(x) = (f1(x), f2(x), … fm(x))T

• The Jacobian of f denoted by Dx(f) is an mxn matrix

Dx(f) = 

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1

𝜕𝑓𝑚

𝜕𝑥2
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛

= 
𝜕𝑓𝑖

𝜕𝑥𝑗
∈ Rmxn

• Notice that the rows of Dx(f) are the transpose of the gradient of fi,    
1 ≤ i ≤ m
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EXAMPLES
1. Let a, x ∈ Rn f(x) = aTx =  𝑖=1

𝑛 𝑎𝑖𝑥𝑖

Then 𝛻xf = 

𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2

⋮
𝜕𝑓

𝜕𝑥𝑛

= 

𝑎1
𝑎2
⋮
𝑎𝑛

= a

2. Let A = 
𝑎 𝑏
𝑏 𝑐

f(x) = xTAx

f(x) = ax1
2 + 2bx1x2 +cx2

2

𝛻f(x) =  

𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2

= 
2𝑎𝑥1 + 2𝑏𝑥2
2𝑏𝑥1 + 2𝑐𝑥2

= 2
𝑎 𝑏
𝑏 𝑐

𝑥1
𝑥2

= 2Ax

3. Let f(x) = 
1

2
xTAx – bTx. Then

𝛻xf(x) = Ax -b 8



EXAMPLES
4. Let h(x) = (h1(x), h2(x), … hm(x))T. Let f(x) = aTh(x) = hT(x)a

where a ∈ Rm, x ∈ Rn

Then, 𝛻xf(x) = D𝑥
𝑇 h 𝑎, Dx(h) ∈ Rmxn - Jacobian of h

5. Let h(x) = (h1(x), h2(x), … hm(x))T, A ∈ Rmxn. Let f(x) = hT(x)Ah(x)

𝛻xf(x) = 2D𝑥
T h Ax

6. h(x) = g(f(x)) = g◦f(x)

Then Dx(h) = Dx(g)Dx(f)
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TAYLOR SERIES EXPANSION: f: R -> R

• Let x, z ∈ R

f(x + z) = f(x) + 
𝑑𝑓

𝑑𝑥
𝑧 +

1

2

𝑑2𝑓

𝑑𝑥2
𝑧2 + …+

1

𝑘!

𝑑𝑘𝑓

𝑑𝑥𝑘
𝑧𝑘 + …

• This an infinite series. By truncating at the kn degree term in z, we get 
kn order approximation

• We would be often interested in first and second order expansion 
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TAYLOR SERIES EXPANSION: f: Rn -> R
• f(x + z) ≈ f(x) + [𝛻xf (x)]Tz + 

1

2
zT𝛻𝑥

2f(x)z

• Since [𝛻xf (x)]T = Dx(f)

• f(x + z) ≈ f(x) + Dx(f)z + 
1

2
zT𝛻𝑥

2f(x)z
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TAYLOR SERIES EXPANSION: f: Rn -> Rm

• f(x) = (f1(x), f2(x), … fm(x))T;   x, z ∈ Rn

• f(x+z) ≈ f(x) + Dx(f)z + 
1

2
D𝑥
2(f, z)

where Dx(f) = 
𝜕𝑓𝑖

𝜕𝑥𝑗
∈ Rmxn Jacobian matrix

and

D𝑥
2(f, z) = 

𝑧𝑇𝛻𝑥
2𝑓1 𝑥 𝑧

𝑧𝑇𝛻𝑥
2𝑓2 𝑥 𝑧
⋮

𝑧𝑇𝛻𝑥
2𝑓𝑚 𝑥 𝑧

with 𝛻𝑥
2fk(x) =  

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
∈ Rnxn the Hessian of fk(x)
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FIRST AND SECOND VARIATION: f: Rn -> R
• Let δx = (δx1, δx2,… δxn)T be a small increment or perturbation of x

• Let Δf(x) be the resulting change f(x) induced by increment in x

• By Taylor Series expansion

f(x + δx) ≈ f(x) + [𝛻xf (x)]Tδx + 
1

2
(δx)T[𝛻𝑥

2f(x)]δx

≈ f(x) + δf + δ(2)f(x)

where δf = [𝛻xf (x)]Tδx = <𝛻xf (x), δx> is called the first variation of f(x) 

and δ(2)f(x) = 
1

2
(δx)T[𝛻𝑥

2f(x)]δx = 
1

2
<δx, 𝛻𝑥

2f(x)δx> is called the second 

variation of f
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FIRST VARIATION: f: Rn -> Rm

• Let f(x) = (f1(x), f2(x), … fm(x))T x ∈ Rn

• The first variation δf is a vector in Rm given by

δf = 

𝛿𝑓1
𝛿𝑓2
⋮
𝛿𝑓𝑚

=

<𝛻x𝑓1, δx>
<𝛻x𝑓2, δx>

⋮
<𝛻x𝑓𝑚, δx>

= Dx(f)δx
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EXAMPLES
1. f(x) = <a, x> => δf = <a, δx> = <δx, a>

2. f(x) = 
1

2
<x, Ax> => δf = <Ax, δx> ,  A is symmetric

3. f(x) = (z – Hx)T(z – Hx) => δf = <HT(Hx – z), δx> 
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EXERCISE
4.1 Let x = (x1, x2)T, h: R2 -> R2 given

h(x) = 
h1(x)
h2(x)

= 
𝑒𝑥1 + 𝑒𝑥2

𝑥2
2 + 𝑥2

2

Let xc = (1, 1)T. Compute the second – order Taylor approximation of h(x) 
around xc

4.2) Compute the first variation of

1) (Z – Hx)TW(z – Hx)

2) (x – xb)TB-1(x – xb)

4.3) Verify 𝛻xf (x) = D𝑥
𝑇(h)a when f(x) = aTh(x)

4.4) Verify Dx(h) = Dx(g)Dx(f) when h(x) = g(f(x)) = g◦f(x)

4.5) Compute the gradient and Hessian of

J(x) = 
1

2
(x – xb)TB-1(x – xb) + 

1

2
(Z – Hx)TR-1(Z – Hx) 
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