CONCEPT FROM MULTI-VARIATE CALCULUS:

AN OVERVIEW

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

FUNCTIONS

- $f: A->B, A$ - Domain, B - range
- f is defined for all members of the domain and by definition it is single-valued, that is, $f(x) \in B$ is unique for $x \in A$

- f is 1-1 (injective) if $f(x) \neq f(y)$ for $x \neq y(|A| \leq|B|)$
- f is onto (surjective) if $B=\{f(x) \mid x \in A\}(|A| \geq|B|)$
- f is 1-1 and onto (bijective) if f is both injective and surjective

Examples of functions: $f(x)=|x|, x^{2}, \sin x, e^{x}$

TYPES OF FUNCTIONS

1. f is a scalar valued function of a scalar: $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$

- Examples: $\mathrm{f}(\mathrm{x})=\mathrm{xlog}_{2} x, 2^{x}, e^{x}$

2. f is a scalar valued function of a vector: $f: R^{n}->R$

- This is also called a functional
- Examples:
- $f(x)=\| x| |, x^{\top} A x$
- $f(x)=\langle a, x\rangle$ for a fixed $a \in R^{n}$

3. f is a vector valued function of a vector: $f: R^{n}->R^{m}$

- $f(x)=\left(f_{1}(x), f_{2}(x), \ldots f_{m}(x)\right)^{\top}$
- Examples: $\mathrm{n}=3, \mathrm{~m}=2, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)^{\top}$

$$
f(x)=\binom{f_{1}(x)}{f_{2}(x)}=\binom{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{x_{1} x_{2} x_{3}}
$$

4. $c[a, b]$ - set of all continuous functions defined on [a, b]
$c^{k}[a, b]$ - set of all functions with continuous derivative of order up to k.

THE GRADIENT

- Let $f: R^{n}$-> R. Let $x, z \in R^{n}$
- $f(x)$ is differentiable at x if and only if there exists a vector $u \in R^{n}$ such that

$$
\begin{gathered}
f(x+z)-f(x)=\langle u, z>+\operatorname{HOT}(z) \\
\operatorname{HOT}(z)=\text { higher order term in } z
\end{gathered}
$$

$$
\lim _{\|z\| \rightarrow 0} \frac{\operatorname{HOT}(\mathrm{z})}{\|z\|}=0
$$

- The vector $u \in R^{n}$ defined above is called the Gradient of $f(x)$ with respect to x
- Gradient is denoted by $\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})$ and

$$
\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots \frac{\partial f}{\partial x_{n}}\right)^{\top}
$$

is a vector of partial derivation of $f(x)$

PROPERTIES OF GRADIENT OPERATOR ∇

- Let $\mathrm{f}, \mathrm{g}: \mathrm{R}^{\mathrm{n}}$-> R
- $\nabla_{\mathrm{x}}(\mathrm{f}+\mathrm{g})=\nabla_{\mathrm{x}} \mathrm{f}+\nabla_{\mathrm{x}} \mathrm{g}-$ Additive
- $\nabla_{x}(c f)=c \nabla_{x} f(x)$ - Homogeneous
- $\nabla_{x}(f g)=f(x) \nabla_{x} g+\left(\nabla_{x} f(x)\right) g(x)-$ product rule
- Directional derivative of f at x in the direction $z \in R^{n}$:

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x}, \mathrm{z})=\left\langle\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x}), \mathrm{z}\right\rangle=\|\left|\nabla_{\mathrm{x}} \mathrm{f}\right|| | \mathrm{z}| | \cos \theta \\
& \text { where } \theta \text { is the angle between } \nabla_{\mathrm{x}} \mathrm{f} \text { and } \mathrm{z}
\end{aligned}
$$

- A differentiable function changes at a maximum rate when $z=\nabla_{x} f(x)$ by Cauchy-Schwarz inequality - (Module 2)
- Let $x(t)=\left(x_{1}(t), x_{2}(t), \ldots x_{n}(t)\right)^{\top}$, then

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}+\ldots+\frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t}
$$

is called the total derivative of f with respect to t by chain rule

THE HESSIAN MATRIX

- Let $\mathrm{f}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}$
- The Hessian matrix, denoted by $\nabla_{x}^{2} f$ is an nxn matrix of second-order partial derivatives

$$
\nabla_{x}^{2} f=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right] \in \mathrm{R}^{\mathrm{nxn}}
$$

- Hessian f is naturally a symmetric matrix, since

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

THE JACOBIAN MATRIX

- Let $f: R^{n}->R^{m}, x \in R^{n}, f(x)=\left(f_{1}(x), f_{2}(x), \ldots f_{m}(x)\right)^{\top}$
- The Jacobian of f denoted by $D_{x}(f)$ is an mxn matrix

$$
\mathrm{D}_{\mathrm{x}}(\mathrm{f})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]=\left[\frac{\partial f_{i}}{\partial x_{j}}\right] \in \mathrm{R}^{\mathrm{m} \mathrm{\times n}}
$$

- Notice that the rows of $D_{x}(f)$ are the transpose of the gradient of f_{i}, $1 \leq i \leq m$

EXAMPLES

1. Let $\mathrm{a}, \mathrm{x} \in \mathrm{R}^{\mathrm{n}} \mathrm{f}(\mathrm{x})=\mathrm{a}^{\top} \mathrm{x}=\sum_{i=1}^{n} a_{i} x_{i}$

Then $\nabla_{\mathrm{x}} \mathrm{f}=\left(\begin{array}{c}\frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}}\end{array}\right)=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right)=\mathrm{a}$
2. Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] f(x)=x^{\top} A x$

$$
f(x)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

$$
\nabla \mathrm{f}(\mathrm{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{l}
2 a x_{1}+2 b x_{2} \\
2 b x_{1}+2 c x_{2}
\end{array}\right]=2\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=2 \mathrm{Ax}
$$

3. Let $f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x$. Then

$$
\nabla_{x} f(x)=A x-b
$$

EXAMPLES
4. Let $h(x)=\left(h_{1}(x), h_{2}(x), \ldots h_{m}(x)\right)^{\top}$. Let $f(x)=a^{\top} h(x)=h^{\top}(x) a$ where $a \in R^{m}, x \in R^{n}$
Then, $\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\mathrm{D}_{x}^{T}(\mathrm{~h}) a, \mathrm{D}_{\mathrm{x}}(\mathrm{h}) \in \mathrm{R}^{\mathrm{mxn}}$ - Jacobian of h
5. Let $h(x)=\left(h_{1}(x), h_{2}(x), \ldots h_{m}(x)\right)^{\top}, A \in R^{m \times n}$. Let $f(x)=h^{\top}(x) A h(x)$ $\nabla_{x} \mathrm{f}(\mathrm{x})=2 \mathrm{D}_{x}^{\mathrm{T}}(\mathrm{h}) \mathrm{Ax}$
6. $h(x)=g(f(x))=g \circ f(x)$

Then $D_{x}(h)=D_{x}(g) D_{x}(f)$

TAYLOR SERIES EXPANSION: f: R -> R

- Let $x, z \in R$

$$
\mathrm{f}(\mathrm{x}+\mathrm{z})=\mathrm{f}(\mathrm{x})+\frac{d f}{d x} z+\frac{1}{2} \frac{d^{2} f}{d x^{2}} z^{2}+\ldots+\frac{1}{k!} \frac{d^{k} f}{d x^{k}} z^{k}+\ldots
$$

- This an infinite series. By truncating at the k^{n} degree term in z, we get k^{n} order approximation
- We would be often interested in first and second order expansion

TAYLOR SERIES EXPANSION: f: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}$

- $\mathrm{f}(\mathrm{x}+\mathrm{z}) \approx \mathrm{f}(\mathrm{x})+\left[\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})\right]^{\top} \mathrm{z}+\frac{1}{2} \mathrm{z}^{\top} \nabla_{x}^{2} \mathrm{f}(\mathrm{x}) \mathrm{z}$
- Since $\left[\nabla_{x} f(x)\right]^{\top}=D_{x}(f)$
- $f(x+z) \approx f(x)+D_{x}(f) z+\frac{1}{2} z^{\top} \nabla_{x}^{2} f(x) z$

TAYLOR SERIES EXPANSION: $f: R^{n}->R^{m}$

- $f(x)=\left(f_{1}(x), f_{2}(x), \ldots f_{m}(x)\right)^{\top} ; \quad x, z \in R^{n}$
- $\mathrm{f}(\mathrm{x}+\mathrm{z}) \approx \mathrm{f}(\mathrm{x})+\mathrm{D}_{\mathrm{x}}(\mathrm{f}) \mathrm{z}+\frac{1}{2} \mathrm{D}_{x}^{2}(\mathrm{f}, \mathrm{z})$
where $D_{x}(\mathrm{f})=\left[\frac{\partial f_{i}}{\partial x_{j}}\right] \in \mathrm{R}^{\mathrm{mxn}}$ Jacobian matrix
and

$$
\mathrm{D}_{x}^{2}(f, z)=\left[\begin{array}{c}
z^{T} \nabla_{x}^{2} f_{1}(x) z \\
z^{T} \nabla_{x}^{2} f_{2}(x) z \\
\vdots \\
z^{T} \nabla_{x}^{2} f_{m}(x) z
\end{array}\right]
$$

with $\nabla_{x}^{2} f_{k}(\mathrm{x})=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right] \in \mathrm{R}^{\mathrm{nxn}}$ the Hessian of $\mathrm{f}_{k}(\mathrm{x})$

FIRST AND SECOND VARIATION: f: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}$

- Let $\delta x=\left(\delta x_{1}, \delta x_{2}, \ldots \delta x_{n}\right)^{\top}$ be a small increment or perturbation of x
- Let $\Delta f(x)$ be the resulting change $f(x)$ induced by increment in x
- By Taylor Series expansion

$$
\begin{aligned}
f(x+\delta x) & \approx f(x)+\left[\nabla_{x} f(x)\right]^{\top} \delta x+\frac{1}{2}(\delta x)^{\top}\left[\nabla_{x}^{2} f(x)\right] \delta x \\
& \approx f(x)+\delta f+\delta^{(2)} f(x)
\end{aligned}
$$

where $\delta \mathrm{f}=\left[\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})\right]^{\top} \delta \mathrm{x}=<\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x}), \delta \mathrm{x}>$ is called the first variation of $\mathrm{f}(\mathrm{x})$ and $\delta^{(2)} f(x)=\frac{1}{2}(\delta x)^{\top}\left[\nabla_{x}^{2} f(x)\right] \delta x=\frac{1}{2}<\delta x, \nabla_{x}^{2} f(x) \delta x>$ is called the second variation of f

FIRST VARIATION: f: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$

- Let $f(x)=\left(f_{1}(x), f_{2}(x), \ldots f_{m}(x)\right)^{\top} x \in R^{n}$
- The first variation δf is a vector in R^{m} given by

$$
\delta \mathrm{f}=\left[\begin{array}{c}
\delta f_{1} \\
\delta f_{2} \\
\vdots \\
\delta f_{m}
\end{array}\right]=\left[\begin{array}{c}
<\nabla_{\mathrm{x}} f_{1}, \delta \mathrm{x}> \\
<\nabla_{\mathrm{x}} f_{2}, \delta \mathrm{x}> \\
\vdots \\
<\nabla_{\mathrm{x}} f_{m}, \delta \mathrm{x}>
\end{array}\right]=\mathrm{D}_{\mathrm{x}}(\mathrm{f}) \delta \mathrm{x}
$$

EXAMPLES

1. $f(x)=\langle a, x\rangle=>\delta f=\langle a, \delta x\rangle=\langle\delta x, a\rangle$
2. $\left.f(x)=\frac{1}{2}<x, A x\right\rangle=>\delta f=\langle A x, \delta x\rangle, A$ is symmetric
3. $f(x)=(z-H x)^{\top}(z-H x)=>\delta f=\left\langle H^{\top}(H x-z), \delta x\right\rangle$

EXERCISE

4.1 Let $x=\left(x_{1}, x_{2}\right)^{\top}, h: R^{2} \rightarrow R^{2}$ given

$$
\mathrm{h}(\mathrm{x})=\binom{\mathrm{h}_{1}(\mathrm{x})}{\mathrm{h}_{2}(\mathrm{x})}=\binom{e^{x_{1}}+e^{x_{2}}}{x_{2}^{2}+x_{2}^{2}}
$$

Let $x_{c}=(1,1)^{\top}$. Compute the second - order Taylor approximation of $h(x)$ around x_{c}
4.2) Compute the first variation of

$$
\begin{aligned}
& \text { 1) }(Z-H x)^{\top} W(z-H x) \\
& \text { 2) }\left(x-x_{b}\right)^{\top} B^{-1}\left(x-x_{b}\right)
\end{aligned}
$$

4.3) Verify $\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x})=\mathrm{D}_{x}^{T}(\mathrm{~h})$ a when $\mathrm{f}(\mathrm{x})=\mathrm{a}^{\top} \mathrm{h}(\mathrm{x})$
4.4) Verify $D_{x}(h)=D_{x}(g) D_{x}(f)$ when $h(x)=g(f(x))=g \circ f(x)$
4.5) Compute the gradient and Hessian of

$$
J(x)=\frac{1}{2}\left(x-x_{b}\right)^{\top} B^{-1}\left(x-x_{b}\right)+\frac{1}{2}(Z-H x)^{\top} R^{-1}(Z-H x)
$$

REFERENCES

1. T. M. Apostol (1957) Mathematical Analysis, Addison-Wesley
