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DEFINITION, BASIC OPERATION
• An mxn real matrix A is a rectangular array of mn real numbers 

arranged in m rows and n columns as

A = 

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

= [aij] ∈ Rmxn

• Rmxn – set of all real mxn matrices

• Row index i: 1 ≤ i ≤ m, column index j: 1 ≤ j ≤ n

• When m = n, A is called a square matrix of size or order n

• If aij = 0 for all i,j, then A is called a zero or null matrix
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CROSS-SECTIONS OF A MATRIX
• Let A ∈ Rnxn

• ai* - ith row of A – row vector of size n

• a*j – jth column of A – column vector of size n

A = [a*1, a*n, …, a*n] = 

𝑎1∗
𝑎2∗
⋮
𝑎𝑛∗

<- column partition of A

• [a11, a22, …, ann] – principal diagonal

• Diagonals parallel to principal diagonal and above (below) the 
principal diagonal are called super (sub) diagonals
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OPERATIONS ON MATRICES
• A, B, C are matrices in Rnxn, x, y, z ∈ Rn, a, b, c are in R

• Sum/difference: C = A ± B  ->  cij = aij + bij

( element wise sum/difference)

• Scalar multiple: C = aA ->  cij = aaij

• Matrix-vector produc: y = Ax,     yi =  𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 , 1 ≤ 𝑖 ≤ 𝑛

or y =  𝑗=1
𝑛 𝑎∗𝑗𝑥𝑗 - Linear combination of the columns of A by 

elements of x
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OPERATIONS ON MATRICES
• Matrix-matrix product: C = AB

1. Inner product: cij =  𝑘=1
𝑛 𝑎𝑖𝑘𝑏𝑘𝑗 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛

2. Saxpy: c*j =  𝑖=1
𝑛 𝑎∗𝑗𝑏𝑖𝑗

3. Outer product: C =  𝑖=1
𝑛 𝑎∗𝑗𝑏𝑗∗

• AB ≠ BA – matrix product is not commutative.
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OPERATIONS ON MATRICES
• 1) Transpose of A ∈ Rmxn denoted by AT ∈ Rnxm - columns of A are the row of 

AT

A = 
1 2 3
3 2 1

AT =
1 3
2 2
3 1

• a) (AT)T = A
• b) (A + B)T = AT + BT

• c) (AB)T = BTAT

• 2) A ∈ Rnxn trace of A = tr(A) =  𝑖=1
𝑛 𝑎𝑖𝑖 = sum of diagonal elements

• a) tr: Rnxn -> R, a function of the vector space of nxn matries
• b) tr(A) = tr(AT)
• c) tr(A + B) = tr(A) + tr(B)
• d) tr(αA) = αtr(A)
• e) tr(AB) = tr(BA)
• f) tr(ABC) = tr(BCA) = tr(CAB)
• g) tr(ABA-1) = tr(B) 6



DETERMINANT OF A, B ∈ Rnxn

• Determinant of A denoted by det(A)

det(A) =  𝑗=1
𝑛 𝑎𝑖𝑗𝐴𝑖𝑗

Aij = cofactor of aij = (-1)i+j Mij

Mij = minor of aij =determinant of the (n-1)x(n-1) matrix obtained 
by deleting the ith row and jth column of A

a) A is nonsingular if det(A) ≠ 0 and singular otherwise

b) det(A) = det(AT)

c) det(AB) = det(A)det(B)

d) det(A-1) = 
1

det(𝐴)
if A is nonsingular
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SPECIAL MATRICES
• A ∈ Rnxn is symmetric if AT = A

• A = Diag(d1,d2, … dn) is a diagonal matrix of size n when 
aii = di

aij = 0 if i ≠ j

• In = Diag(1,1, …1) is the identity matrix of size n

• A is upper triangular if aij = 0 if i < j

• A is lower triangular if aij = 0 if i > j

• A is tridiagonal is aij ≠ 0 if |i – j| ≤ 1

= 0 otherwise

• A is orthogonal if AT = A-1
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SPECIAL MATRICES

• A ∈ Rnxn is skew symmetric if AT = -A. That is 
aii = -aji if i ≠ j

aij = 0 if i = j

• Let A ∈ Rnxn As = 
1

2
( A + AT) – symmetric part of A

Ass= 
1

2
( A - AT) – skew symmetric part of A

• A = As + Ass – Additive decomposition of A

• Let A ∈ Rnxm. Then AAT ∈ Rnxn and ATA ∈ Rmxm are symmetric and are 
called the Grammian of A
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RANK OF A MATRIX A ∈ Rmxn

• Row(column) rank of A = number of linear independent 
rows(columns) of A

• Row rank of A = column rank of A = Rank(A)

• 0 ≤ Rank(A) ≤ min{m,n}
a) Rank(A)  = Rank(AT)

b) Rank(A + B) ≤ Rank(A) + Rank(B)

c) Rank(AB) ≤ min{ Rank(A), Rank(B)}

d) Let A = xyT – outer product matrix: Rank(A) = 1

e) A ∈ Rnxn nonsingular if 

• det(A) ≠ 0

• Rank(A) = n
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INVERSE OF A NONSINGULAR MATRIX A ∈ Rnxn

• Inverse of A denoted by A-1: AA-1 = A-1A = In, the identity matrix

I3 = 
1 0 0
0 1 0
0 0 1

a) (A-1)-1 = A

b) (AB)-1 = B-1A-1 ( A, B are nonsingular)

c) (AT)-1 = ( A-1)T = A-T
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SHERMAN-MORRISON-WOODBURY (SMW) 
FORMULA – INVERSE UNDER PERTURBATION

a) (In + cdT)-1 = In -
𝑐𝑑𝑇

1+𝑑𝑇𝑐
c, d ∈ Rn

b) (A + cdT)-1 = A-1 -
𝐴−1𝑐𝑑𝑇𝐴−1

1+ 𝑑𝑇𝐴−1𝐶
A ∈ Rnxn – non singular,  c, d ∈ Rn

c) (A + CDT)-1 = A-1 – A-1C[Ik + DTA-1C]-1DTAT A ∈ Rnxn, B ∈ Rkxk are non 
singular C, D ∈ Rnxk

d) (A + CBDT)-1 = A-1 – A-1C[B-1 + DTA-1C]-1DTA-1

12



PROOF OF SMW - FORMULA
• Let A ∈ Rnxn, and B ∈ Rkxk be non-singular. Let C, D ∈ Rnxk

• Let

Λ =
A C
DT B

and Λ−1 =
P Q
R S

• ΛΛ−1 =
AP + CR AQ + CS

DTP + BR DTQ + BS
=

In 0
0 Ik
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PROOF OF SMW - FORMULA
• Equating off – diagonal elements:

AQ + CS = 0      => Q = -A-1CS

DTP + BR = 0     => R = -B-1DTP

• Equating diagonal elements and using (1):

AP + CR = In => P = (A – CB-1DT)-1 -> (2)

DTQ + BS = Ik => S = (B – DTA-1C)-1 -> (3) 
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PROOF OF SMW - FORMULA

• ΛΛ−1 =
PA + QDT = In PC + RB = 0

RA + SDT = 0 RC + SB = Ik
• PA + QDT = In

P = A-1 + QDTA-1

= A-1 + A-1CSDTA-1 [using (1)]

= A-1 + A-1C[B – DTA-1C]-1DTA-1 [using (3)]
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PROOF OF SMW - FORMULA
• Using the definition of P in (2):

[A – CB-1DT]-1 = A-1 + A-1C[B – DTA-1C]-1DTA-1    -> (4)

• This proves the formula (d) in slide 12 by replacing B-1 in (4) by -B

• Setting B = –Ik, we get formula (c)

• Setting B = –1 and k = 1, we get formula (b)

• Setting B = –1 and A = In, we get formula (a)
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MOORE-PENROSE/GENERALIZED INVERSE
• Let A ∈ Rmxn and A+ ∈ Rnxm

• A+ is called Moore-Penrose/Generalized inverse of A if
a) AA+A = A

b) A+AA+ = A+

c) (A+A)T = A+A – A+A is symmetric

d) (AA+)T = AA+ – AA+ is symmetric

• Let A be of full rank. Then

A+ = (ATA)-1AT if m > n

A+ = AT(AAT)-1 if m < n

• When n = m and A is non-singular, A+ = A-1, and A+A = AA+ = In
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MATRICES AS LINEAR TRANSFORMATION

• Let A ∈ Rmxn

• Then A: Rn -> Rm where y = Ax ∈ Rm

when x ∈ Rn

• A is called a linear transformation of Rn to Rm with the properties:

A(x + y) = Ax + Ay for x, y ∈ Rn

A(ax) = aAx for x ∈ Rn and a ∈ R

• Range(A) = { y ∈ Rm | y = Ax for all x ∈ Rn } ⊆ Rm

• NULL(A) = Ker(A) = { x ∈ Rn | Ax = 0 }

Ker(A) denotes the Kernel of A
18
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EXAMPLES OF OPERATION

• Q matrix ∈ Rnxn is called orthogonal if QT = Q-1,  QQT = QTQ = In

• Q: Rn -> Rn is called an orthogonal operator

• Q = 
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

is an orthogonal matrix – rotation operator

• If x ∈ R2, then Q rotates x by an angle 𝜃 in the anti-clockwise direction

• Let y = Qx and Q is orthogonal

Then

𝑦 2
2 = (Qx)T(QX) = xT(QTQ)x = xTx = 𝑥 2

2

This is, length of a vector is invariant under orthogonal transformation
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COORDINATE TRANSFORMATION

• B1 = { e1, e2, … en} be the standard basis for Rn

• B2 = { g1, g2, … gn} be a new basis for Rn

• E = [ e1, e2, … en] ∈ Rnxn and G = [g1, g2, … gn] ∈ Rnxn

• Then, for 1 ≤ i ≤ n, express the new basis using the old basis :

gi = t1ie1 + t2ie2 + … + tnien

Thus

[g1, g2, … gn] = [ e1, e2, … en] 

𝑡11 𝑡12 ⋯ 𝑡1𝑛
𝑡21 𝑡22 ⋯ 𝑡2𝑛
⋮ ⋮ ⋱ ⋮
𝑡𝑛1 𝑡𝑛2 ⋯ 𝑡𝑛𝑛
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COORDINATE TRANSFORMATION

G = ET where T = [tij] – non-singular

• Let U ∈ Rn. Let

U = Ex = e1x1 + e2x2 + … + enxn in B1

U = Gx* = 𝑔1𝑥1
∗+ 𝑔2𝑥2

∗ + … + 𝑔𝑛𝑥𝑛
∗ in B2

• Then Ex = Gx*  -> x = (E-1G)x* = Tx*

Coordinates of U in B1 and B2 are related as x = Tx*
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SIMILARITY TRANSFORMATION
• Let x and y ∈ Rn in the standard basis B1 for Rn.

• Let A : Rn -> Rn be a linear operator: y = Ax

• Let T be linear transformation of the basis B1 to a new basis B2

• Let x* and y* be the representation of vector x and y in the new basis

• x = Tx* , y = Ty* and let y = Ax

• Then y = Ty* = Ax = ATx*

or y* = (T-1AT)x*

• (T-1AT) is the representation of A in the new basis B2

• The transformation form A -> T-1AT is called similarity transformation

22



CONGRUENT TRANSFORMATION

• Let A ∈ Rn and B ∈ Rnxn be non-singular

• Transformation from A->BTAB is called congruence transformation
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ADJOINT OPERATOR
• Let A: Rn -> Rn be the matrix that denotes the linear operator in Rn

• Define a new linear operator A* as: 

<Ax, y> = <x, A*y>

Then, A* is called the adjoint of A

• Since <Ax, y> = (Ax)Ty  = xTATy = xT(ATy) = <x, ATy> = <x, A*y>

It follows that A* = AT. Therefore, adjoint of A is given by AT.  

• If A = AT when A is symmetric, A is called self-adjoint operator
a) (A*)* = A
b) (aA)* = aA*
c) (A + B)* = A* + B*
d) (AB)* = B*A*
e) if A-1 exists, then (A-1)* = (A*)-1
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EXISTENCE OF  SOLUTION TO LINEAR SYSTEM
• Let A ∈ Rmxn, b ∈ Rm. Then

Ax = b has a solution only when b ∈ Range(A)
• NULL(AT) = { y ∈ Rm | ATy = 0 }
• Let b ∈ Range(A) and y ∈ NULL(AT). Then bTy = (Ax)Ty = xATy = 0

Therefore, Range(A) and NULL(AT) are mutually orthogonal.
• Fredholm’s alternative: Given A ∈ Rmxn, then exactly one of the two 

statements is true:
1) Ax = b has a solution or
2) ATy = 0 has a solution such that yTb ≠ 0

• Let A ∈ Rnxn, b ∈ Rn

• Non-homogenous system Ax = b has a solution only when A is non-singular 
and x = A-1b

• Homogenous system Ax = 0 has a non-trivial solution only when A is 
singular 25



BILINEAR AND QUADRATIC FORMS
• Let A ∈ Rmxn and fA: Rm x Rn -> R given by fA(x, y) = xTAy,   x ∈ Rm, y ∈ Rn

is called a bilinear form associated with A

• Let A ∈ Rnxn and fA: Rn -> R given by QA(x) = xTAx,    x ∈ Rn is called a 
quadratic form associated with A

• n = 2, x = (x1, x2)T,     A = 
𝑎11 𝑎12
𝑎21 𝑎22

QA(x) = 𝑎11𝑥1
2 + 𝑎12 + 𝑎21 𝑥1𝑥2 + 𝑎22𝑥2

2
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PROPERTY OF QUADRATIC FORM
• Since QA(x) is a scalar,

QA(x) = xTAx = (xTAx)T = xTATx = QAT(x)

• Hence 

QA(x) = 
1

2
[xTAx + xTATx] = xT[

𝐴+𝐴𝑇

2
]x = xTAsx

where  As = 
𝐴+𝐴𝑇

2
, symmetric part of A

• Hence we are interested in QA(x) only for a symmetric matrix
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POSITIVE DEFINITE MATRIX (PD)
• Let A ∈ Rnxn. A is said to be PD if

xTAx > 0 for all x ≠ 0
= 0 only if x = 0

• An equivalent definition:
• Principal minors of all orders are positive.
• The eigenvalues of A are all positive.

• To get an understanding of the constraints on the elements of A: 

Let A = 
𝑎 𝑏
𝑏 𝑐

• QA(x) = a𝑥1
2 + 2b𝑥1𝑥2 + c𝑥2

2

= a(𝑥1+ 
𝑏

𝑎
𝑥2)2 + (c -

𝑏2

𝑎
)𝑥2

2

• This is greater than zero if ac > b2

• This A is PD if a > 0, c>0  and ac > b2.
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EIGENVALUES AND EIGENVECTOS
• Let A ∈ Rnxn. If there exists V ∈ Rn and λ ∈ R such that AV = λV, then λ

is the eigenvalue and V is the eigenvector of A

• (λ, V) is the solution of the homogenous system 

(A – λI)V = 0

• For V to be non-trivial vector, P(λ) = det(A – λI) = 0 where P(λ) is the 
nth degree polynomial called the characteristic polynomial

• Let λ1, λ2, … λn be the n-roots of P(λ) = 0

• λi’s are real or complex. Complex roots come in conjugate pairs

• When A is symmetric, λi’s are real

• When A is symmetric and positive definite (SPD), λi’s are real and 
positive 29



EXAMPLE OF EIGENVALUES

A = 
5 −2
−2 8

λ1 = 9, λ2 = 4

• The eigenvector V1 = 
1

5

−1
2

, V2 = 
1

5

2
1

Clearly, V1 Ʇ V2

• Let A be SPD and (λi, Vi): Avi = λiVi

• Then {V1, V2, … Vn} is an orthonormal system
• Let V = [V1, V2, … Vn] ∈ Rn, VT = V-1

• Then AV = VΛ, Λ = Diag(λ1, λ2, … λn)
A = VΛVT – Eigendecomposition of A

A =  𝑖=1
𝑛 𝜆𝑖𝑉𝑖𝑉𝑖

𝑇

• Spectral radius of A = 𝜌(A) = max
𝑖
{|𝜆𝑖|}
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SINGULAR VALUES OF A
• Let A be non-singular. The gramians ATA and AAT are then symmetric 

and positive definite.

• Let (ATA)Vi = λiVi with

λ1 ≥ λ2 ≥ λ3 … ≥ λn > 0

• Verify that (AAT)Ui = λiUi where 

Ui = 
1

λi
AVi

• ATA and AAT share the same set of eigenvalues

• Define 𝜎𝑖 = 𝜆𝑖 for 1 ≤ i ≤ n

• {𝜎𝑖} are the singular values of A
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MATRIX NORMS
• Let A ∈ Rnxn. Norm of A is a measure of the size of A

• Frobenius norm of A = ||A||F = [   𝑖,𝑗=1
𝑛 𝑎𝑖𝑗

2 ]½

• Operator form: (Induced norm)

| 𝐴 |𝑝=𝑠𝑢𝑝| 𝑥 |𝑝≠0
| 𝐴𝑥 |𝑝

| 𝑥 |𝑝
= max
| 𝑥 |𝑝=1

| 𝐴𝑥 |𝑝

• Setting P = 1, 2, ∞, we get various matrix norms

• Inequalities:                     1) 𝐴𝑥 ≤ 𝐴 𝑥

2) 𝐴𝐵 ≤ 𝐴 𝐵 32



COMPUTATION OF | 𝐴 |𝑝

1) | 𝐴 |1 = max
𝒋

 𝑖=1
𝑛 𝑎𝑖𝑗 − Column norm

2) | 𝐴 |∞= max
𝒊

 𝑗=1
𝑛 𝑎𝑖𝑗 − Row norm

3) | 𝐴 |2= 𝜎1 where 𝜎1
2 is one max eigenvalue of ATA. 𝜎1 is the largest 

singular value of A

4) When A is symmetric, ATA = A2 and A2x = λ2x if Ax = λx

Therefore, | 𝐴 |2 = |λmax|, λmax = maximum eigenvalue of A

5) For A symmetric: 𝜌(A) = | 𝐴 |2 = |λmax|, called spectral radius
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EQUIVALENCE OF MATRIX NORMS: A ∈ Rnxn

1) | 𝐴 |2 ≤ [| 𝐴 |1 | 𝐴 |∞]
½

2) 
1

𝑛
| 𝐴 |∞ ≤ | 𝐴 |2 ≤ 𝑛| 𝐴 |∞

3) 
1

𝑛
| 𝐴 |1 ≤ | 𝐴 |2 ≤ 𝑛| 𝐴 |1

4) | 𝐴 |2 ≤ | 𝐴 |𝐹 ≤ 𝑛| 𝐴 |2
5) 𝜌(A) ≤ | 𝐴 |, any matrix norm
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CONDITION NUMBER OF A MATRIX
• Let A ∈ Rnxn. 

• Condition number 𝒦p(A) = | 𝐴 |𝑝| 𝐴
−1 |𝑝 and its values is norm 

dependent

• Since I = AA-1 => 1 = | I |𝑝 ≤ | 𝐴 |𝑝| 𝐴
−1 |𝑝 = 𝒦(A)

• Thus, 1 ≤𝒦(A) ≤∞

• Spectral condition number of symmetric matrix A

𝒦2 𝐴 = | 𝐴 |2| 𝐴
−1 |2 =

|λmax|

|λmin|
• Spectral condition number of A non-singular

𝒦2 𝐴 = | 𝐴 |2| 𝐴
−1 |2 =

𝜎1

𝜎2
= 
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
where

𝜎𝑖 is the ith singular values of A with  𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑛 > 0
35



RELATION BETWEEN CONDITION NUMBERS

1.
1

𝑛
𝒦2 𝐴 ≤ 𝒦1 𝐴 ≤ n𝒦2 𝐴

2.
1

𝑛
𝒦∞ 𝐴 ≤ 𝒦2 𝐴 ≤ n𝒦∞ 𝐴

3.
1

𝑛2
𝒦1 𝐴 ≤ 𝒦∞ 𝐴 ≤ 𝑛2𝒦1 𝐴

Note: Since | 𝐴 |1 and | 𝐴 |∞ norms are easily computed, we can 
estimate 𝒦2 𝐴 using the above relations.
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RELATION BETWEEN det(A) AND 𝒦(A)

• Let A = Diag( 
1

2
, 
1

2
, … 

1

2
)

=> det(A) = 
1

2𝑛
-> 0 as n -> ∞

=>𝒦𝑝 𝐴 = 1 for p = 1, 2, ∞

• Let B ∈ Rnxn, upper triangular:

𝑎𝑖𝑗 =  

1 𝑖𝑓 𝑖 = 𝑗
−1 𝑖𝑓 𝑖 > 𝑗
0 𝑖𝑓 𝑖 < 𝑗

• det(B) = 1 and 𝒦∞ 𝐴 = n -> ∞ as n ->∞

• Thus, there is no correlation between det(A) and 𝒦(A)
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SENSITIVITY OF SOLUTION OF LINEAR SYSTEM
• Let Ax = b be the given system.

• Let (A + εB)y = (b + εf) be the perturbed system

• εB and εf are the perturbation and the vector respectively, and ε > 0 
but small

• The relative error in the solution is given 
𝑦 − 𝑥

𝑥
≤ 𝒦 A [𝜀

𝐵

𝐴
+ 𝜀

𝑓

𝑏
]

• Since 𝒦 A ≥ 1, the errors in A and b are amplified in the solution

• Larger 𝒦 A is, more sensitive the system is to round-off error in A 
and b
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Exercise
3.1) Give an examples of A and B where AB ≠ BA and AB = BA

3.2) Verify (AB)T = BTAT

3.3) Verify tr(AB) = tr(BA)

3.4) Prove det(A-1) = 
1

det(𝐴)
(Hint: AA-1 = I)

3.5) Verify A = 
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

is an orthogonal matrix 

Plot y = Ax  when x = (1, 1) for θ = 30o, 60o, 90o, 120o, 150o

3.6) Verify (AB)-1 = B-1A-1

3.7) Verify A+ = (ATA)-1AT and A+ = AT(AAT)-1 satisfy the definition of the 
generalized/ Moore – Penrose inverse
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Exercise
3.8) Find the range and kernel of 

A = 
1 3
2 2
3 1

3.9) Verify (AB)* = B*A* and (A-1)* = (A*)-1 where recall that A* is the 
adjoint of A

3.10) If AV = λV, then A2V = λ2V and AkV = λkV

3.11) If A is non singular, then ATA and AAT are SPD

3.12) If (ATA)Vi = λiVi and ui = 
1

λi
AVi, verify that (AAT)ui = λiui
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