Module – 2.2

MATRICES:

AN OVERVIEW

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, Ok – 73069, USA <u>varahan@ou.edu</u>

DEFINITION, BASIC OPERATION

 An mxn real matrix A is a rectangular array of mn real numbers arranged in m rows and n columns as

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [\mathsf{a}_{\mathsf{i}\mathsf{j}}] \in \mathsf{R}^{\mathsf{mxn}}$$

- R^{mxn} set of all real mxn matrices
- Row index i: $1 \le i \le m$, column index j: $1 \le j \le n$
- When m = n, A is called a square matrix of size or order n
- If a_{ii} = 0 for all i,j, then A is called a zero or null matrix

CROSS-SECTIONS OF A MATRIX

- Let $A \in R^{nxn}$
- a_{i^*} i^{th} row of A row vector of size n
- $a_{*_i} j^{th}$ column of A column vector of size n

A =
$$[a_{*_1}, a_{*_n}, ..., a_{*_n}] = \begin{bmatrix} a_{1*} \\ a_{2*} \\ \vdots \\ a_{n*} \end{bmatrix}$$
 <- column partition of A row partition of A

- [a₁₁, a₂₂, ..., a_{nn}] principal diagonal
- Diagonals parallel to principal diagonal and above (below) the principal diagonal are called super (sub) diagonals

OPERATIONS ON MATRICES

- A, B, C are matrices in $\mathbb{R}^{n \times n}$, x, y, $z \in \mathbb{R}^{n}$, a, b, c are in \mathbb{R}
- <u>Sum/difference</u>: C = A ± B -> c_{ij} = a_{ij} + b_{ij}
 (element wise sum/difference)
- <u>Scalar multiple</u>: $C = aA \rightarrow c_{ij} = aa_{ij}$
- <u>Matrix-vector produc</u>: y = Ax, $y_i = \sum_{j=1}^n a_{ij}x_j$, $1 \le i \le n$ or $y = \sum_{j=1}^n a_{*j}x_j$ - Linear combination of the columns of A by elements of x

OPERATIONS ON MATRICES

- <u>Matrix-matrix product</u>: C = AB
 - 1. <u>Inner product:</u> $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ $1 \le i \le n, 1 \le j \le n$

2. Saxpy:
$$c_{*j} = \sum_{i=1}^{n} a_{*j} b_{ij}$$

3. Outer product: C =
$$\sum_{i=1}^{n} a_{*i} b_{j*}$$

• AB \neq BA – matrix product is not commutative.

OPERATIONS ON MATRICES

• 1) Transpose of $A \in \mathbb{R}^{mxn}$ denoted by $A^T \in \mathbb{R}^{nxm}$ - columns of A are the row of A^T

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$$

- a) (A^T)^T = A
- b) $(A + B)^{T} = A^{T} + B^{T}$
- c) $(AB)^{T} = B^{T}A^{T}$
- 2) $A \in \mathbb{R}^{n \times n}$ trace of $A = tr(A) = \sum_{i=1}^{n} a_{ii}$ = sum of diagonal elements
 - a) tr: R^{nxn} -> R, a function of the vector space of nxn matries
 - b) tr(A) = tr(A^T)
 - c) tr(A + B) = tr(A) + tr(B)
 - d) tr(αA) = $\alpha tr(A)$
 - e) tr(AB) = tr(BA)
 - f) tr(ABC) = tr(BCA) = tr(CAB)
 - g) tr(ABA⁻¹) = tr(B)

DETERMINANT OF A, B \in R^{nxn}

Determinant of A denoted by det(A)

 $det(A) = \sum_{j=1}^{n} a_{ij}A_{ij}$ $A_{ij} = cofactor of a_{ij} = (-1)^{i+j}M_{ij}$ $M_{ij} = minor of a_{ij} = determinant of the (n-1)x(n-1) matrix obtained by deleting the ith row and jth column of A$

- a) A is nonsingular if det(A) \neq 0 and singular otherwise
- b) $det(A) = det(A^T)$
- c) det(AB) = det(A)det(B)

d) det(A⁻¹) =
$$\frac{1}{\det(A)}$$
 if A is nonsingular

SPECIAL MATRICES

- $A \in R^{nxn}$ is symmetric if $A^T = A$
- A = Diag(d₁,d₂, ... d_n) is a diagonal matrix of size n when $a_{ii} = d_i$ $a_{ij} = 0$ if i $\neq j$
- I_n = Diag(1,1, ...1) is the identity matrix of size n
- A is upper triangular if a_{ij} = 0 if i < j
- A is lower triangular if $a_{ij} = 0$ if i > j
- A is tridiagonal is $a_{ij} \neq 0$ if $|i j| \leq 1$

= 0 otherwise

• A is orthogonal if $A^T = A^{-1}$

SPECIAL MATRICES

- $A \in R^{nxn}$ is skew symmetric if $A^T = -A$. That is
 - $a_{ii} = -a_{ji}$ if $i \neq j$ $a_{ij} = 0$ if i = j
- Let $A \in \mathbb{R}^{n \times n}$ $A_s = \frac{1}{2}(A + A^T) symmetric part of A$ $A_{ss} = \frac{1}{2}(A - A^T) - skew symmetric part of A$
- $A = A_s + A_{ss}$ Additive decomposition of A
- Let $A \in R^{nxm}$. Then $AA^T \in R^{nxn}$ and $A^TA \in R^{mxm}$ are symmetric and are called the Grammian of A

RANK OF A MATRIX A \in R^{mxn}

- Row(column) rank of A = number of linear independent rows(columns) of A
- Row rank of A = column rank of A = Rank(A)
- $0 \le \text{Rank}(A) \le \min\{m,n\}$
 - a) Rank(A) = Rank(A^T)
 - b) $Rank(A + B) \le Rank(A) + Rank(B)$
 - c) $Rank(AB) \le min\{Rank(A), Rank(B)\}$
 - d) Let $A = xy^T$ outer product matrix: Rank(A) = 1
 - e) $A \in R^{nxn}$ nonsingular if
 - det(A) ≠ 0
 - Rank(A) = n

INVERSE OF A NONSINGULAR MATRIX $A \in \mathbb{R}^{n \times n}$

• Inverse of A denoted by A^{-1} : $AA^{-1} = A^{-1}A = I_n$, the identity matrix

$$|_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

a) $(A^{-1})^{-1} = A$

- b) $(AB)^{-1} = B^{-1}A^{-1} (A, B are nonsingular)$
- c) $(A^{T})^{-1} = (A^{-1})^{T} = A^{-T}$

SHERMAN-MORRISON-WOODBURY (SMW) FORMULA – INVERSE UNDER PERTURBATION

a)
$$(I_n + cd^T)^{-1} = I_n - \frac{cd^T}{1 + d^T c}$$
 $c, d \in \mathbb{R}^n$

 $_{-}T$

b)
$$(A + cd^{T})^{-1} = A^{-1} - \frac{A^{-1}cd^{T}A^{-1}}{1 + d^{T}A^{-1}C}$$
 $A \in \mathbb{R}^{n \times n} - non singular, c, d \in \mathbb{R}^{n}$

c) $(A + CD^T)^{-1} = A^{-1} - A^{-1}C[I_k + D^TA^{-1}C]^{-1}D^TA^T$ $A \in R^{nxn}, B \in R^{kxk}$ are non singular $C, D \in R^{nxk}$

d)
$$(A + CBD^{T})^{-1} = A^{-1} - A^{-1}C[B^{-1} + D^{T}A^{-1}C]^{-1}D^{T}A^{-1}$$

- Let $A \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{k \times k}$ be non-singular. Let $C, D \in \mathbb{R}^{n \times k}$
- Let

$$\Lambda = \begin{bmatrix} A & C \\ D^{T} & B \end{bmatrix} \text{ and } \Lambda^{-1} = \begin{bmatrix} P & Q \\ R & S \end{bmatrix}$$
$$\bullet \Lambda \Lambda^{-1} = \begin{bmatrix} AP + CR & AQ + CS \\ D^{T}P + BR & D^{T}Q + BS \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ 0 & I_k \end{bmatrix}$$

• Equating off – diagonal elements:

AQ + CS = 0 => Q =
$$-A^{-1}CS$$

D^TP + BR = 0 => R = $-B^{-1}D^{T}P$ -> (1)

• Equating diagonal elements and using (1):

AP + CR =
$$I_n$$
 => P = (A - CB⁻¹D^T)⁻¹ -> (2)
D^TQ + BS = I_k => S = (B - D^TA⁻¹C)⁻¹ -> (3)

•
$$\Lambda \Lambda^{-1} = \begin{bmatrix} PA + QD^{T} = I_{n} & PC + RB = 0 \\ RA + SD^{T} = 0 & RC + SB = I_{k} \end{bmatrix}$$

• $PA + QD^T = I_n$

 \Rightarrow P = A⁻¹ + QD^TA⁻¹

- $= A^{-1} + A^{-1}CSD^{T}A^{-1}$ [using (1)]
- $= A^{-1} + A^{-1}C[B D^{T}A^{-1}C]^{-1}D^{T}A^{-1} \text{ [using (3)]}$

• Using the definition of P in (2):

 $[A - CB^{-1}D^{T}]^{-1} = A^{-1} + A^{-1}C[B - D^{T}A^{-1}C]^{-1}D^{T}A^{-1} \rightarrow (4)$

- This proves the formula (d) in slide 12 by replacing B⁻¹ in (4) by -B
- Setting $B = -I_k$, we get formula (c)
- Setting B = -1 and k = 1, we get formula (b)
- Setting B = -1 and $A = I_n$, we get formula (a)

MOORE-PENROSE/GENERALIZED INVERSE

- Let $A \in \mathbb{R}^{mxn}$ and $A^+ \in \mathbb{R}^{nxm}$
- A⁺ is called Moore-Penrose/Generalized inverse of A if
 - a) $AA^+A = A$
 - b) $A^{+}AA^{+} = A^{+}$
 - c) $(A^+A)^T = A^+A A^+A$ is symmetric
 - d) $(AA^+)^T = AA^+ AA^+$ is symmetric
- Let A be of full rank. Then

 $A^{+} = (A^{T}A)^{-1}A^{T} \text{ if } m > n$ $A^{+} = A^{T}(AA^{T})^{-1} \text{ if } m < n$

• When n = m and A is non-singular, $A^+ = A^{-1}$, and $A^+A = AA^+ = I_n$

MATRICES AS LINEAR TRANSFORMATION

- Let $A \in R^{mxn}$
- Then A: $\mathbb{R}^n \rightarrow \mathbb{R}^m$ where $y = Ax \in \mathbb{R}^m$ when $x \in \mathbb{R}^n$

- A is called a linear transformation of \mathbb{R}^n to \mathbb{R}^m with the properties: $A(x + y) = Ax + Ay \qquad \text{for } x, y \in \mathbb{R}^n$ $A(ax) = aAx \qquad \text{for } x \in \mathbb{R}^n \text{ and } a \in \mathbb{R}$
- Range(A) = { $y \in R^m | y = Ax$ for all $x \in R^n$ } $\subseteq R^m$
- NULL(A) = Ker(A) = { $x \in \mathbb{R}^n | Ax = 0$ } Ker(A) denotes the Kernel of A

EXAMPLES OF OPERATION

- Q matrix $\in \mathbb{R}^{n \times n}$ is called orthogonal if $\mathbb{Q}^T = \mathbb{Q}^{-1}$, $\mathbb{Q}\mathbb{Q}^T = \mathbb{Q}^T\mathbb{Q} = \mathbb{I}_n$
- Q: Rⁿ -> Rⁿ is called an orthogonal operator
- $Q = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$ is an orthogonal matrix rotation operator
- If $x \in \mathbb{R}^{2}$, then Q rotates x by an angle θ in the anti-clockwise direction
- Let y = Qx and Q is orthogonal

Then

 $||y||_2^2 = (Qx)^T(QX) = x^T(Q^TQ)x = x^Tx = ||x||_2^2$

This is, length of a vector is invariant under orthogonal transformation

COORDINATE TRANSFORMATION

- B₁ = { e₁, e₂, ... e_n} be the standard basis for Rⁿ
- $B_2 = \{ g_1, g_2, ..., g_n \}$ be a new basis for R^n
- $E = [e_1, e_2, ..., e_n] \in R^{nxn}$ and $G = [g_1, g_2, ..., g_n] \in R^{nxn}$
- Then, for $1 \le i \le n$, express the new basis using the old basis :

$$g_i = t_{1i}e_1 + t_{2i}e_2 + \dots + t_{ni}e_n$$

Thus

$$[g_{1}, g_{2}, \dots g_{n}] = [e_{1}, e_{2}, \dots e_{n}] \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{n1} & t_{n2} & \cdots & t_{nn} \end{bmatrix}$$

COORDINATE TRANSFORMATION

• Let $U \in \mathbb{R}^n$. Let

U = Ex =
$$e_1x_1 + e_2x_2 + ... + e_nx_n$$
 in B₁
U = Gx^{*} = $g_1x_1^* + g_2x_2^* + ... + g_nx_n^*$ in B₂

• Then $Ex = Gx^* \rightarrow x = (E^{-1}G)x^* = Tx^*$

Coordinates of U in B_1 and B_2 are related as $x = Tx^*$

SIMILARITY TRANSFORMATION

- Let x and $y \in \mathbb{R}^n$ in the standard basis B_1 for \mathbb{R}^n .
- Let A : Rⁿ -> Rⁿ be a linear operator: y = Ax
- Let T be linear transformation of the basis B_1 to a new basis B_2
- Let x* and y* be the representation of vector x and y in the new basis
- $x = Tx^*$, $y = Ty^*$ and let y = Ax
- Then $y = Ty^* = Ax = ATx^*$

or $y^* = (T^{-1}AT)x^*$

- (T⁻¹AT) is the representation of A in the new basis B_2
- The transformation form A -> T⁻¹AT is called similarity transformation

CONGRUENT TRANSFORMATION

- Let $A \in \mathbb{R}^n$ and $B \in \mathbb{R}^{n \times n}$ be non-singular
- Transformation from A->B^TAB is called congruence transformation

ADJOINT OPERATOR

- Let A: Rⁿ -> Rⁿ be the matrix that denotes the linear operator in Rⁿ
- Define a new linear operator A* as:

<Ax, y> = <x, A*y>

Then, A* is called the adjoint of A

- Since $\langle Ax, y \rangle = (Ax)^T y = x^T A^T y = x^T (A^T y) = \langle x, A^T y \rangle = \langle x, A^* y \rangle$ It follows that $A^* = A^T$. Therefore, adjoint of A is given by A^T .
- If A = A^T when A is symmetric, A is called self-adjoint operator
 - a) (A*)* = A
 - b) $(aA)^* = aA^*$
 - c) $(A + B)^* = A^* + B^*$
 - d) $(AB)^* = B^*A^*$
 - e) if A^{-1} exists, then $(A^{-1})^* = (A^*)^{-1}$

EXISTENCE OF SOLUTION TO LINEAR SYSTEM

• Let $A \in R^{mxn}$, $b \in R^m$. Then

Ax = b has a solution only when $b \in Range(A)$

- NULL(A^T) = { $y \in R^m | A^T y = 0$ }
- Let $b \in \text{Range}(A)$ and $y \in \text{NULL}(A^T)$. Then $b^T y = (Ax)^T y = xA^T y = 0$ Therefore, Range(A) and NULL(A^T) are mutually orthogonal.
- Fredholm's alternative: Given A ∈ R^{mxn}, then exactly one of the two statements is true:

1) Ax = b has a solution or

2) $A^T y = 0$ has a solution such that $y^T b \neq 0$

- Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n}$
- Non-homogenous system Ax = b has a solution only when A is non-singular and x = A⁻¹b
- Homogenous system Ax = 0 has a non-trivial solution only when A is singular

BILINEAR AND QUADRATIC FORMS

• Let $A \in \mathbb{R}^{m \times n}$ and $f_A : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ given by $f_A(x, y) = x^T A y$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$ is called a bilinear form associated with A

• Let $A \in \mathbb{R}^{n \times n}$ and $f_A: \mathbb{R}^n \rightarrow \mathbb{R}$ given by $Q_A(x) = x^T A x$, $x \in \mathbb{R}^n$ is called a quadratic form associated with A

• n = 2, x =
$$(x_1, x_2)^T$$
, A = $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
Q_A(x) = $a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + a_{22}x_2^2$

PROPERTY OF QUADRATIC FORM

• Since Q_A(x) is a scalar,

$$Q_A(x) = x^T A x = (x^T A x)^T = x^T A^T x = Q_A^T(x)$$

• Hence

$$Q_{A}(x) = \frac{1}{2} [x^{T}Ax + x^{T}A^{T}x] = x^{T} [\frac{A+A^{T}}{2}]x = x^{T}A_{s}x$$

where $A_{s} = \frac{A+A^{T}}{2}$, symmetric part of A

• Hence we are interested in $Q_A(x)$ only for a symmetric matrix

POSITIVE DEFINITE MATRIX (PD)

• Let $A \in R^{nxn}$. A is said to be PD if

 $x^{T}Ax > 0$ for all $x \neq 0$ = 0 only if x = 0

- An equivalent definition:
 - Principal minors of all orders are positive.
 - The eigenvalues of A are all positive.
- To get an understanding of the constraints on the elements of A:

Let
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

 $Q_A(x) = ax_1^2 + 2bx_1x_2 + cx_2^2$
 $= a(x_1 + \frac{b}{a}x_2)^2 + (c - \frac{b^2}{a})x_2^2$

- This is greater than zero if $ac > b^2$
- This A is PD if a > 0, c > 0 and $ac > b^2$.

EIGENVALUES AND EIGENVECTOS

- Let $A \in \mathbb{R}^{n \times n}$. If there exists $V \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ such that $AV = \lambda V$, then λ is the eigenvalue and V is the eigenvector of A
- (λ , V) is the solution of the homogenous system

 $(A - \lambda I)V = 0$

- For V to be non-trivial vector, $P(\lambda) = det(A \lambda I) = 0$ where $P(\lambda)$ is the nth degree polynomial called the characteristic polynomial
- Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the n-roots of P(λ) = 0
- λ_i 's are real or complex. Complex roots come in conjugate pairs
- When A is symmetric, λ_i 's are real
- When A is symmetric and positive definite (SPD), $\lambda_i{}'s\;$ are real and positive

EXAMPLE OF EIGENVALUES

$$A = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix} \quad \lambda_1 = 9, \lambda_2 = 4$$

- The eigenvector $V_1 = \frac{1}{\sqrt{5}} \binom{-1}{2}$, $V_2 = \frac{1}{\sqrt{5}} \binom{2}{1}$ Clearly, $V_1 \perp V_2$
- Let A be SPD and (λ_i, V_i) : Av_i = $\lambda_i V_i$
- Then $\{V_1, V_2, ..., V_n\}$ is an orthonormal system
- Let $V = [V_1, V_2, ..., V_n] \in \mathbb{R}^n, V^T = V^{-1}$
- Then AV = VA, Λ = Diag($\lambda_1, \lambda_2, ..., \lambda_n$) A = VAV^T – Eigendecomposition of A A = $\sum_{i=1}^{n} \lambda_i V_i V_i^T$ • Spectral radius of A = $\rho(A) = \max_i \{|\lambda_i|\}$

SINGULAR VALUES OF A

- Let A be non-singular. The gramians A^TA and AA^T are then symmetric and positive definite.
- Let $(A^T A)V_i = \lambda_i V_i$ with

 $\lambda_1 \ge \lambda_2 \ge \lambda_3 \dots \ge \lambda_n > 0$

• Verify that $(AA^T)U_i = \lambda_i U_i$ where

$$U_i = \frac{1}{\sqrt{\lambda_i}} AV_i$$

- A^TA and AA^T share the same set of eigenvalues
- Define $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le n$
- $\{\sigma_i\}$ are the singular values of A

MATRIX NORMS

- Let $A \in \mathbb{R}^{n \times n}$. Norm of A is a measure of the size of A
- Frobenius norm of A = $||A||_{F} = [\sum_{i,j=1}^{n} a_{ij}^{2}]^{\frac{1}{2}}$
- Operator form: (Induced norm)

$$||A||_{p} = \sup_{||x||_{p} \neq 0} \frac{||Ax||_{p}}{||x||_{p}} = \max_{||x||_{p} = 1} ||Ax||_{p}$$

- Setting P = 1, 2, ∞ , we get various matrix norms
- Inequalities: 1) $||Ax|| \le ||A|| ||x||$

COMPUTATION OF $||A||_p$

1)
$$||A||_1 = \max_j \{\sum_{i=1}^n [a_{ij}]\} - Column norm$$

2) $||A||_{\infty} = \max_i \{\sum_{j=1}^n [a_{ij}]\} - Row norm$
3) $||A||_2 = \sigma_1$ where σ_1^2 is one max eigenvalue of A^TA. σ_1 is the largest singular value of A

4) When A is symmetric, A^TA = A² and A²x = λ²x if Ax = λx Therefore, ||A||₂ = |λ_{max}|, λ_{max} = maximum eigenvalue of A
5) For A symmetric: ρ(A) = ||A||₂ = |λ_{max}|, called spectral radius

EQUIVALENCE OF MATRIX NORMS: $A \in R^{nxn}$

- 1) $||A||_2 \le [||A||_1 ||A||_{\infty}]^{\frac{1}{2}}$
- 2) $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{n} ||A||_{\infty}$
- 3) $\frac{1}{\sqrt{n}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$
- 4) $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$
- 5) $\rho(A) \leq ||A||$, any matrix norm

CONDITION NUMBER OF A MATRIX

- Let $A \in \mathbb{R}^{n \times n}$.
- Condition number $\mathcal{K}_{p}(A) = ||A||_{p} ||A^{-1}||_{p}$ and its values is norm dependent
- Since I = $AA^{-1} \Rightarrow 1 = ||I||_p \le ||A||_p ||A^{-1}||_p = \mathcal{K}(A)$
- Thus, $1 \leq \mathcal{K}(A) \leq \infty$
- Spectral condition number of symmetric matrix A

$$\mathcal{K}_{2}(A) = ||A||_{2} ||A^{-1}||_{2} = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$$

• Spectral condition number of A non-singular

$$\mathcal{K}_{2}(A) = ||A||_{2} ||A^{-1}||_{2} = \frac{\sigma_{1}}{\sigma_{2}} = \frac{\sigma_{max}}{\sigma_{min}}$$
 where

 σ_i is the ith singular values of A with $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n > 0$

RELATION BETWEEN CONDITION NUMBERS

1.
$$\frac{1}{n}\mathcal{K}_2(A) \le \mathcal{K}_1(A) \le n\mathcal{K}_2(A)$$

2.
$$\frac{1}{n}\mathcal{K}_{\infty}(A) \leq \mathcal{K}_{2}(A) \leq n\mathcal{K}_{\infty}(A)$$

3.
$$\frac{1}{n^2}\mathcal{K}_1(A) \leq \mathcal{K}_\infty(A) \leq n^2\mathcal{K}_1(A)$$

<u>Note</u>: Since $||A||_1$ and $||A||_{\infty}$ norms are easily computed, we can estimate $\mathcal{K}_2(A)$ using the above relations.

RELATION BETWEEN det(A) AND $\mathcal{K}(A)$

• Let A = Diag
$$(\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2})$$

=> det(A) = $\frac{1}{2^n}$ -> 0 as n -> ∞
=> $\mathcal{K}_p(A)$ = 1 for p = 1, 2, ∞

• Let $B \in \mathbb{R}^{n \times n}$, upper triangular:

$$a_{ij} = \begin{cases} 1 \ if \ i = j \\ -1 \ if \ i > j \\ 0 \ if \ i < j \end{cases}$$

- det(B) = 1 and $\mathcal{K}_{\infty}(A)$ = n -> ∞ as n -> ∞
- Thus, there is no correlation between det(A) and $\mathcal{K}(A)$

SENSITIVITY OF SOLUTION OF LINEAR SYSTEM

- Let Ax = b be the given system.
- Let $(A + \epsilon B)y = (b + \epsilon f)$ be the perturbed system
- ϵB and ϵf are the perturbation and the vector respectively, and $\epsilon > 0$ but small
- The relative error in the solution is given $\frac{\|y - x\|}{\|x\|} \leq \mathcal{K}(A) \left[\varepsilon \frac{\|B\|}{\|A\|} + \varepsilon \frac{\|f\|}{\|b\|}\right]$
- Since $\mathcal{K}(A) \ge 1$, the errors in A and b are amplified in the solution
- Larger $\mathcal{K}(A)$ is, more sensitive the system is to round-off error in A and b

Exercise

3.1) Give an examples of A and B where AB \neq BA and AB = BA

```
3.2) Verify (AB)^{T} = B^{T}A^{T}
3.3) Verify tr(AB) = tr(BA)
3.4) Prove det(A<sup>-1</sup>) = \frac{1}{\det(A)} (Hint: AA<sup>-1</sup> = I)
3.5) Verify A = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} is an orthogonal matrix
      Plot y = Ax when x = (1, 1) for \theta = 30°, 60°, 90°, 120°, 150°
3.6) Verify (AB)^{-1} = B^{-1}A^{-1}
3.7) Verify A^+ = (A^T A)^{-1} A^T and A^+ = A^T (A A^T)^{-1} satisfy the definition of the
generalized/ Moore – Penrose inverse
```

Exercise

3.8) Find the range and kernel of

$$\mathsf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$$

3.9) Verify $(AB)^* = B^*A^*$ and $(A^{-1})^* = (A^*)^{-1}$ where recall that A^* is the adjoint of A

3.10) If AV = λ V, then A²V = λ ²V and A^kV = λ ^kV

3.11) If A is non singular, then A^TA and AA^T are SPD

3.12) If
$$(A^T A)V_i = \lambda_i V_i$$
 and $u_i = \frac{1}{\sqrt{\lambda_i}} AV_i$, verify that $(AA^T)u_i = \lambda_i u_i$

REFERENCES

- 1. G. H. Golub and C. F. Van Loan (1989) <u>Matrix computations</u> Johns Hopkins university Press (Second edition)
- 2. C. D. Meyer (2000) <u>Matrix Analysis and Applied Linear Algebra</u>, SIAM, Philadelphia
- 3. R. A. Horn and C. R. Johnson (2013) <u>Matrix Analysis</u> Cambridge university Press (Second edition)