MATRICES:

AN OVERVIEW

S. Lakshmivarahan

School of Computer Science
University of Oklahoma
Norman, Ok - 73069, USA
varahan@ou.edu

DEFINITION, BASIC OPERATION

- An $m \times n$ real matrix A is a rectangular array of $m n$ real numbers arranged in \mathbf{m} rows and \mathbf{n} columns as

$$
\mathrm{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\mathrm{a}_{\mathrm{ij}}\right] \in \mathrm{R}^{\mathrm{m} \times \mathrm{n}}
$$

- $\mathrm{R}^{\mathrm{mxn}}$ - set of all real $m \times n$ matrices
- Row index $\mathrm{i}: 1 \leq \mathrm{i} \leq m$, column index $\mathrm{j}: 1 \leq \mathrm{j} \leq \mathrm{n}$
- When $m=n, A$ is called a square matrix of size or order n
- If $\mathrm{a}_{\mathrm{ij}}=0$ for all i, j, then A is called a zero or null matrix

CROSS-SECTIONS OF A MATRIX

- Let $A \in \mathrm{R}^{\mathrm{nxn}}$
- $\mathrm{a}_{\mathrm{i}^{*}}-\mathrm{i}^{\text {th }}$ row of A - row vector of size n
- $a_{*_{j}}-j^{\text {th }}$ column of $A-$ column vector of size n

$$
\mathrm{A}=\left[\mathrm{a}_{*_{1}}, \mathrm{a}_{*_{n}}, \ldots, \mathrm{a}_{*_{\mathrm{n}}}\right]=\left[\begin{array}{c}
a_{1 *} \\
a_{2 *} \\
\vdots \\
a_{n *}
\end{array}\right]<\text { row partition of } \mathrm{A} \text { column partition of } \mathrm{A}
$$

- $\left[\mathrm{a}_{11}, \mathrm{a}_{22}, \ldots, \mathrm{a}_{\mathrm{nn}}\right]$ - principal diagonal
- Diagonals parallel to principal diagonal and above (below) the principal diagonal are called super (sub) diagonals

OPERATIONS ON MATRICES

- A, B, C are matrices in $R^{n x n}, x, y, z \in R^{n}, a, b, c$ are in R
- Sum/difference: $C=A \pm B->c_{i j}=a_{i j}+b_{i j}$
(element wise sum/difference)
- Scalar multiple: $\mathrm{C}=\mathrm{aA}->\mathrm{c}_{\mathrm{ij}}=\mathrm{aa}_{\mathrm{ij}}$
- Matrix-vector produc: $y=A x, \quad y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, 1 \leq i \leq n$ or $\mathrm{y}=\sum_{j=1}^{n} a_{* j} x_{j}$ - Linear combination of the columns of A by elements of x

OPERATIONS ON MATRICES

- Matrix-matrix product: $C=A B$

1. Inner product: $\mathrm{c}_{\mathrm{ij}}=\sum_{k=1}^{n} a_{i k} b_{k j}$

$$
1 \leq i \leq n, 1 \leq j \leq n
$$

2. Saxpy: $\mathrm{c}_{*_{\mathrm{j}}}=\sum_{i=1}^{n} a_{* j} b_{i j}$
3. Outer product: $\mathrm{C}=\sum_{i=1}^{n} a_{* j} b_{j *}$

- $A B \neq B A$ - matrix product is not commutative.

OPERATIONS ON MATRICES

- 1) Transpose of $A \in R^{m \times n}$ denoted by $A^{\top} \in R^{n \times m}$ - columns of A are the row of

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right] \quad A^{\top}=\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
3 & 1
\end{array}\right]
$$

- a) $\left(A^{\top}\right)^{\top}=A$
- b) $(A+B)^{\top}=A^{\top}+B^{\top}$
- c) $(A B)^{\top}=B^{\top} A^{\top}$
-2) $\mathrm{A} \in \mathrm{R}^{\mathrm{nxn}}$ trace of $\mathrm{A}=\operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} a_{i i}=$ sum of diagonal elements
- a) $\operatorname{tr}: R^{n \times n}->R$, a function of the vector space of $n \times n$ matries
- b) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\top}\right)$
- c) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- d) $\operatorname{tr}(\alpha A)=\alpha \operatorname{tr}(A)$
- e) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
- f) $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$
- g) $\operatorname{tr}\left(A B A^{-1}\right)=\operatorname{tr}(B)$

DETERMINANT OF $A, B \in R^{n \times n}$

- Determinant of A denoted by $\operatorname{det}(\mathrm{A})$
$\operatorname{det}(\mathrm{A})=\sum_{j=1}^{n} a_{i j} A_{i j}$
$\mathrm{A}_{\mathrm{ij}}=$ cofactor of $\mathrm{a}_{\mathrm{ij}}=(-1)^{i+j} \mathrm{M}_{\mathrm{ij}}$
$M_{i j}=$ minor of $a_{i j}=$ determinant of the $(n-1) \times(n-1)$ matrix obtained by deleting the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A
a) A is nonsingular if $\operatorname{det}(A) \neq 0$ and singular otherwise
b) $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
d) $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det}(A)}$ if A is nonsingular

SPECIAL MATRICES

- $A \in R^{n \times n}$ is symmetric if $A^{\top}=A$
- $A=\operatorname{Diag}\left(d_{1}, d_{2}, \ldots d_{n}\right)$ is a diagonal matrix of size n when

$$
\begin{aligned}
& a_{i \mathrm{ii}}=d_{i} \\
& a_{i j}=0 \text { if } i \neq j
\end{aligned}
$$

- $I_{n}=\operatorname{Diag}(1,1, \ldots 1)$ is the identity matrix of size n
- A is upper triangular if $\mathrm{a}_{\mathrm{ij}}=0$ if $\mathrm{i}<\mathrm{j}$
- A is lower triangular if $\mathrm{a}_{\mathrm{ij}}=0$ if $\mathrm{i}>\mathrm{j}$
- A is tridiagonal is $\mathrm{a}_{\mathrm{ij}} \neq 0$ if $|\mathrm{i}-\mathrm{j}| \leq 1$

$$
\text { = } 0 \text { otherwise }
$$

- A is orthogonal if $A^{\top}=A^{-1}$

SPECIAL MATRICES

- $A \in R^{n \times n}$ is skew symmetric if $A^{T}=-A$. That is

$$
\begin{aligned}
& a_{\mathrm{ii}}=-a_{\mathrm{ji}} \text { if } \mathrm{i} \neq \mathrm{j} \\
& a_{\mathrm{ij}}=0 \text { if } \mathrm{i}=\mathrm{j}
\end{aligned}
$$

- Let $A \in R^{n x n}$

$$
\begin{aligned}
& A_{s}=\frac{1}{2}\left(A+A^{\top}\right)-\text { symmetric part of } A \\
& A_{s s}=\frac{1}{2}\left(A-A^{\top}\right)-\text { skew symmetric part of } A
\end{aligned}
$$

- $A=A_{s}+A_{s s}-$ Additive decomposition of A
- Let $A \in R^{n \times m}$. Then $A A^{\top} \in R^{n \times n}$ and $A^{\top} A \in R^{m \times m}$ are symmetric and are called the Grammian of A

RANK OF A MATRIX $A \in R^{m \times n}$

- Row(column) rank of $A=$ number of linear independent rows(columns) of A
- Row rank of $A=$ column rank of $A=\operatorname{Rank}(A)$
- $0 \leq \operatorname{Rank}(A) \leq \min \{m, n\}$
a) $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{\top}\right)$
b) $\operatorname{Rank}(A+B) \leq \operatorname{Rank}(A)+\operatorname{Rank}(B)$
c) $\operatorname{Rank}(A B) \leq \min \{\operatorname{Rank}(A), \operatorname{Rank}(B)\}$
d) Let $A=x y^{\top}$ - outer product matrix: $\operatorname{Rank}(A)=1$
e) $A \in R^{n \times n}$ nonsingular if
- $\operatorname{det}(\mathrm{A}) \neq 0$
- $\operatorname{Rank}(\mathrm{A})=\mathrm{n}$

INVERSE OF A NONSINGULAR MATRIX A $\in \mathrm{R}^{n \times n}$

- Inverse of A denoted by $A^{-1}:{A A^{-1}}^{-1} A^{-1} A=I_{n}$, the identity matrix

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a) $\left(A^{-1}\right)^{-1}=A$
b) $(A B)^{-1}=B^{-1} A^{-1}(A, B$ are nonsingular $)$
c) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{\top}=A^{-T}$

SHERMAN-MORRISON-WOODBURY (SMW) FORMULA - INVERSE UNDER PERTURBATION

a) $\left(I_{\mathrm{n}}+\mathrm{cd}^{\top}\right)^{-1}=\mathrm{I}_{\mathrm{n}}-\frac{c d^{T}}{1+d^{T} c} \quad \mathrm{c}, \mathrm{d} \in \mathrm{R}^{\mathrm{n}}$
b) $\left(A+c d^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} c d^{T} A^{-1}}{1+d^{T} A^{-1} C} \quad A \in R^{n \times n}-$ non singular, $c, d \in R^{n}$
c) $\left(A+C D^{\top}\right)^{-1}=A^{-1}-A^{-1} C\left[I_{k}+D^{\top} A^{-1} C\right]^{-1} D^{\top} A^{\top} \quad A \in R^{n x n}, B \in R^{k x k}$ are non singular $C, D \in R^{n x k}$
d) $\left(A+C B D^{\top}\right)^{-1}=A^{-1}-A^{-1} C\left[B^{-1}+D^{\top} A^{-1} C\right]^{-1} D^{\top} A^{-1}$

PROOF OF SMW - FORMULA

- Let $A \in R^{n \times n}$, and $B \in R^{k \times k}$ be non-singular. Let $C, D \in R^{n \times k}$
- Let

$$
\Lambda=\left[\begin{array}{cc}
A & C \\
D^{T} & B
\end{array}\right] \text { and } \Lambda^{-1}=\left[\begin{array}{ll}
\mathrm{P} & \mathrm{Q} \\
\mathrm{R} & \mathrm{~S}
\end{array}\right]
$$

$\cdot \Lambda \Lambda^{-1}=\left[\begin{array}{cc}A P+C R & A Q+C S \\ D^{T} P+B R & D^{T} Q+B S\end{array}\right]=\left[\begin{array}{cc}I_{n} & 0 \\ 0 & I_{k}\end{array}\right]$

PROOF OF SMW - FORMULA

- Equating off - diagonal elements:

$$
\begin{array}{ll}
A Q+C S=0 & \Rightarrow Q=-A^{-1} C S \\
D^{\top} P+B R=0 & \Rightarrow P=-B^{-1} D^{\top} P \tag{1}
\end{array}
$$

- Equating diagonal elements and using (1):

$$
\begin{array}{lll}
A P+C R=I_{n} & \Rightarrow P=\left(A-C B^{-1} D^{\top}\right)^{-1} & ->(2) \\
D^{\top} Q+B S=I_{k} & \Rightarrow P=\left(B-D^{\top} A^{-1} C\right)^{-1} & ->(3)
\end{array}
$$

PROOF OF SMW - FORMULA

$\cdot \Lambda \Lambda^{-1}=\left[\begin{array}{cc}\mathrm{PA}+\mathrm{QD}^{\mathrm{T}}=\mathrm{I}_{\mathrm{n}} & \mathrm{PC}+\mathrm{RB}=0 \\ \mathrm{RA}+\mathrm{SD}^{\mathrm{T}}=0 & \mathrm{RC}+\mathrm{SB}=\mathrm{I}_{\mathrm{k}}\end{array}\right]$

- $P A+Q D^{\top}=I_{n}$

$$
\Rightarrow P=A^{-1}+Q D^{\top} A^{-1}
$$

$$
=A^{-1}+A^{-1} \operatorname{CSD}^{\top} A^{-1} \text { [using (1)] }
$$

$$
=A^{-1}+A^{-1} C\left[B-D^{\top} A^{-1} C\right]^{-1} D^{\top} A^{-1} \text { [using (3)] }
$$

PROOF OF SMW - FORMULA

- Using the definition of P in (2):

$$
\left[A-C B^{-1} D^{\top}\right]^{-1}=A^{-1}+A^{-1} C\left[B-D^{\top} A^{-1} C\right]^{-1} D^{\top} A^{-1} \quad \rightarrow(4)
$$

- This proves the formula (d) in slide 12 by replacing B^{-1} in (4) by $-B$
- Setting $B=-I_{k}$, we get formula (c)
- Setting $B=-1$ and $k=1$, we get formula (b)
- Setting $B=-1$ and $A=I_{n}$, we get formula (a)

MOORE-PENROSE/GENERALIZED INVERSE

- Let $A \in R^{m \times n}$ and $A^{+} \in R^{n \times m}$
- A^{+}is called Moore-Penrose/Generalized inverse of A if
a) $\mathrm{AA}^{+} \mathrm{A}=\mathrm{A}$
b) $A^{+} A A^{+}=A^{+}$
c) $\left(A^{+} A\right)^{\top}=A^{+} A-A^{+} A$ is symmetric
d) $\left(A A^{+}\right)^{\top}=A A^{+}-A A^{+}$is symmetric
- Let A be of full rank. Then

$$
\begin{aligned}
& A^{+}=\left(A^{\top} A\right)^{-1} A^{\top} \text { if } m>n \\
& A^{+}=A^{\top}\left(A A^{\top}\right)^{-1} \text { if } m<n
\end{aligned}
$$

- When $n=m$ and A is non-singular, $A^{+}=A^{-1}$, and $A^{+} A=A A^{+}=I_{n}$

MATRICES AS LINEAR TRANSFORMATION

- Let $A \in R^{m \times n}$
- Then $A: R^{n}->R^{m}$ where $y=A x \in R^{m}$ when $x \in R^{n}$

- A is called a linear transformation of R^{n} to R^{m} with the properties:

$$
\begin{aligned}
A(x+y) & =A x+A y & & \text { for } x, y \in R^{n} \\
A(a x) & =a A x & & \text { for } x \in R^{n} \text { and } a \in R
\end{aligned}
$$

- Range(A) $=\left\{y \in R^{m} \mid y=A x\right.$ for all $\left.x \in R^{n}\right\} \subseteq R^{m}$
- $\operatorname{NULL}(A)=\operatorname{Ker}(A)=\left\{x \in R^{n} \mid A x=0\right\}$
$\operatorname{Ker}(\mathrm{A})$ denotes the Kernel of A

EXAMPLES OF OPERATION

- Q matrix $\in R^{n \times n}$ is called orthogonal if $Q^{\top}=Q^{-1}, Q Q^{\top}=Q^{\top} Q=I_{n}$
- $Q: R^{n}->R^{n}$ is called an orthogonal operator
- $\mathrm{Q}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix - rotation operator
- If $x \in R^{2}$, then Q rotates x by an angle θ in the anti-clockwise direction
- Let $\mathrm{y}=\mathrm{Qx}$ and Q is orthogonal

Then

$$
\|y\|_{2}^{2}=(\mathbf{Q x})^{\top}(\mathbf{Q X})=\mathbf{x}^{\top}\left(\mathrm{Q}^{\top} \mathbf{Q}\right) \mathbf{x}=\mathbf{x}^{\top} \mathbf{x}=\|x\|_{2}^{2}
$$

This is, length of a vector is invariant under orthogonal transformation

COORDINATE TRANSFORMATION

- $B_{1}=\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ be the standard basis for R^{n}
- $B_{2}=\left\{g_{1}, g_{2}, \ldots g_{n}\right\}$ be a new basis for R^{n}
- $E=\left[e_{1}, e_{2}, \ldots e_{n}\right] \in R^{n \times n}$ and $G=\left[g_{1}, g_{2}, \ldots g_{n}\right] \in R^{n \times n}$
- Then, for $1 \leq \mathrm{i} \leq \mathrm{n}$, express the new basis using the old basis :

$$
\mathrm{g}_{\mathrm{i}}=\mathrm{t}_{1 \mathrm{i}} \mathrm{e}_{1}+\mathrm{t}_{2 \mathrm{i}} \mathrm{e}_{2}+\ldots+\mathrm{t}_{\mathrm{ni}} \mathrm{e}_{\mathrm{n}}
$$

Thus

$$
\left[\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots \mathrm{~g}_{\mathrm{n}}\right]=\left[\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right]\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n 1} & t_{n 2} & \cdots & t_{n n}
\end{array}\right]
$$

COORDINATE TRANSFORMATION

$$
\mathrm{G}=\mathrm{ET} \text { where } \mathrm{T}=\left[\mathrm{t}_{\mathrm{ij}}\right]-\text { non-singular }
$$

- Let $U \in R^{n}$. Let
$U=E x=e_{1} x_{1}+e_{2} x_{2}+\ldots+e_{n} x_{n}$ in B_{1}
$\mathrm{U}=\mathrm{Gx}^{*}=g_{1} x_{1}^{*}+g_{2} x_{2}^{*}+\ldots+g_{n} x_{n}^{*}$ in B_{2}
- Then $E x=G x^{*}->x=\left(E^{-1} G\right) x^{*}=T x^{*}$

Coordinates of U in B_{1} and B_{2} are related as $x=T x^{*}$

SIMILARITY TRANSFORMATION

- Let x and $y \in R^{n}$ in the standard basis B_{1} for R^{n}.
- Let $A: R^{n}->R^{n}$ be a linear operator: $y=A x$
- Let T be linear transformation of the basis B_{1} to a new basis B_{2}
- Let x^{*} and y^{*} be the representation of vector x and y in the new basis
- $x=T x^{*}, y=T y^{*}$ and let $y=A x$
- Then $y=T y^{*}=A x=A T x^{*}$

$$
\text { or } \mathrm{y}^{*}=\left(\mathrm{T}^{-1} \mathrm{AT}\right) \mathrm{x}^{*}
$$

- $\left(T^{-1} A T\right)$ is the representation of A in the new basis B_{2}
- The transformation form $\mathrm{A}->\mathrm{T}^{-1} \mathrm{AT}$ is called similarity transformation

CONGRUENT TRANSFORMATION

- Let $A \in R^{n}$ and $B \in R^{n \times n}$ be non-singular
- Transformation from $A->B^{\top} A B$ is called congruence transformation

ADJOINT OPERATOR

- Let $A: R^{n}->R^{n}$ be the matrix that denotes the linear operator in R^{n}
- Define a new linear operator A^{*} as:

$$
<A x, y>=\left\langle x, A^{*} y>\right.
$$

Then, A^{*} is called the adjoint of A

- Since $\langle A x, y\rangle=(A x)^{\top} y=x^{\top} A^{\top} y=x^{\top}\left(A^{\top} y\right)=\left\langle x, A^{\top} y\right\rangle=\left\langle x, A^{*} y\right\rangle$

It follows that $A^{*}=A^{\top}$. Therefore, adjoint of A is given by A^{\top}.

- If $A=A^{\top}$ when A is symmetric, A is called self-adjoint operator
a) $\left(\mathrm{A}^{*}\right)^{*}=\mathrm{A}$
b) $(a A)^{*}=a A^{*}$
c) $(A+B)^{*}=A^{*}+B^{*}$
d) $(A B)^{*}=B^{*} A^{*}$
e) if A^{-1} exists, then $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$

EXISTENCE OF SOLUTION TO LINEAR SYSTEM

- Let $A \in R^{m \times n}, b \in R^{m}$. Then
$A x=b$ has a solution only when $b \in \operatorname{Range}(A)$
- $\operatorname{NULL}\left(A^{\top}\right)=\left\{y \in R^{m} \mid A^{\top} y=0\right\}$
- Let $b \in \operatorname{Range}(A)$ and $y \in \operatorname{NULL}\left(A^{\top}\right)$. Then $b^{\top} y=(A x)^{\top} y=x A^{\top} y=0$ Therefore, Range(A) and $\operatorname{NULL}\left(A^{\top}\right)$ are mutually orthogonal.
- Fredholm's alternative: Given $A \in R^{m \times n}$, then exactly one of the two statements is true:

1) $A x=b$ has a solution or
2) $A^{\top} y=0$ has a solution such that $y^{\top} b \neq 0$

- Let $A \in R^{n \times n}, b \in R^{n}$
- Non-homogenous system $A x=b$ has a solution only when A is non-singular and $x=A^{-1} b$
- Homogenous system $A x=0$ has a non-trivial solution only when A is singular

BILINEAR AND QUADRATIC FORMS

- Let $A \in R^{m x n}$ and $f_{A}: R^{m} x R^{n}->R$ given by $f_{A}(x, y)=x^{\top} A y, x \in R^{m}, y \in R^{n}$ is called a bilinear form associated with A
- Let $A \in R^{n x n}$ and $f_{A}: R^{n}->R$ given by $Q_{A}(x)=x^{\top} A x, \quad x \in R^{n}$ is called a quadratic form associated with A
- $\mathrm{n}=2, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{\top}, \quad \mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

$$
\mathrm{Q}_{\mathrm{A}}(\mathrm{x})=a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}
$$

PROPERTY OF QUADRATIC FORM

- Since $Q_{A}(x)$ is a scalar,

$$
Q_{A}(x)=x^{\top} A x=\left(x^{\top} A x\right)^{\top}=x^{\top} A^{\top} x=Q_{A^{T}}(x)
$$

- Hence

$$
\mathrm{Q}_{A}(\mathrm{x})=\frac{1}{2}\left[\mathrm{x}^{\top} \mathrm{A} x+\mathrm{x}^{\top} \mathrm{A}^{\top} \mathrm{x}\right]=\mathrm{x}^{\top}\left[\frac{A+A^{T}}{2}\right] \mathrm{x}=\mathrm{x}^{\top} \mathrm{A}_{s} \mathrm{x}
$$

where $\mathrm{A}_{\mathrm{s}}=\frac{A+A^{T}}{2}$, symmetric part of A

- Hence we are interested in $Q_{A}(x)$ only for a symmetric matrix

POSITIVE DEFINITE MATRIX (PD)

- Let $A \in R^{n \times n}$. A is said to be PD if

$$
\begin{aligned}
x^{\top} A x & >0 \text { for all } x \neq 0 \\
& =0 \text { only if } x=0
\end{aligned}
$$

- An equivalent definition:
- Principal minors of all orders are positive.
- The eigenvalues of A are all positive.
- To get an understanding of the constraints on the elements of A :
- $\mathrm{Q}_{\mathrm{A}}(\mathrm{x})=\mathrm{a} x_{1}^{2}+2 \mathrm{~b} x_{1} x_{2}+\mathrm{c} x_{2}^{2}$

$$
\text { Let } \mathrm{A}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

$$
=\mathrm{a}\left(x_{1}+\frac{b}{a} x_{2}\right)^{2}+\left(\mathrm{c}-\frac{b^{2}}{a}\right) x_{2}^{2}
$$

- This is greater than zero if ac $>\mathrm{b}^{2}$
- This A is PD if $a>0, c>0$ and $a c>b^{2}$.

EIGENVALUES AND EIGENVECTOS

- Let $A \in R^{n \times n}$. If there exists $V \in R^{n}$ and $\lambda \in R$ such that $A V=\lambda V$, then λ is the eigenvalue and V is the eigenvector of A
- (λ, V) is the solution of the homogenous system

$$
(A-\lambda I) V=0
$$

- For V to be non-trivial vector, $P(\lambda)=\operatorname{det}(A-\lambda I)=0$ where $P(\lambda)$ is the $\mathrm{n}^{\text {th }}$ degree polynomial called the characteristic polynomial
- Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be the n-roots of $P(\lambda)=0$
- λ_{i}^{\prime} 's are real or complex. Complex roots come in conjugate pairs
- When A is symmetric, λ_{i} 's are real
- When A is symmetric and positive definite (SPD), λ_{i} 's are real and positive

EXAMPLE OF EIGENVALUES

$$
A=\left[\begin{array}{cc}
5 & -2 \\
-2 & 8
\end{array}\right] \quad \lambda_{1}=9, \lambda_{2}=4
$$

- The eigenvector $\mathrm{V}_{1}=\frac{1}{\sqrt{5}}\binom{-1}{2}, \mathrm{~V}_{2}=\frac{1}{\sqrt{5}}\binom{2}{1}$

Clearly, $\mathrm{V}_{1} \perp \mathrm{~V}_{2}$

- Let A be SPD and $\left(\lambda_{i}, V_{i}\right): A v_{i}=\lambda_{i} V_{i}$
- Then $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{n}}\right\}$ is an orthonormal system
- Let $\mathrm{V}=\left[\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{n}}\right] \in \mathrm{R}^{\mathrm{n}}, \mathrm{V}^{\top}=\mathrm{V}^{-1}$
- Then $\mathrm{AV}=\mathrm{V} \Lambda, \Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{\mathrm{n}}\right)$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{V} \Lambda \mathrm{~V}^{\top}-\text { Eigendecomposition of } \mathrm{A} \\
& \mathrm{~A}=\sum_{i=1}^{n} \lambda_{i} V_{i} V_{i}^{T}
\end{aligned}
$$

- Spectral radius of $A=\rho(\mathrm{A})=\max _{i}\left\{\left|\lambda_{i}\right|\right\}$

SINGULAR VALUES OF A

- Let A be non-singular. The gramians $A^{\top} A$ and $A A^{\top}$ are then symmetric and positive definite.
- Let $\left(A^{\top} A\right) V_{i}=\lambda_{i} V_{i}$ with

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \ldots \geq \lambda_{n}>0
$$

- Verify that $\left(A A^{\top}\right) U_{i}=\lambda_{i} U_{i}$ where

$$
\mathrm{U}_{\mathrm{i}}=\frac{1}{\sqrt{\lambda_{\mathrm{i}}}} \mathrm{AV} V_{\mathrm{i}}
$$

- $A^{\top} A$ and $A A^{\top}$ share the same set of eigenvalues
- Define $\sigma_{i}=\sqrt{\lambda_{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
- $\left\{\sigma_{i}\right\}$ are the singular values of A

MATRIX NORMS

- Let $A \in R^{n \times n}$. Norm of A is a measure of the size of A
- Frobenius norm of $\mathrm{A}=\| \mathrm{A}| |_{\mathrm{F}}=\left[\sum_{i, j=1}^{n} a_{i j}^{2}\right]^{1 / 2}$
- Operator form: (Induced norm)

$$
\|A\|_{p}=\sup _{\|x\|_{p} \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

- Setting $\mathrm{P}=1,2, \infty$, we get various matrix norms
- Inequalities:

$$
\begin{aligned}
& \text { 1) }\|A x\| \leq\|A\|\|x\| \\
& \text { 2) }\|A B\| \leq\|A\|\|B\|
\end{aligned}
$$

COMPUTATION OF $\left|\mid A \|_{p}\right.$

1) $\|A\|_{1}=\max _{j}\left\{\sum_{i=1}^{n}\left[a_{i j}\right]\right\}$ - Column norm
2) $\|A\|_{\infty}=\max _{i}\left\{\sum_{j=1}^{n}\left[a_{i j}\right]\right\}-$ Row norm
3) $\|A\|_{2}=\sigma_{1}$ where σ_{1}^{2} is one max eigenvalue of $\mathrm{A}^{\top} \mathrm{A}$. σ_{1} is the largest singular value of A
4) When A is symmetric, $A^{\top} A=A^{2}$ and $A^{2} x=\lambda^{2} x$ if $A x=\lambda x$

Therefore, $\|A\|_{2}=\left|\lambda_{\max }\right|, \lambda_{\text {max }}=$ maximum eigenvalue of A
5) For A symmetric: $\rho(\mathrm{A})=\|A\|_{2}=\left|\lambda_{\max }\right|$, called spectral radius

EQUIVALENCE OF MATRIX NORMS: A $\in \mathrm{R}^{\mathrm{nxn}}$

1) $\|A\|_{2} \leq\left[\|A\|_{1}\|A\|_{\infty}\right]^{1 / 2}$
2) $\frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{\infty}$
3) $\frac{1}{\sqrt{n}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}$
4) $\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2}$
5) $\rho(\mathrm{A}) \leq\|A\|$, any matrix norm

CONDITION NUMBER OF A MATRIX

- Let $A \in R^{n x n}$.
- Condition number $\mathcal{K}_{p}(\mathrm{~A})=\|A\|\left\|_{p}\right\| A^{-1}\| \|_{p}$ and its values is norm dependent
- Since $\mathrm{I}=\mathrm{AA}^{-1}=>1=\|\mathrm{I}\|_{p} \leq\|A\|_{p}\left\|A^{-1}\right\|_{p}=\mathcal{K}(\mathrm{A})$
- Thus, $1 \leq \mathcal{K}(\mathrm{A}) \leq \infty$
- Spectral condition number of symmetric matrix A

$$
\mathcal{K}_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\left|\lambda_{\max }\right|}{\left|\lambda_{\min }\right|}
$$

- Spectral condition number of A non-singular

$$
\mathcal{K}_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{2}}=\frac{\sigma_{\max }}{\sigma_{\min }} \text { where }
$$

σ_{i} is the i^{th} singular values of A with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$

RELATION BETWEEN CONDITION NUMBERS

1. $\frac{1}{n} \mathcal{K}_{2}(A) \leq \mathcal{K}_{1}(A) \leq n \mathcal{K}_{2}(A)$
2. $\frac{1}{n} \mathcal{K}_{\infty}(A) \leq \mathcal{K}_{2}(A) \leq \mathrm{n} \mathcal{K}_{\infty}(A)$
3. $\frac{1}{n^{2}} \mathcal{K}_{1}(A) \leq \mathcal{K}_{\infty}(A) \leq n^{2} \mathcal{K}_{1}(A)$

Note: Since $\|A\|_{1}$ and $\|A\|_{\infty}$ norms are easily computed, we can estimate $\mathcal{K}_{2}(A)$ using the above relations.

RELATION BETWEEN $\operatorname{det}(\mathrm{A})$ AND $\mathcal{K}(\mathrm{A})$

- Let $\mathrm{A}=\operatorname{Diag}\left(\frac{1}{2}, \frac{1}{2}, \ldots \frac{1}{2}\right)$

$$
\begin{aligned}
& \Rightarrow \operatorname{det}(\mathrm{A})=\frac{1}{2^{n}}->0 \text { as } \mathrm{n}->\infty \\
& \Rightarrow \mathcal{K}_{p}(A)=1 \text { for } \mathrm{p}=1,2, \infty
\end{aligned}
$$

- Let $\mathrm{B} \in \mathrm{R}^{\mathrm{nxn}}$, upper triangular:

$$
a_{i j}=\left\{\begin{array}{c}
1 \text { if } i=j \\
-1 \text { if } i>j \\
0 \text { if } i<j
\end{array}\right.
$$

- $\operatorname{det}(\mathrm{B})=1$ and $\mathcal{K}_{\infty}(A)=\mathrm{n}->\infty$ as $\mathrm{n}->\infty$
- Thus, there is no correlation between $\operatorname{det}(\mathrm{A})$ and $\mathcal{K}(\mathrm{A})$

SENSITIVITY OF SOLUTION OF LINEAR SYSTEM

- Let $A x=b$ be the given system.
- Let $(A+\varepsilon B) y=(b+\varepsilon f)$ be the perturbed system
- εB and εf are the perturbation and the vector respectively, and $\varepsilon>0$ but small
- The relative error in the solution is given

$$
\frac{\|y-x\|}{\|x\|} \leq \mathcal{K}(\mathrm{A})\left[\varepsilon \frac{\|B\|}{\|A\|}+\varepsilon \frac{\|f\|}{\|b\|}\right]
$$

- Since $\mathcal{K}(\mathrm{A}) \geq 1$, the errors in A and b are amplified in the solution
- Larger $\mathcal{K}(\mathrm{A})$ is, more sensitive the system is to round-off error in A and b

Exercise

3.1) Give an examples of A and B where $A B \neq B A$ and $A B=B A$
3.2) Verify $(A B)^{\top}=B^{\top} A^{\top}$
3.3) Verify $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
3.4) Prove $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det}(A)}$ (Hint: $\left.\mathrm{AA}^{-1}=1\right)$
3.5) Verify $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix

Plot $y=A x$ when $x=(1,1)$ for $\theta=30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$
3.6) Verify $(A B)^{-1}=B^{-1} A^{-1}$
3.7) Verify $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}$ and $A^{+}=A^{\top}\left(A A^{\top}\right)^{-1}$ satisfy the definition of the generalized/ Moore - Penrose inverse

Exercise

3.8) Find the range and kernel of

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
3 & 1
\end{array}\right]
$$

3.9) Verify $(A B)^{*}=B^{*} A^{*}$ and $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$ where recall that A^{*} is the adjoint of A
3.10) If $A V=\lambda V$, then $A^{2} V=\lambda^{2} V$ and $A^{k} V=\lambda^{k} V$
3.11) If A is non singular, then $A^{\top} A$ and $A A^{\top}$ are SPD
3.12) If $\left(A^{\top} A\right) V_{i}=\lambda_{i} V_{i}$ and $u_{i}=\frac{1}{\sqrt{\lambda_{i}}} A V_{i}$, verify that $\left(A A^{\top}\right) u_{i}=\lambda_{i} u_{i}$

REFERENCES

1. G. H. Golub and C. F. Van Loan (1989) Matrix computations Johns Hopkins university Press (Second edition)
2. C. D. Meyer (2000) Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia
3. R. A. Horn and C. R. Johnson (2013) Matrix Analysis Cambridge university Press (Second edition)
