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DEFINITION, BASIC OPERATION

 An mxn real matrix A is a rectangular array of mn real numbers
arranged in m rows and n columns as

i1 A2 0 Qqn
Az1 Q22 =+ U2n

A= . : " : | T [aij] € R™M
Am1 Am2 - Amn.

« R™Mn — set of all real mxn matrices

* Rowindexi:1<i<m, columnindexj:1<j<n

* When m =n, Ais called a square matrix of size or order n
e |f ;=0 for all i,j, then A'is called a zero or null matrix



CROSS-SECTIONS OF A MATRIX

* Let A € R™"
* a. - it" row of A —row vector of size n

* a,; — ™ column of A — column vector of size n
.-

A2 .y
A =[a«y, A« ..., @5l =| ¢ | <- column partition of A

" Ay
row partitionof A ~
* [a;4, @5y, ---, @,,] — Principal diagonal

* Diagonals parallel to principal diagonal and above (below) the
principal diagonal are called super (sub) diagonals



OPERATIONS ON MATRICES

* A, B, Care matricesin R™", x,y,z€R", a,b,careinR

* Sum/difference: C=A*B -> ¢;=3a; + b
( element wise sum/difference)

e Scalar multiple: C=aA -> C; = aa;

* Matrix-vector produc: y = Ax, vy,= ?:1 a;jxi , 1 <i<n

ory= Z}Ll a,;jx;j - Linear combination of the columns of A by
elements of x



OPERATIONS ON MATRICES

 Matrix-matrix product: C = AB

1. Inner product: ¢; =X _q Qi by; 1 <i<n1<j<n

. _ n
2. Saxpy: C*j - Zi=1 a*fbif

3. Outer product: C=}/"; a,;b;,

* AB # BA — matrix product is not commutative.



OPERATIONS ON MATRICES

. 1)r Transpose of A € R™"denoted by AT € R™™ - columns of A are the row of
A

e
a=l 23wl o
3 1]

e a) (A1) =A
* b)(A+B)T=A"+ BT
e c) (AB)T = BTAT

* 2) A€ R™ trace of A=tr(A) = )./-; a;; = sum of diagonal elements
a) tr: R™" -> R, a function of the vector space of nxn matries

b) tr(A) = tr(A")

c) tr(A + B) = tr(A) + tr(B)

d) tr(aA) = atr(A)

e) tr(AB) = tr(BA)

f) tr(ABC) = tr(BCA) = tr(CAB)

g) tr(ABA1) = tr(B)



DETERMINANT OF A, B € R™"

* Determinant of A denoted by det(A)
dEt(A) = ?=1 aiinj
A; = cofactor of a;; = (-1)" M;

M;; = minor of a; =determinant of the (n-1)x(n-1) matrix obtained
by deleting the th row and jt" column of A

a) Ais nonsingular if det(A) # 0 and singular otherwise
b) det(A) = det(A")
c) det(AB)=det(A)det(B)

d) det(Al)=

1 ... :
ot A) if A'is nonsingular



SPECIAL MATRICES

A € R™ is symmetric if AT= A
* A = Diag(d,,d,, ... d,) is a diagonal matrix of size n when
a; = d,
a;=0ifi#]j
* | =Diag(1,1, ...1) is the identity matrix of size n
* Ais upper triangularifa; =0ifi <]
* Ais lower triangularifa; = 0ifi>]
* Alis tridiagonal isa; #0if [i—j| <1
=0 otherwise
* Ais orthogonal if A" = Al



SPECIAL MATRICES

* A € R™ is skew symmetric if AT=-A. That is
a;; = -a;; if i#]
a;=0ifi=]

* Let A€ R™" A, = %( A + A") — symmetric part of A
A= %( A - A') — skew symmetric part of A

* A=A + A, — Additive decomposition of A

* Let A € R™™, Then AAT € R™" and ATA € R™™ are symmetric and are
called the Grammian of A



RANK OF A MATRIX A € R™n

* Row(column) rank of A = number of linear independent
rows(columns) of A

* Row rank of A = column rank of A = Rank(A)

* 0 £ Rank(A) £ min{m,n}
a) Rank(A) = Rank(A")
b) Rank(A + B) < Rank(A) + Rank(B)
c) Rank(AB) < min{ Rank(A), Rank(B)}
d) Let A =xy’— outer product matrix: Rank(A) = 1
e) A € R™" nonsingular if
e det(A) 20
 Rank(A) =n



INVERSE OF A NONSINGULAR MATRIX A € R™"

* Inverse of A denoted by A1: AAl=A1A =

|, the identity matrix

l; =

=
o R O
_ o o

a) (AY)1l=A
b) (AB)!=B?*A?l(A,Barenonsingular)

C) (AT)-l - ( A-l)T = AT



SHERMAN-MORRISON-WOODBURY (SMW)
FORMULA — INVERSE UNDER PERTURBATION

cdT

a) (I, +cd)t=1 - T c,d ER"
-1 T ,—1
b) (A+cd")t=A"1- ';1+ ;?Aflc A € R™" — non singular, ¢, d € R"

c) (A+CD")t=A1-AIC[l +D'AIC]ID'AT A€ R™, B e R are non
singular C, D € R™k

d) (A+CBD')!=A1l-ALC[B!+ DA IC]IDTAL



PROOF OF SMW - FORMULA

* Let A € R™" and B € Rk be non-singular. Let C, D € Rk

* Let
P

_1 —
and A [R

A= [DT B
AP+CR AQ+CS] I, O
[0 I

« ANt = —
[DTP +BR D'Q +BS



PROOF OF SMW - FORMULA

* Equating off — diagonal elements:
AQ+CS=0 =>Q=-AlCS
-> (1)
D'P+BR=0 =>R=-B1D'P
* Equating diagonal elements and using (1):
AP+CR=I =>P=(A-CBID")! ->(2)
D'Q+BS=I, =>S=(B-D'AIC)! ->(3)



PROOF OF SMW - FORMULA

PA+QDT =1, PC+RB=0
RA+SD'=0 RC+SB=1I
*PA+QD" =1,
—P=Al+QD™A!

= A1+ A1CSD'A! [using (1)]

= A1+ A1C[B-D'ALC]ID'A™ [using (3)]

¢+ ANT =



PROOF OF SMW - FORMULA

» Using the definition of P in (2):
[A—CB1DT]1= A1+ AIC[B—D'AICI'D'AT -> (4)
* This proves the formula (d) in slide 12 by replacing B in (4) by -B
* Setting B = —I,, we get formula (c)
e Setting B=—-1 and k=1, we get formula (b)
* Setting B=-1and A =1_, we get formula (a)



MOORE-PENROSE/GENERALIZED INVERSE

e Let A € R™" and A* € R™m

e A*is called Moore-Penrose/Generalized inverse of A if
a) AA*A=A
b) A*AA* = A*
c) (A*A)T=A*A - A*Ais symmetric
d) (AA*)" = AA*— AA*is symmetric

* Let A be of full rank. Then
A* = (ATA) AT if m > n
A*=A"(AAT)1ifm<n
* When n =m and A is non-singular, A* = A'l, and A*A = AA* = |



MATRICES AS LINEAR TRANSFORMATION

e Let A € R™n
e Then A: R"-> RMwhere y = Ax € R™ X
when x € R"
* Ais called a linear transformation of R" to R™ with the properties:
A(x +vy) = Ax + Ay forx,y € R"
A(ax) = aAx forx eR"anda €R
 Range(A)={y€R™ | y=Axforallx €R"} € R™
* NULL(A) =Ker(A)={x€R"| Ax=0}
Ker(A) denotes the Kernel of A



EXAMPLES OF OPERATION

* Q matrix € R™" is called orthogonal if Q'=Q!, QQ'=Q'Q =1
* Q: R"-> R"js called an orthogonal operator

- [ cos sinf
—sin@ cosO
* If x € R» then Q rotates x by an angle @ in the anti-clockwise direction

is an orthogonal matrix — rotation operator

* Lety = Qx and Q is orthogonal
Then
Iy1l3 = (Qx)T(QX) = x(QTQ)x = x"x = [|x]|3
This is, length of a vector is invariant under orthogonal transformation



COORDINATE TRANSFORMATION

*B,={e, e, ..e,}bethe standard basis for R"
*°B,={8g, 8, - 8,1 be a new basis for R"
*E=[e,e, ..e,]ER"™Mand G=1[g,, 8, ... 8,] €ER™"
* Then, for 1 £i < n, express the new basis using the old basis :
g =1,e,+,e,+...+1..e,
Thus

[gll g21 gn] = [ e11 ez; en]




COORDINATE TRANSFORMATION

G =ET where T = [tij] — non-singular

* Let U € R". Let
U=Ex=ex;+eXx,+..+ex inB;

—_ * X % %k o
U=GXx =g1x{+ gx, +...+ gpXx, in B,

* Then Ex = Gx* ->x = (E'1G)x* = Tx*

Coordinates of U in B, and B, are related as x = Tx*



SIMILARITY TRANSFORMATION

* Let x and y € R"in the standard basis B, for R".
* Let A: R"->R" be a linear operator: y = Ax
* Let T be linear transformation of the basis B, to a new basis B,
* Let x* and y* be the representation of vector x and y in the new basis
e x=Tx*,y=Ty* and let y = Ax
* Theny=Ty* = Ax = ATx*
or y* = (T1AT)x*
* (TLAT) is the representation of A in the new basis B,
* The transformation form A -> T-'AT is called similarity transformation



CONGRUENT TRANSFORMATION

* Let A € R"and B € R™" be non-singular

* Transformation from A->B'AB is called congruence transformation



ADJOINT OPERATOR

* Let A: R"-> R" be the matrix that denotes the linear operator in R"
e Define a new linear operator A* as:
<AX, y> = <x, A*y>
Then, A* is called the adjoint of A
* Since <Ax, y> = (Ax)y = x"Aly = xT(Aly) = <x, Aly> = <x, A*y>
It follows that A* = AT Therefore, adjoint of A is given by A".

 If A= AT when A is symmetric, A is called self-adjoint operator
a) (A*)*=A
b) (aA)* = aA*
c) (A+B)*=A*+B*
d) (AB)* = B*A*
e) if Al exists, then (A1)* = (A*)1



EXISTENCE OF SOLUTION TO LINEAR SYSTEM

e Let AER™" b €ER™ Then
Ax = b has a solution only when b € Range(A)
e NULL(A) ={y ER™ | Aly=0}
* Let b € Range(A) and y € NULL(A'). Then by = (Ax)'y =xA'y =0
Therefore, Range(A) and NULL(A") are mutually orthogonal.

* Fredholm’s alternative: Given A € R™", then exactly one of the two
statements is true:

1) Ax = b has a solution or
2) A'y = 0 has a solution such that y'b # 0
e let AER™" b ER"

* Non-homogenous system Ax = b has a solution only when A is non-singular
and x = A1b

. I-!omclagenous system Ax = 0 has a non-trivial solution only when A is
singular



BILINEAR AND QUADRATIC FORMS

* Let A€ R™"and f,: R™ x R" -> R given by f,(x, y) = x'Ay, x €R™, y € R"
is called a bilinear form associated with A

* Let A € R™and f,: R"-> R given by Q,(x) = xTAx, x € R"is called a
guadratic form associated with A

aqq a12]
dz1 0A22

_ 2 2
Qu(X) = a11x7 + (@12 + az1)x1%y + az%3

*n=2,x=(xqy, X)), A=[



PROPERTY OF QUADRATIC FORM

* Since Q,(x) is a scalar,
Q,(x) = x"Ax = (x'Ax)" = x'"A™x = Q s T(x)

* Hence
T
Q,(x) = %[XTAX + XTA'X] = xT[A+2A Ix = xTAx
T
where A, = A+2A , symmetric part of A

* Hence we are interested in Q,(x) only for a symmetric matrix



POSITIVE DEFINITE MATRIX (PD)

e Let A € R™", Aissaid to be PD if
x'Ax>0forallx#0
=0onlyifx=0

* An equivalent definition:
* Principal minors of all orders are positive.
* The eigenvalues of A are all positive.

* To get an understanding of the constraints on the elements of A:
a b
Let A= [ ]
b c
* Qu(x) = ax2 + 2bx;x, + cx?
b b%, -
- a(x1+ Exz)z + (C - 7)362

* This is greater than zero if ac > b?
 ThisAisPDifa>0, c>0 and ac > b2.



EIGENVALUES AND EIGENVECTOS

 Let A € R™ [f there exists V € R" and A € R such that AV = AV, then A
is the eigenvalue and V is the eigenvector of A

* (A, V) is the solution of the homogenous system
(A—AI)V=0

* For V to be non-trivial vector, P(A) = det(A — Al) = 0 where P(A) is the
nth degree polynomial called the characteristic polynomial

* Let A, A,, ... A, be the n-roots of P(A\) =0
* \'s are real or complex. Complex roots come in conjugate pairs
* When A is symmetric, As are real

* When A is symmetric and positive definite (SPD), A/s are real and
positive



EXAMPLE OF EIGENVALUES

N P P LR Y

* The eigenvector V, = \/—% (_1); V, =+ (2)

2 V5\1
Clearly, V, 1V,
* Let Abe SPD and (A, V,): Av, = AV,
* Then{V,V,, ..V, }is an orthonormal system
¢ LletV=[V,V,, ..V ]ER, VT =Vl
* Then AV =VA, A =Diag(A, A,, ... \)
A = VAVT — Eigendecomposition of A
A=Y AV
* Spectral radius of A= p(A) = miax{Ml- |}



SINGULAR VALUES OF A

* Let A be non-singular. The gramians ATA and AA' are then symmetric
and positive definite.

* Let (ATA)V, = AV, with
MN2ZA2A .2 A >0
* Verify that (AAT)U. = AU, where

1
Uj= 7= AV

» ATA and AA" share the same set of eigenvalues
* Define o; =\//1_l- forl1<i<n

* {0;} are the singular values of A



MATRIX NORMS

e Let A € R™ Norm of A is a measure of the size of A

* Frobenius norm of A= | |A]| | = ZU . a a 1%
e Operator form: (Induced norm)
[1Ax|[
All,=su = Ax

* Setting P =1, 2, oo, we get various matrix norms
* Inequalities: 1) ||Ax]] < [|Allllx]|
2) |AB]| < [|A[[lIB]|



COMPUTATION OF ||4]],,

1)
2)
3)

A
A

A

1= maX{Z?ﬂ[aiﬂ} — Column norm
= max{z _1|ai;|} — Row norm

,= 07 Where g is one max eigenvalue of ATA. g, is the largest
singular value of A

4) When A is symmetric, ATA = A2 and A%x = A%x if Ax = Ax

Therefore, ||A]], = |A
5) For A symmetric: p(A) = ||4]], = |A

|, \..., = maximum eigenvalue of A

Mmax max

|, called spectral radius



EQUIVALENCE OF MATRIX NORMS: A € R™"

D [1Allz = [I1All1 11Al] ]
A OOS A ZS\/ﬁlA |oo

1
3)ﬁ All1 < [IAllz £ vnllAll4

4) [1All; < |IAllr < +n|lAll;
5) p(A) < ||4]|, any matrix norm

1
2)\/—ﬁ




CONDITION NUMBER OF A MATRIX

e Llet A € R™n,

» Condition number X (A) = ||A]|,||A™ 1||p and its values is norm
dependent

* Since I = AAT=>1=|[I||,, < ||Al|,|IA7 ], = FC(A)
* Thus, 1 < K(A) <
e Spectral condition number of symmetric matrix A

A
3 (A) = Il (A7 ]], = ==

* Spectral condition number of A non-singular
o (A) = [IAl211A7H], = Zl =~ \here
2  Omin
o; is the it" singular values of A with g; 20, >..20,, >0

maxl




RELATION BETWEEN CONDITION NUMBERS

1 %7(2 (4A) < K, (A) < n¥K,(A)
2 %:7(00 (A) < K,(4) < nK,, (4)

3 n—tjcl (A) < Ko (A) < 12K, (A)

Note: Since ||A||; and ||A]||, norms are easily computed, we can
estimate K, (A4) using the above relations.




RELATION BETWEEN det(A) AND K'(A)

1

. 2)
=> det(A) = z_n ->0asn->00
=>K,(A)=1forp=1,2,

e Let B € R™", upper triangular:

(1ifi=]j

Cll]:<—1lfl>_]

L0ifi<y

e det(B)=1and K(4) =n->co0 as n->0

* Thus, there is no correlation between det(A) and K (A)

e LetA= D|ag(

Nlr—\




SENSITIVITY OF SOLUTION OF LINEAR SYSTEM

* Let Ax = b be the given system.
e Let (A + eB)y = (b + €f) be the perturbed system

* B and €f are the perturbation and the vector respectively, and € >0
but small

* The relative error in the solution is given

ly — x| 1B Ifl
= WEE T ey

* Since K(A) = 1, the errors in A and b are amplified in the solution

 Larger K (A) is, more sensitive the system is to round-off error in A
and b



Exercise

3.1) Give an examples of A and B where AB # BA and AB = BA
3.2) Verify (AB)" = BTAT

3.3) Verify tr(AB) = tr(BA)
1

-1} — Nt -1 —
3.4) Prove det(A™) = det(d) (Hint: AA™ =)
3.5) Verify A = [_C;J;HH ig;g is an orthogonal matrix

Plot y = Ax when x=(1, 1) for 6 = 30°, 60°, 90°, 120°, 150°
3.6) Verify (AB)1 = B-1A'l

3.7) Verify A* = (ATA)*A" and A* = AT(AAT) satisfy the definition of the
generalized/ Moore — Penrose inverse



Exercise

3.8) Find the range and kernel of
1 3
A=|2 2
3 1

3.9) Verify (AB)* = B*A* and (A1)* = (A*)1 where recall that A* is the
adjoint of A

3.10) If AV = AV, then A2V = A2V and AkV = AkV
3.11) If Ais non singular, then ATA and AAT are SPD

3.12) If (A'TA)V, =AV,and u, = \/%Avi, verify that (AAT)u. = Au.
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