Module – 2.1

FINITE DIMENSIONAL VECTOR SPACES:

AN OVERVIEW

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, Ok – 73069, USA **varahan@ou.edu**

FINITE DIMENSIONAL VECTOR SPACE

- R Set of all real numbers also called real scalars
- C Set of all complex numbers also called complex scalars
- Rⁿ Set of all real vectors of size n
- Cⁿ Set of all complex vectors of size n

$$x \in \mathbb{R}^{n} \Rightarrow x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} x_{i} \in \mathbb{R} \qquad 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^{n}, \text{ null vector} \qquad X = \begin{pmatrix} 3.2 \\ 1.5 \\ 9.9 \end{pmatrix} \in \mathbb{R}^{3}$$
$$x \in \mathbb{C}^{n} \Rightarrow x = \begin{pmatrix} x_{1} + iy_{1} \\ \vdots \\ x_{i} + iy_{i} \\ \vdots \\ x_{n} + iy_{n} \end{pmatrix} x_{i}, y_{i} \in \mathbb{R}, i = \sqrt{-1} \qquad X = \begin{pmatrix} 1 + i \\ 1 - i \\ 1 - 2i \end{pmatrix} \in \mathbb{C}^{3}$$

• We will largely deal with Rⁿ

OPERATIONS VECTORS

• $x, y, z \in \mathbb{R}^{n}$ $a, b, c \in \mathbb{R}^{n}$ $z = (x_{1}, x_{2}, ..., x_{n})^{T}$ $y = (y_{1}, y_{2}, ..., y_{n})^{T}$ $z = (z_{1}, z_{2}, ..., z_{n})^{T}$

- $z = x \pm y \implies z_i = x_i \pm y_i$ $1 \le i \le n Vector addition / subtraction$
- $y = ax => y_i = ax_i$ $1 \le i \le n - Scalar$ multiplication of a vector
- $z = ax + y = z_i = ax_i + y_i$ $1 \le i \le n Scalar times a vector + a vector Saxpy$

LINEAR VECTOR SPACE

- Let V denote a set or collection of real vectors of size n
- V is called a (linear) <u>vector space</u> if it satisfies the following three conditions:
 C1). V is a group under addition
 - 1) $x + y \in V$ if $x, y \in V Closed$ under addition
 - 2) x + y + z = x + (y + z) = (x + y) + z Associative property of addition
 - 3) V contains a zero vector 0: $x + 0 = 0 + x = x \forall x \in V$
 - 4) For every x ∈ V, there is a unique y ∈ V: x + y = y + x = 0. y is called the additive inverse of x and y = -x

C2). Scalar multiplication

- 1) $ax \in V$ if $x \in V Closed$ under scalar multiplication
- 2) $a(bx) = (ab)x for all x \in V and a, b \in R$
- 3) $1x = x for all x \in , 1$ is the real number one

C3). Distributivity

- 1) $a(x + y) = ax + ay for all x, y \in V and a \in R$
- 2) $(a + b)x = ax + bx for all x \in V and a, b \in R$

EXAMPLE OF VECTOR SPACES

- 1) R is a real vector space of real scalars
- 2) \mathbb{R}^n is a real vector space of n-vector, (n \geq 1)
- 3) C^n is a complex vector space of n complex vector, $(n \ge 1)$
- 4) The set of all nxn real matrices is a vector space
- 5) The set of all polynomials of degree n is a vector space
- 6) Let $x = (x_1, x_{2_i}, ..., x_n, ...)$ be an infinite sequence, with $\sum_{i=1}^{\infty} x_i^2 < \infty$ is a vector space square summable sequences
- 7) The set of all continuous function over the interval [a,b] is a vector space

OPERATION ON VECTORS IN Rⁿ

- Let x, y, z $\in \mathbb{R}^{n}$, a, b, c $\in \mathbb{R}$, $\langle \cdot, \cdot \rangle$: $\mathbb{R}^{n} \times \mathbb{R}^{n} -> \mathbb{R}$
- Inner/scalar product of x and y is a scalar <x, y> = $x^Ty = \sum x_iy_i = \sum y_ix_i = y^Tx = \langle y, x \rangle$ - symmetry
- Properties of <·, ·>

1) <x, y> > 0 $\forall x \neq 0$ – Positive definite = 0 only if x = 0 2) <x, y> = <y,x> - symmetry 3) <x + y, z> = <x, z> + <y, z> - additive 4) <ax, y> = a<x, y> = <x, ay> - homogeneity 5) <x, z> = <y, z> for all z -> x = y Note: For x,y $\in C^n$, <x, y> = $\sum x_i \overline{y}_i, \overline{y}_i$ is the complex conjugate of y_i

OPERATION ON VECTORS IN Rⁿ

• Outer product of two vectors is a matrix:

$$xy^{T} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} (y_{1}, y_{2}, ..., y_{n}) = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & \cdots & x_{n}y_{n} \end{bmatrix}$$

outer product: Rⁿ x Rⁿ -> R^{nxn} = [xy_{1} xy_{2} ... xy_{n}] - multiples of column x
$$= \begin{bmatrix} x_{1}y^{T} \\ x_{2}y^{T} \\ \vdots \\ x_{n}y^{T} \end{bmatrix} - multiples of row y$$

NORM AND DISTANCE

- <u>Norm</u> of x denoted by ||x|| is a scalar associated with x denotes a measure of the size of x
 - 1) Euclidean/ 2 norm: $||x||_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}} = \langle x, x \rangle^{\frac{1}{2}}$ 2) Manhattan/ 1 – norm: $||x||_1 = \sum_{i=1}^n |x|$ 3) Chebyshev/ ∞ – norm: $||x||_{\infty} = \max_i \{|x_i|\}$ 4) Minkowski/ p – norm: $||x||_p = [\sum_{i=1}^n |x_i|^p]^{1/p}$ 5) Energy norm: $||x||_A = (x^TAx)^{\frac{1}{2}}$ – A symmetric positive definite
 - matrix
- <u>Distance</u>: d(x, y) between $x, y \in \mathbb{R}^n$ d(x,y) = ||x - y|| - depends on the choice of the norm

GENERAL PROPERTY OF A NORM

- Let N: Rⁿ -> R then N(x) is a norm if it satisfies the following:
 1) N(x) > 0 when x ≠ 0 positive definite
 = 0 when x = 0
 - 2) N(ax) = |a|N(x) homogenous.

3) $N(x + y) \le N(x) + N(y) - Triangle inequality$

<u>Note</u>:

- $||x||_2$ is derivable from inner product
- Verify $||x + y||_2^2 + ||x y||_2^2 = 2(||x||_2^2 + ||x||_2^2)$ called the parallelogram law

UNIT SPHERE

 $S = \{ x \in \mathbb{R}^n \mid | \|x\| = 1 \}$

Variation of the shape of unit sphere under the norm.

UNIT VECTOR

$$\hat{x} = \frac{X}{\|x\|_2} = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_n)^{\mathsf{T}}$$

- <u>Cauchy Schwarz inequality (CS)</u>
 - <x, y> = $x^{T}y = ||x||_{2}||y||_{2}\cos\theta \le ||x||_{2}||y||_{2}$
 - Verify that x and y are parallel if $x^Ty = ||x||_2 ||y||_2$
- <u>Minkowski inequality</u>: let p, q be integers: $\frac{1}{p} + \frac{1}{q} = 1$ <x, y> = x^Ty ≤ $||x||_p ||y||_q$

NORMS ARE EQUIVALENT

 $||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2}$ $||x||_{\infty} \le ||x||_{2} \le \sqrt{n} ||x||_{\infty}$ $||x||_{\infty} \le ||x||_{1} \le n ||x||_{\infty}$

• Hence, in analysis one can pick any norm

FUNCTIONALS

- Let V be a vector space
- Any function that maps V into R: f: V -> R is called a functional
- f is called linear functional if

 $f(x_1 + x_2) = f(x_1) + f(x_2) - additive$ f(ax) = af(x) - homogenous

• Example:

1) ||x|| is a nonlinear functional 2) Let a be a fixed vector. $f_a: \mathbb{R}^n \to \mathbb{R}$, $f_a(x) = \langle a, x \rangle$ is a linear functional

3)
$$f_A(x) = \frac{1}{2} x^T A x$$
 is a nonlinear functional

ORTHOGONALITY AND CONJUGACY

- x, y are orthogonal denoted by $x \perp y$ if $\langle x, y \rangle = 0$
- x, y are A-conjugate if x^TAy = 0
- Let S = $\{x_1, x_2, ..., x_k\}$ $x_i \in \mathbb{R}^n$
 - S is said to be mutually orthogonal if

- S is said to be orthonormal if
 - <x_i, x_j> = 0 for i ≠ j = 1 for i = j
- S is said to be A-conjugate if

$$x_i^T A x_j = 0 \text{ for } i \neq j$$

= $||x||_A^2 \text{ for } i = j$

LINEAR COMBINATION

- Let S = { $x_1, x_2, ..., x_k$ } be a set of k vector in Rⁿ, where $x_i = (x_{i1}, x_{i2}, ..., x_{in})^T$
- Let a₁,a₂, ...,a_k are real scalar
- Then y which is the sum of scalar multiples of vector in S is called linear combination

• When
$$a_i = \frac{1}{k}$$
, $\bar{x} = \frac{1}{k} \sum_{i=1}^k x_i$ is the centroid of S

LINEAR INDEPENDENCE

- Let S = $\{x_1, x_2, ..., x_k\}$ $x_i \in \mathbb{R}^n$
- The vector in S are linear dependent if there exists a linear combination

$$y = a_1x_1 + a_2x_2 + ... + a_kx_k = 0$$

when not all the scalars a_i are zero

• The set S is linearly independent if it is not linearly dependent

SPAN OF A SET OF VECTORS

- Clearly SPAN(S) = vector space which is a subset of Rⁿ
- SPAN(S) is called a subspace generated by S

BASIS AND DIMENSION

- Let B be a finite subset of a vector space V
- If every vector x in V can be obtained as a linear combination of those in B, then B is called the generator for V
- If the set of vector in B are linearly independent, then B is the basis for SPAN(S) = V
- Let $e_i = i^{th}$ unit vector with 1 as the i^{th} element and zero else where
- Then $B_n = \{ e_i \mid 1 \le l \le n \}$ is the basis for R^n
- The number of elements in B is called the dimension of SPAN(B)

EXERCISES

2.1) Verify the parallelogram law:

$$||x + y||_2^2 + ||x - y||_2^2 = 2(||x||_2^2 + ||x||_2^2)$$

2.2) Verify the triangle inequality for 2 –Norm, 1-Norm and the ∞ - norm

2.3) Prove that if $x^Ty = ||x||_2 ||y||_2$, then x and y are parallel vectors

2.4) Using MATLAB, plot the Contours of $f(x) = x^TAx$ when $x = (x_1, x_2)^T$ and $A = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$

2.5) Verify that $(x_1 + x_2)$, $(x_2 + x_3)$, $(x_3 + x_1)$ are also linearly independent when $\{x_1, x_2, x_3\}$ are linearly independent

2.6) Let x = $(1, 2, 3)^T$. Verify the relations between the 1, 2 and ∞ - norms given in slide 12, Module - 2

- 1. G. H. Golub and C. F. Van Loan (1989) <u>Matrix Computation</u>, Johns Hopkins University Press (Second Edition)
- 2. C. D. Meyer (2000) <u>Matrix Analysis and Applied Linear Algebra</u>, SIAM, Philadelphia
- 3. R. A. Horn and C. R. Johnson (2013) <u>Matrix Analysis</u>, *Cambridge University Press (Second Edition)*