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FINITE DIMENSIONAL VECTOR SPACE
• R – Set of all real numbers – also called real scalars

• C – Set of all complex numbers – also called complex scalars

• Rn – Set of all real vectors of size n

• Cn – Set of all complex vectors of size n

x ∈ Rn => x = 

𝑥1

𝑥2

⋮
𝑥𝑛

xi ∈ R              0 =

0
0
⋮
0

∈ Rn, null vector                    X =
3.2
1.5
9.9

∈ R3

x ∈ Cn => x = 

𝑥1 + 𝑖𝑦1

⋮
𝑥𝑖 + 𝑖𝑦𝑖

⋮
𝑥𝑛 + 𝑖𝑦𝑛

xi ,yi ∈ R, i = −1 X = 
1 + 𝑖
1 − 𝑖
1 − 2𝑖

∈ C3

• We will largely deal with Rn
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OPERATIONS VECTORS

• x, y, z ∈ Rn x = (x1, x2, …,xn)T

a, b, c ∈ Rn                                    y = (y1, y2, …,yn)T

z = (z1, z2, ...,zn)T

• z = x ± y  =>  zi = xi ± yi 1≤ i ≤ n – Vector addition /subtraction

• y = ax  => yi = axi 1≤ i ≤ n – Scalar multiplication of a vector

• z = ax + y  =>  zi = axi + yi 1≤ i ≤ n – Scalar times a vector + a vector - Saxpy
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LINEAR VECTOR SPACE
• Let V – denote a set or collection of real vectors of size n

• V is called a (linear) vector space if it satisfies the following three conditions:
C1). V is a group under addition
1) x + y ∈ V if x, y ∈ V – Closed under addition
2) x + y + z = x + (y + z) = (x + y) + z – Associative property of addition
3) V contains a zero vector 0: x + 0 = 0 + x = x ∀ x ∈ V 
4) For every x ∈ V, there is a unique y ∈ V: x + y = y + x = 0. y is called the additive 

inverse of x and  y = -x
C2). Scalar multiplication
1) ax ∈ V if x ∈ V – Closed under scalar multiplication
2) a(bx) = (ab)x – for all x ∈ V and a, b ∈ R
3) 1x = x – for all x ∈ , 1 is the real number one
C3). Distributivity
1) a(x + y) = ax + ay – for all x, y ∈ V and a ∈ R 
2) (a + b)x = ax + bx – for all x ∈ V and a, b ∈ R 
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EXAMPLE OF VECTOR SPACES

• 1) R is a real vector space of real scalars

• 2) Rn is a real vector space of n-vector, (n ≥ 1)

• 3) Cn is a complex vector space of n – complex vector, (n ≥ 1)

• 4) The set of all nxn real matrices is a vector space 

• 5) The set of all polynomials of degree n is a vector space 

• 6) Let x = (x1, x2, …,xn, …) be an infinite sequence, with  𝑖=1
∞ 𝑥𝑖

2 < ∞ is 
a vector space – square summable sequences

• 7) The set of all continuous function over the interval [a,b] is a vector 
space
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OPERATION ON VECTORS IN Rn

• Let x, y, z 𝜖 Rn, a, b, c 𝜖 R, <∙, ∙>: Rn x Rn -> R
• Inner/scalar product of x and y is a scalar
<x, y> = xTy =  𝑥𝑖𝑦𝑖 =  𝑦𝑖𝑥𝑖 = yTx = <y, x> - symmetry
• Properties of <∙, ∙>

1) <x, y>  > 0  ∀x ≠ 0 – Positive definite
= 0  only if x = 0

2) <x, y> = <y,x> - symmetry
3) <x + y, z> = <x, z> + <y, z> - additive
4) <ax, y> = a<x, y> = <x, ay> - homogeneity
5) <x, z> = <y, z> for all z -> x = y

Note: For x,y 𝜖 Cn,
<x, y> =  𝑥𝑖  𝑦𝑖,  𝑦𝑖 is the complex conjugate of yi 6



OPERATION ON VECTORS IN Rn

• Outer product of two vectors is a matrix:

xyT = 

𝑥1

𝑥2

⋮
𝑥𝑛

(y1, y2, …, yn) =

𝑥1𝑦1 𝑥1𝑦2 ⋯ 𝑥1𝑦𝑛
𝑥2𝑦1 𝑥2𝑦2 ⋯ 𝑥2𝑦𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑛𝑦1 𝑥𝑛𝑦2 ⋯ 𝑥𝑛𝑦𝑛

outer product: Rn x Rn -> Rnxn = [xy1 xy2 … xyn] - multiples of column x

= 

𝑥1𝑦
𝑇

𝑥2𝑦
𝑇

⋮
𝑥𝑛𝑦

𝑇

- multiples of row y
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NORM AND DISTANCE

• Norm of x denoted by 𝒙 is a scalar associated with x – denotes a 
measure of the size of x

1) Euclidean/ 2 – norm: 𝑥 2 = ( 𝑖=1
𝑛 𝑥𝑖

2)½ = <x, x>½

2) Manhattan/ 1 – norm: 𝑥 1 =  𝑖=1
𝑛 |𝑥|

3) Chebyshev/ ∞ – norm: 𝑥 ∞ = max
𝑖

{ 𝑥𝑖 }

4) Minkowski/ p – norm: 𝑥 p = [ 𝑖=1
𝑛 𝑥𝑖

𝑝]1/p

5) Energy norm: 𝑥 A = (xTAx)½ - A symmetric positive definite 
matrix

• Distance: d(x, y) between x, y ∈ Rn

d(x,y) = 𝑥 − 𝑦 – depends on the choice of the norm 8



GENERAL PROPERTY OF A NORM

• Let N: Rn -> R then N(x) is a norm if it satisfies the following:

1) N(x) > 0 when x ≠ 0 – positive definite

= 0 when x = 0

2) N(ax) = |a|N(x) – homogenous.

3) N(x + y) ≤ N(x) + N(y) – Triangle inequality

Note: 

• 𝑥 2 is derivable from inner product

• Verify 𝑥 + 𝑦 2
2 + 𝑥 − 𝑦 2

2 = 2( 𝑥 2
2 + 𝑥 2

2) called the 
parallelogram law
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UNIT SPHERE
S = { x ∈ Rn ||  𝑥 = 1} 

Variation of the shape of unit sphere under the norm.

𝑥 A = 1,        A = 
5 0
0 1

𝑥 𝐴
2 = 𝑥𝑇𝐴𝑥 = 5𝑥1

2 + 𝑥2
2 =

𝑥1
2

(
1

5
)2

+
𝑥2
2

1
= 1
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UNIT VECTOR

 𝑥 = 
𝑋

𝑥 2
= (  𝑥1,  𝑥2, …,  𝑥n)T

• Cauchy Schwarz inequality (CS)

• <x, y> = xTy = 𝑥 2 𝑦 2cosθ ≤ 𝑥 2 𝑦 2

• Verify that x and y are parallel if xTy = 𝑥 2 𝑦 2

• Minkowski inequality: let p, q be integers: 
1

𝑝
+ 

1

𝑞
= 1

<x, y> = xTy ≤ 𝑥 𝑝 𝑦 q
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NORMS ARE EQUIVALENT

𝑥 2 ≤ 𝑥 1 ≤ 𝑛 𝑥 2

𝑥 ∞≤ 𝑥 2 ≤ 𝑛 𝑥 ∞

𝑥 ∞≤ 𝑥 1 ≤ 𝑛 𝑥 ∞

• Hence, in analysis one can pick any norm
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FUNCTIONALS

• Let V be a vector space

• Any function that maps V into R:   f: V -> R is called a functional

• f is called linear functional if 

f(x1 + x2 ) = f(x1) + f(x2) – additive

f(ax) = af(x) – homogenous

• Example:

1) 𝑥 is a nonlinear functional

2) Let a be a fixed vector. fa: Rn -> R, fa(x) = <a, x> is a linear 
functional

3) fA(x) = 
1

2
xTAx is a nonlinear functional
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ORTHOGONALITY AND CONJUGACY

• x, y are orthogonal denoted by x Ʇ y if <x, y> = 0

• x, y  are A-conjugate if xTAy = 0

• Let S  = {x1,x2, …,xk}    xi ∈ Rn

• S is said to be mutually orthogonal if
<xi, xj> = 0 for i ≠ j

≠ 0 for i = j
• S is said to be orthonormal if 

<xi, xj> = 0 for i ≠ j
= 1 for i = j

• S is said to be A-conjugate if

𝑥𝑖
𝑇𝐴𝑥𝑗 = 0 for i ≠ j

= 𝑥 𝐴
2 for i = j
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LINEAR COMBINATION

• Let S  = {x1,x2, …,xk} be a set of k vector in Rn, where xi = ( xi1,xi2, …,xin)T

• Let a1,a2, …,ak are real scalar

• Then y which is the sum of scalar multiples of vector in S is called 
linear combination 

y = a1x1 + a2x2 + … + akxk

• When ai = 
1

𝑘
,  𝑥 = 

1

𝑘
 𝑖=1

𝑘 𝑥𝑖 is the centroid of S
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LINEAR INDEPENDENCE

• Let S  = {x1,x2, …,xk}    xi ∈ Rn

• The vector in S are linear dependent if there exists a linear 
combination

y = a1x1 + a2x2 + …+ akxk = 0

when not all the scalars ai are zero

• The set S is linearly independent if it is not linearly dependent
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SPAN OF A SET OF VECTORS

• Let S  = {x1,x2, …,xk} ⊂ Rn (a finite subset)

SPAN(S) = { y| y =  𝑖=1
𝑘 𝑎𝑖𝑥𝑖 , 𝑎𝑖 ∈ 𝑅, 𝑥𝑖 ∈ 𝑅𝑛 }

= set of all linear combination of vectors in S

• Clearly SPAN(S) = vector space which is a subset of Rn

• SPAN(S) is called a subspace generated by S
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BASIS AND DIMENSION

• Let B be a finite subset of a vector space V

• If every vector x in V can be obtained as a linear combination of those 
in B, then B is called the generator for V

• If the set of vector in B are linearly independent, then B is the basis 
for SPAN(S) = V

• Let ei = ith unit vector with 1 as the ith element and zero else where

• Then Bn = { ei | 1 ≤ I ≤ n} is the basis for Rn

• The number of elements in B is called the dimension of SPAN(B)
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EXERCISES
2.1) Verify the parallelogram law:

𝑥 + 𝑦 2
2 + 𝑥 − 𝑦 2

2 = 2( 𝑥 2
2 + 𝑥 2

2) 

2.2) Verify the triangle inequality for 2 –Norm, 1-Norm and the ∞ - norm

2.3) Prove that if xTy = 𝑥 2 𝑦 2, then x and y are parallel vectors

2.4) Using MATLAB, plot the Contours of f(x) = xTAx when x =(x1, x2)T and 

A = 
5 0
0 1

2.5) Verify that (x1 + x2), (x2 + x3), (x3 + x1) are also linearly independent 
when {x1, x2, x3} are linearly independent

2.6) Let x = (1, 2, 3)T. Verify the relations between the 1, 2 and ∞ - norms 
given in slide 12, Module - 2
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