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The principle

Let n be a positive integer. If n + 1 balls are placed in n bins, then some
bin must have at least two balls.

The principle is simple, yet it often leads to very pleasing conclu-
sions1. 1 https://archive.org/details/mathematical-

circles-russian-
experience/page/31/mode/1upExample. There are 20 guests at a party. Some guests shake hands

with other guests, but no pair of guests shake hands twice. Show
that there are two guests who shake hands exactly the same number
of times. (To use the above pigeonhole principle, ask yourself the

following: what are the balls, what are the bins?) f

Practice problems

Attempt the problems in the
book

Dmitri Fomin, Sergey
Genkin, Ilia Itenberg:
Mathematical Circles
(Russian Experience),
(click here).

It might help to visualize the pigeonhole principle using a picture.
Draw a graph with vertices and edges as follows. On the left, keep
a vertex for each ball; call the vertices a1, a2, . . . , an+1. On the right,
keep a vertex for each bin; call these vertices b1, b2, . . . , bn. If ball
i is placed in bin j, draw a directed edge (an arrow) from ai to bj.
The point is the following. The total number of arrows leaving the
vertices on the left is exactly n + 1; so the total number of arrows
landing on the vertices on the right must also be n + 1. Let dj be the
number of arrows that land on bj. Then,

n + 1 = d1 + d2 + · · · dn ≤ n · max
j

dj.
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Figure 1: Five balls placed in four bins

So maxj dj ≥ n+1
n = 1 + 1

n . But maxj dj is an integer, so it must
be at least 2. Notice that the quantity 1 + 1

n is the average number
of balls per bin. We simply combined two elementary facts: (i) in
any collection of numbers, the maximum is always at least their
average; (ii) an integer that is more than one must be at least two.
In general, following this approach we arrive at a somewhat more
general version of the pigeonhole principle.

Suppose m balls are placed in n bins, then

1. there is a bin containing at least m/n balls; and

2. there is a bin containing at most m/n balls.

Figure 2: A 5 × 12 table

Example. Each cell of a 5 × 41 table is coloured either black or white.
Show that there are three rows and three columns so that all nine
cells in their intersection have the same colour. This is a little tricky,

https://archive.org/details/mathematical-circles-russian-experience/page/31/mode/1up
https://archive.org/details/mathematical-circles-russian-experience/page/31/mode/1up
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but please give it a try. (I don’t want to spoil the challenge for you,
but here are some imprecise hints, if you need them. First, focus on
the columns. In this column, some three of the cells must be of the
same colour (why?). Now, think of the columns as balls and put them
in 10 bins. Why 10 bins? What are the bins for? When is a column
placed in a bin? Conclude that some bin has at least . . . balls; then

. . . .) f

Exploration I

Consider a sequence of distinct integers, e.g.,

s = 1, 5, 19, 4, 7, 22, 6, 8, 15, 11 .

A subsequence of this sequence is obtained by removing some of the
numbers in the sequence and retaining the rest. For example,

s1 = 1, 4, 6, 8, 11

s2 = 19, 15, 11

are subsequences of the sequence s. A sequence is monotone increasing
if each element in the sequence is greater than the previous element
(as in s1); it is monotone decreasing if each element in the sequence is
less than the previous element (as in s2).

Explore: Construct a sequence t by reordering the numbers 1,2 . . . ,
16, so that t contains neither a monotone increasing nor a monotone
decreasing subsequence of five elements. Do you think every such
sequence obtained by reordering 1,2 . . . , 17 always has a monotone
subsequence with 5 elements? Why? Is it true that every infinite
sequence of distinct integers has an infinite monotone subsequence.
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Exploration II

Consider a graph where the vertices represent locations in a city and
the edges represent two-way streets connecting adjacent locations.
There is a robber in the city. We wish to determine the minimum
number of cops needed to catch the robber. Here are the rules. First,
the cops occupy some vertices in the graph. Then, the robber places
herself on some vertex of her choice.

Figure 3: The path graph P5The cops and robber make their moves in alternate time-steps. The
cops traverse one edge at a time; the robber can run through several
edges in one step. If it is the cops’ turn, one of the cops moves to an
adjacent vertex (we allow dummy moves, where no cop moves; we
also allow multiple cops to occupy the same vertex of the graph). If
it is the robber’s turn, she can move to another vertex along a path
on which none of the intermediate vertices is occupied by a cop, or she can
stay put. If at any time a cop and a robber are at the same vertex, the
robber is caught.

Figure 4: The cycle graph C5

The game is played with perfect information, the cops know where
the robber is at each point, and the robber knows where the cops are.

(a) How many cops does one need to catch a robber on the path P5?
How many does one need for the cycle C8? What about paths and
cycles with more vertices?

(b) Consider the 8 × 8 grid graph G8×8. Show that with eight cops
there is a strategy for the cops to catch the robber no matter how
the robber tries to evade them. What if we have only seven cops?
What if we play the game on an n × n grid graph Gn×n?

Figure 5: The grid graph G8×8
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Exploration III

I asked ChatGPT the following question:

Write the numbers 1, 2, . . . , 64 in the cells of the 8 × 8 board, different
numbers in different cells, in such a way that adjacent numbers differ
by as little as possible.

After thinking a little, ChatGPT said this:

To minimize the difference between adjacent numbers, we can

arrange them in a serpentine pattern. Here’s one possible

arrangement. (It gave the arrangement on the right.)

01 02 03 04 05 06 07 08

16 15 14 13 12 11 10 09

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

33 34 35 36 37 38 39 40

48 47 46 45 44 43 42 41

49 50 51 52 53 54 55 56

64 63 62 61 60 59 58 57

Figure 6: ChatGPT’s arrangement

Then it said:

In this arrangement, adjacent numbers typically differ by

1, except for a few places where they differ by 8. This

arrangement ensures that adjacent numbers have the least

possible difference on average.

Question: Is ChatGPT bluffing? What is the maximum difference
between adjacent numbers in the above arrangement? Is there a
better arrangement? How much better? Give it a try!

Definitions for our discussion 13 April: We may think of this problem
in the language of graphs with vertices and edges. Suppose each
vertex of a graph is labelled with a distinct integer. The stretch of this
labelling is the maximum difference between the labels of adjacent
vertices. Our goal is to find a labelling with minimum stretch. The
stretch of the best labelling is the stretch number of the graph; we
write sn(G) for the stretch number of the graph G. Both the words,
minimum and maximum, are used above. The order in which they
appear is important to the definition; make sure you understand it.

(a) Consider the graphs P5 and C5 described on the previous page.
What is sn(P5)? What is sn(C5)? What is the stretch number of the
path graph Pn with n vertices; what is the stretch number of the
cycle graph Cn with n vertices?

(b) If the graph has N vertices, we may assume that in the optimal
labelling the labels are 1, 2, . . . , N. (Why?)

(c) What is the stretch number of the n × n grid graph Gn×n?

We will meet on 13, 27 April 2024, 10:00 am to 1:00 pm.
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13 April: Summary of the discussion on Exploration I

After everybody constructed a sequence with 16 elements with no
monotone subsequence with 5 elements, we briefly considered why
sequences with 17 elements must have a a monotone subsequence
of length 5. I did not wait for a solution. Someone suggested this
approach.

Every rearrangement of 16 elements that does not contain a monotone
subsequence with 5 elements must be of one of two forms. It is then
clear that such a sequence cannot be extended by inserting another
element.

I stated that it was not clear why the first sentence of the above claim
was true, but did not offer a concrete counterexample. (We will say a
little more about this later.) I moved on to the proof using the pigeon-
hole principle.

Instructions and responses.

I: Write below each element of the sequence, the

length of the longest sequence starting from that

element.Suppose the sequence has no monotone

increasing subsequence of $5$ elements.

R: There are 17 numbers, each in the range {1,2,...,4};

so, ..., some number must appear at least 5 times.

I: Ignore this very popular number itself, ..., but

focus on the elements of the sequence under which this

popular number is written.

R: They must form a monotone decreasing subsequence.

Someone correctly pointed out that we seem to be using a pigeonhole
principle where 17 balls are placed in four bins: m = 17, n = 4, so
some bin must have at least five balls. I put down this theorem.

Theorem 1 (Erdös and Szekeres). In any sequence of k2 + 1 distinct
elements, there is a monotone increasing subsequence of elements.

Solitaire sorting

Suppose the sequence is
a1, a2, . . . , an. We will move
the numbers in the sequence
into rows numbered, 0, 1, 2,
. . . .

1. Initially, all the rows are
empty; place −∞ in row 0.

2. Consider elements
a1, a2, . . . one by one.

(a) With each element
find the last row whose
last element is smaller
than the current ele-
ment.

(b) Insert the current
element at the end of
the next row.

(c) Draw an arrow from
the current element to
the last element of the
previous row.

Figure 7: An algorithm to find the
Longest Increasing Subsequence (LIS)

Everybody soon realized how the original argument could be
adapted to justify the theorem with k + 1 filled in the blank. Some-
one asked if “the converse was true,” which is not quite what they
meant: they wanted to know if something smaller than k2 + 1 could
be written in its place, but they immediately saw that they had al-
ready answered the question in the exploration with 16 replaced
by k2. The theorem called for an algorithm. Given such a sequence,
how do we find a monotone subsequence of k + 1 elements. See the
algorithm in Figure 7.
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Observations: We rushed through these observations. (If you did not
catch everything, please try to justify them on your own.)

1. The elements in each row form a monotone decreasing subse-
quence of the original sequence;

2. If an element ai is eventually placed in row ℓ, then there is a
monotone increasing subsequence with ℓ elements ending with
ai;

3. If the last non-empty row is row L, then there is an increasing
subsequence of L elements in the original sequence;

4. If the last non-empty row is row L, then there is no increasing
subsequence of L + 1 elements in the original sequence.

14, 25, 3, 8, 30, 21, 11, 5, 17, 9, 28, 1,
19, 12, 24, 15, 20, 7, 2, 23, 29, 10, 18,
26, 16, 6, 13, 22, 4, 27.

Figure 8: A permutation σ of 1, 2, . . . , 30
How long does this algorithm take to find the longest increasing sub-
sequence (LIS) on a sequence of n elements. Answer: To insert each
element one needs to compare the new element to the last elements
of all the rows; as the number of rows grows, this could even take
≈ n/2 comparisons. In the worst case, we might need almost ≈ n2

steps in total. We made another observation.

At every stage, the last element of the rows are sorted in increasing
order.

We don’t need to search through the rows sequentially to find the
row to insert the new element in—we can use binary search. So if step
2 (a) is implemented using binary search, we can get everything done
in ≈ n log n steps.

Photo: Disha Kuzhively

Figure 9: We tried out the algorithm on
the permutation σ with the numbers
written on cards

Let us return to the theorem. Suppose the longest increasing se-
quence has length L. The elements of the sequence then reside in
rows 1, 2, . . . , L. Say the longest of these rows has M elements. Then,
LM ≥ n. Do you see how the analysis of our algorithm actually
yields a proof the theorem?

What about the approach we referred to above? How many se-
quences of 16 distinct elements are there where there is no monotone
subsequence of 5 elements. Are there only a few that we most nat-
urally constructed? Let us explore! Suppose we run the algorithm
on such a sequence of length 16. What must we see in the end? An-
swer: four rows each with four elements in decreasing order from
left to right; in the original sequence, each row as a decreasing sub-
sequence. Now write these four rows one below another, packing
the elements to the left. We get a 4 × 4 array of numbers. Since the
original sequence had no monotone subsequence with five elements,
this array has a very special structure. Clearly, the rows correspond
to decreasing subsequences of the original sequence. The columns
too are special. You should confirm (this will take some thought) that
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each column, when read from top to bottom, forms an increasing
subsequence of the original sequence. Let us call an array where each
row is decreasing from left to right and each column is increasing
from top to bottom a monotone array.

Explore, monotone arrays: Write numbers 1, 2, . . . , 16 in a 4 × 4 array.
Sort each row in increasing order from left to right. Sort each column
in increasing order from top to bottom. Do the rows continue to be
sorted? Always? Why?

7,5,9,6,15,2,4,13,11,16,1,14,3,12,8,10

7 5 2 1

9 6 4 3

15 13 11 8

16 14 12 10

Figure 10: A sequence obtained by re-
arranging 1, 2 . . . , 10, and the monotone
4x4 array obtained when we run the
algorithm on this sequence

There is a marvellous formula to count the number of monotone
4 × 4 arrays (and actually much more, but we will discuss that a
little later). Is it true that every such monotone array is the result
of running the algorithm on a sequence with 16 elements with no
monotone subsequence of length 5? Answer: yes, indeed given such
an array, form a sequence by writing the rows one after another, top
row first, then the second row, and so on. Why does this sequence
of 16 elements have no monotone subsequence of 5 elements? Let us
fix a 4 × 4 monotone array T. How many sequences of the numbers
1, 2, . . . , 16 when processed using our algorithm will give rise to T?
Clearly the answer must be the same for every monotone array T.
But what is this number?

Figure 11: What does the second 4 × 4
array look like?

The second array: Start with a sequence of numbers 1, 2, . . . , 16, (e.g.,
see fig. 10) where there is no monotone subsequence of length 5. Run
the algorithm and construct the first tableau using the rows produced
by the algorithm. Now, construct another 4 × 4 array R, whose cells
are filled using the following rule (you may use the empty array in
fig. 11). To determine the value in the cell ij, consider the number
in this cell in the first tableau; say it is x. Suppose x appears in posi-
tion ℓ of the original sequence, then we write ℓ in cell ij of the new
tableau R. Note that each of the numbers 1, 2, . . . , 16, appears exactly
once in the R. Stare at R carefully. What do you observe? If you are
given T and R, can you reconstruct the original sequence from it?

The formula: The number of 4 × 4 monotone arrays is exactly

16!
7 · 62 · 53 · 44 · 33 · 22 · 1

= 24, 024 .

In general, the number of n × n sorted tables is

n2!
∏n

i=1 ∏n
j=1(i + j − 1)

.

You are now ready to answer the following question!

In how many ways can one arrange the numbers 1,2, . . . , 16 so that the
resulting subsequence has no monotone subsequence of 5 elements.
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1 3 4 7

2 8 5

6 9 11

10

Figure 12: A standard Young tableau

Where did the formula come from? Monotone arrays are closely related
to Young tableau, which come in shapes that are not always square
(e.g., see fig. 12; here the rows and columns are are both increasing).
The expressions presented above are special cases of the wonderful
hook length formula of Frame, Robinson and Thrall (1954) for counting
the number of standard Young tableau of various shapes, even those
that are not rectangular. At this website, you can enter the shape of
the tableau and get the number of standard Young tableau of that
shape:

https://www.integral-domain.org/lwilliams/Applets/Math/YoungDiagrams.php

27 April: Summary of the discussion on Explorations I, II and III

We reviewed the proof of the Erdős-Szekeres theorem and the soli-
taire sorting algorithm for finding the longest increasing subse-
quence. We observed that if a sequence of 16 elements has no mono-
tone subsequence of 5 elements, then the resulting 4 × 4 array must
be monotone. We did not carefully verify the claims about the struc-
ture of the array mentioned in the previous section. (Unfortunately,
the example presented originally in fig. 10 had a error, so we could
not use it; the error has been corrected now.) Everybody did notice
that if we sort the rows of a 4 × 4 array and then sort its columns,
then the rows remain sorted. We discussed why this happens. Start-
ing from this, and following the discussion in the previous section,
we hinted at how the formula for counting monotone arrays helps us
count the sequences of 16 elements with no monotone subsequence
of 5 elements.

We moved on to Exploration II. All groups after some time figured
out that the robber can be caught if 8 cops are deployed, and some-
how convinced themselves that 7 cops will not be enough. I waited
for someone to formulate a crisp strategy for the robber to evade the
cops perpetually. Eventually, to provoke an application of the pigeon-
hole principle, I asked them to complete the following sentence.

If 7 cops are placed on an 8 × 8 grid graph, then
some . . . . . . . . . ,
and some . . . . . . . . . .

All groups realized that there always was a safe spot on the board
for the robber, and the robber could quickly move to a new safe spot
whenever a cop’s move made her current spot unsafe. We did not
bother to state the argument formally; everybody seemed comfort-
able with the notion of a strategy, both for the robber and for the
cops.

https://www.integral-domain.org/lwilliams/Applets/Math/YoungDiagrams.php
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Finally, we discussed Exploration III. An assignment with stretch
8 was found soon enough. Several attempts were made to obtain an
assignment with stretch 7. Some of them looked promising to be-
gin with, but none obtained a stretch better than 8. So we moved on
to showing that 8 is the best possible. There are several arguments
known that directly invoke the pigeonhole principle. I had hoped
that the participants would spent some time at home with the prob-
lem in advance and perhaps develop some insights on their own. The
problem is challenging and non-trivial, and it was not reasonable to
develop a solution from scratch in the time we had left. Luckily, Ex-
ploration III has a connection to Exploration II. I asked the following.

Show that if there is an assignment of numbers with stretch 7, then
there is a strategy to chase down a robber on an 8 × 8 board with just
seven cops.

I suggested how such a connection might be established by treat-
ing the numbers in the assignment as commands to the cops to oc-
cupy the various vertices of the 8 × 8 grid graph. Initially, the cops
are placed in the vertices that corresponding to numbers 1, ..., 7 in
the assignment. At each step the cop occupying the vertex with the
smallest number is marched to the a previously unvisited vertex with
the smallest number; e.g., first, the vertex with number 1 will be va-
cated and the vertex numbered 8 will be occupied, then the vertex
with number 2 will be vacated and the vertex with number 9 will be
occupied. How can be sure that this sequence of moves by the cops
will trap the robber eventually? That the assignment had a stretch
of no more than 7 must have something to do with this. I only pro-
vided a sketch and left the participants to complete the argument
themselves. Did anyone think this thorough completely later? I don’t
know. Some participants did appreciate the fact that a seemingly
complicated question about ‘static’ assignments of numbers was set-
tled by appealing to a question about the existence of a strategy in
a game with ‘dynamically’ evolving positions and configurations. I
hope everyone will feel encouraged to step back and look for unex-
pected connections between the various things that they discover in
different contexts. I myself learnt many new things along the way; I
am very grateful for having been asked to conduct these discussions
on the pigeonhole principle.

(Last revised on 29 April 2024, by Jaikumar Radhakrishnan.)
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