Flavour physics

as a test of the standard model

 and a probe of new physics

School of Physics and Astronomy Queen Mary University of London

Royal Society Leverhulme Trust
Senior Research Fellow

Future flavours: Prospects for beauty, charm and tau physics, ICTS, Bangalore, India and Online

May 5th, 2022

Outline

- General Introduction:
- motivations
the tool: the Unitarity Triangle fit
- Standard Model fit
- SM constraints
- checking for tensions
- SM predictions
- Beyond the Standard Model:
- model-independent analysis
- NP-specific constraints
- New-physics scale analysis

Flavour mixing and CP violation in the Standard Model

O The CP symmetry is violated in any field theory having in the Lagrangian at least one phase that cannot be re-absorbed
J The mass eigenstates are not eigenstates of the weak interaction. This feature of the Standard Model Hamiltonian produces the (unitary) mixing matrix $\mathrm{V}_{\text {СКм }}$.

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)
$$

Flavour mixing and CP violation in the Standard Model

The CP symmetry is violated in any field theory having in the Lagrangian at least one phase that cannot be re-absorbed
The mass eigenstates are not eigenstates of the weak interaction.
This feature of the Standard Model Hamiltonian produces the (unitary) mixing matrix $\mathrm{V}_{\text {скм }}$.

$$
\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)
$$

CKM matrix and Unitarity Triangle

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

many observables functions of $\bar{\rho}$ and $\bar{\eta}$: overconstraining

$$
\alpha=\pi-\beta-\gamma
$$

www.utfit.org

M.Bona, M. Ciuchini, D. Derkach, E. Franco,
V. Lubicz, G. Martinelli, M. Pierini, L. Silvestrini, S. Simula, C. Tarantino, V. Vagnoni, M. Valli and L. Vittorio

Method and inputs:

$$
f\left(\bar{\rho}, \bar{\eta}, X \mid c_{1}, \ldots, c_{m}\right) \sim \quad \prod f_{j}(\mathcal{C} \mid \bar{\rho}, \bar{\eta}, X) *
$$

Bayes Theorem
$X \equiv x_{1}, \ldots, x_{n}=m_{t}, B_{K}, F_{B}, \ldots \quad i=1, N$
$\mathcal{C} \equiv c_{1}, \ldots, c_{m}=\epsilon, \Delta m_{d} / \Delta m_{s}, A_{C P}\left(J / \psi K_{S}\right)$,
$(b \rightarrow u) /(b \rightarrow c)$

$$
\begin{gathered}
\epsilon_{\boldsymbol{K}} \\
\Delta m_{\boldsymbol{d}}
\end{gathered}
$$

$\Delta m_{d} / \Delta m_{s}$
$\boldsymbol{A}_{C P}\left(J / \psi K_{S}\right)$

$$
\begin{array}{||c|}
\hline \bar{\rho}^{2}+\bar{\eta}^{2} \\
\hline \bar{\eta}[(1-\bar{\rho})+P] \\
\hline(1-\bar{\rho})^{2}+\bar{\eta}^{2} \\
\hline(1-\bar{\rho})^{2}+\bar{\eta}^{2} \\
\hline
\end{array}
$$

$\sin 2 \beta$

Standard Model + OPE/HQET/ Lattice QCD to go from quarks to hadrons
M. Bona et al. (UTfit Collaboration) JHEP 0507:028,2005 hep-ph/0501199
M. Bona et al. (UTfit Collaboration) JHEP 0603:080,2006 hep-ph/0509219

Marcella Bona (QMUL)

The LEP-style analysis in the $\bar{\rho}-\bar{\eta}$ plane:

The LEP-style analysis in the $\bar{\rho}-\bar{\eta}$ plane:

from lattice QCD \perp
ε_{K} from $\bar{K}-K$ mixing

$$
\varepsilon_{\mathrm{K}}=(2.228 \pm 0.011) \cdot 10^{-3}
$$

PDG

$$
B_{K}=\frac{<K\left|J_{\mu} J^{\mu}\right| \bar{K}>}{<K\left|J_{\mu}\right| 0><0\left|J^{\mu}\right| \bar{K}>}
$$

$$
B_{K}=0.756 \pm 0.016
$$

FLAG 2019

$$
I \varepsilon_{K} \vDash C_{\varepsilon} B_{K} A^{2} \lambda^{6} \eta\left\{-\eta S_{0}\left(x_{c}\right)\left(1-\lambda^{2} / 2\right)+\eta_{s} 0_{0}\left(x_{c}, x_{t}\right)-\eta S_{0}\left(x_{t}\right) A^{2} \lambda^{4}(1-\bar{\rho})\right\}
$$

$\mathrm{S}_{0}=$ Inami-Lim functions for $\mathrm{c}-\mathrm{c}, \mathrm{c}-\mathrm{t}$, et-t contributions (from perturbative calculations)

The LEP-style analysis in the $\bar{\rho}-\bar{\eta}$ plane:

Δm_{q} from $\bar{B}_{q}-B_{q}$ mixing $q=$ d.s

$$
\begin{aligned}
\Delta \mathrm{m}_{\mathrm{d}} & =0.5065 \pm 0.0019 \mathrm{ps}^{-1} \\
\Delta \mathrm{~m}_{\mathrm{s}} & =17.765 \pm 0.006 \mathrm{ps}^{-1}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Delta m_{d} & =\frac{G_{F}^{2}}{6 \pi^{2}} m_{w}^{2} \eta_{b} S\left(x_{t}\right) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}\left|V_{t b}\right|^{2}\left|V_{t d}\right|^{2}= \\
& \left.=\frac{G_{F}^{2}}{6 \pi^{2}} m_{w}^{2} \eta_{b} S\left(x_{t}\right) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}} \right\rvert\, V_{c b}{ }^{2} \lambda^{2}\left((1-\bar{\rho})^{2}+\bar{\eta}^{2}\right) & \Delta m_{d} \approx\left[(1-\boldsymbol{\rho})^{2}+\boldsymbol{\eta}^{2}\right] \frac{f_{B_{s}}^{2} B_{B_{s}}}{\xi^{2}} \\
\Delta m_{s} \approx f_{B_{s}}^{2} B_{B_{s}}
\end{array}
$$

The LEP-style analysis in the $\bar{\rho}-\bar{\eta}$ plane:

tree diagrams
$\mathrm{b} \rightarrow \mathrm{c}$ and $\mathrm{b} \rightarrow \mathrm{u}$ transition

- negligible new physics contributions
- inclusive and exclusive semileptonic B decay branching ratios

QCD corrections to be included
o inclusive measurements: OPE

- exclusive measurements: form factors from lattice QCD
V_{cb} and V_{ub}
from FLAG 2019 arXiv:1902.08191 \geq
$\left|V_{\mathrm{cb}}\right|(e x c l)=(39.09 \pm 0.68) 10^{-3}$
$\left|\mathrm{V}_{\mathrm{cb}}\right|($ incl $)=(42.16 \pm 0.50) 10^{-3}$
from Bordone et al. $\sim 2.8 \sigma$ discrepancy arXiv:2107.00604

summer21
from FLAG 2019 arXiv:1902.08191

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|(\mathrm{exc} \mid)=(3.73 \pm 0.14) 10^{-3}
$$

$$
\left|\mathrm{V}_{\text {ub }}\right|(\text { incl })=\left(4.19 \pm 0.17 \pm 0.18 \text { [flat]) } 10^{-3}\right.
$$

from GGOU HFLAV 2021
adding a flat uncertainty covering the spread of central values
~1.5 σ discrepancy

\square From B_{s} to K at high q^{2}

$$
\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|(L H C b)=(7.9 \pm 0.6) 10^{-2} \text { From } \Lambda_{\mathrm{b}} \text {, excluded following FLAG guidelines }
$$

UT triangle fits
V_{cb} and V_{ub}

A-la-D'Agostini two-dimensional average procedure:

$$
\left|V_{\mathrm{cb}}\right|=(41.1 \pm 1.0) 10^{-3}
$$

uncertainty $\sim 2.4 \%$

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=(3.89 \pm 0.21) 10^{-3}
$$

uncertainty $\sim 5.4 \%$

From global SM fit

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(41.7 \pm 0.4) 10^{-3} \\
& \left|\mathrm{~V}_{\mathrm{ub}}\right|=(3.70 \pm 0.10) 10^{-3}
\end{aligned}
$$

summer21

I $0.005 E=$
$0.004 E$

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{cb}}\right|=(41.9 \pm 0.5) 10^{-3} \\
& \left|\mathrm{~V}_{\mathrm{ub}}\right|=(3.68 \pm 0.10) 10^{-3}
\end{aligned}
$$

The LEP-style analysis in the $\bar{\rho}-\bar{\eta}$ plane:

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

B factories $+\mathrm{LHCb}$

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

$\sin 2 \beta$ from

 time-dependent $A_{C P}$ in $B \rightarrow J / \psi K$

$$
a_{f_{\infty}}(t)=\frac{\operatorname{Prob}\left(B^{\circ}(t) \rightarrow f_{C P}\right)-\operatorname{Prob}\left(\overline{B^{\circ}}(t) \rightarrow f_{C P}\right)}{\operatorname{Prob}\left(\overline{B^{\circ}}(t) \rightarrow f_{C P}\right)+\operatorname{Prob}\left(B^{\circ}(t) \rightarrow f_{C P}\right)}=C_{f} \cos \Delta m_{d} t+S_{f} \sin \Delta m_{d} t
$$

$$
a_{f_{C P}}(t)=-\eta_{C P} \sin \Delta m_{d} \Delta t \sin 2 \beta
$$

Latest $\sin 2 \beta$ results:

$$
\sin 2 \beta\left(J / \psi K^{0}\right)=0.698 \pm 0.017
$$

HFLAV

$$
\sin 2 \beta\left(J / \psi K^{0}\right)=0.688 \pm 0.020
$$

UTfit Input

data-driven theoretical uncertainty

$$
\Delta S=-0.01 \pm 0.01
$$

M.Ciuchini, M.Pierini, L.Silvestrini Phys. Rev. Lett. 95, 221804 (2005)

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

$\alpha:$ CP violation in $B^{0} \rightarrow \pi^{+} \pi$

- considering the tree (T) only:

$$
\begin{aligned}
& \lambda_{\pi \pi}=\mathrm{e}^{2 \mathrm{ia}} \\
& \mathrm{C}_{\pi \pi}=0 \\
& \mathrm{~S}_{\pi \pi}=\sin (2 \alpha)
\end{aligned}
$$

\bigcirc adding the penguins (P) :

$$
\lambda_{\pi \pi}=e^{2 i \alpha} \frac{1+|P / T| e^{i \delta} e^{i \gamma}}{1+|P / T| e^{i \delta} e^{-i \gamma}}
$$

$C_{\pi \pi} \propto \sin (\delta)$

$$
S_{\pi \pi}=\sqrt{1-C_{\pi \pi}^{2}} \sin \left(2 \alpha_{e f f}\right)
$$

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

from $\alpha_{\text {eff }} \rightarrow$ to α : isospin analysis

- $B \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{0}, \pi^{0} \pi^{0}$ decays are connected from isospin relations
- $\pi \pi$ states can have $I=2$ or $I=0$
* the gluonic penguins contribute only to the $\mathrm{I}=0$ state ($\Delta \mathrm{I}=1 / 2$)
$\# \pi^{+} \pi^{0}$ is a pure $\mathrm{I}=2$ state $(\Delta I=3 / 2)$ and it gets contribution only from the tree diagram
\neq triangular relations allow for the determination $\quad 2 \alpha_{\text {eff }}=2 \alpha+\kappa_{\pi л}$ of the phase difference induced on α :

Both $\mathrm{BR}\left(\mathrm{B}^{0}\right)$ and $\mathrm{BR}\left(\mathrm{B}^{0}\right)$ have to be measured in all the $\pi \pi$ channels

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

$B \rightarrow D^{(*) 0}\left(D^{(*) 0}\right) K^{(*)}$ decays can proceed both through V_{cb} and V_{ub} amplitudes

γ and DK trees

- $D^{(*)} K^{(*)}$ decays: from BRs and BR ratios, no time-dependent analysis, just rates
- the phase γ is measured exploiting interferences: two amplitudes leading to the same final states
- some rates can be really small: $\sim 10^{-7}$

Sensitivity to γ : the ratio r_{B}

$$
r_{B}=\left|\frac{B^{-} \rightarrow \bar{D}^{0} K^{-}}{B^{-} \rightarrow D^{0} K^{-}}\right|=\sqrt{\mathrm{r}_{\mathrm{B}}=\text { amplitude ratio }}
$$

$$
\sim 0.36
$$

hadronic contribution channel-dependent

- in $\mathrm{B}^{+} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~K}^{+}$: r_{B} is ~ 0.1
- while in $B^{0} \rightarrow D^{(*) 0} K^{0} r_{B}$ could be $\sim 0.2-0.4$
ρ to be measured: $r_{B}(D K), r^{*}{ }_{B}\left(D^{*} K\right)$ and $r_{B}^{s}\left(D K^{*}\right)$

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

γ and DK trees

Parameter: $\mathbf{Y} \equiv \varphi_{3}$ from all $B \rightarrow$ DK and similar $b \rightarrow c u-b a r s \& b \rightarrow$ uc-bar s modes

$$
\begin{aligned}
& \mathbf{Y} \equiv \boldsymbol{\varphi}_{\mathbf{3}} \\
& r_{B}\left(\mathrm{DK}^{+}\right)=0.0994 \pm 0.0026 \\
& r_{B}\left(D^{*} K^{+}\right)=0.104^{+0.013}{ }_{-0.014} \\
& r_{B}\left(\text { DK*}^{*+}\right)=0.101+0.016_{-0.034} \\
& r_{B}\left(D K^{* 0}\right)=0.257^{+0.021}-0.023
\end{aligned}
$$

$$
\begin{gathered}
\left(65.9^{+3.3}-3.5\right)^{\circ} \\
\delta_{B}\left(\mathrm{DK}^{+}\right)=\left(127.7^{\left.+3.6_{-3.9}\right)^{\circ}}\right. \\
\delta_{B}\left(D^{*} K^{+}\right)=\left(314.8^{\left.+7.9_{-9.9}\right)^{\circ}}\right. \\
\delta_{B}\left(\mathrm{DK}^{*+}\right)=\left(48^{\left.+59_{-16}\right)^{\circ}}\right. \\
\delta_{B}\left(\mathrm{DK}^{* 0}\right)=\left(194.1^{+9.6_{-}}{ }_{-8.8}\right)^{\circ}
\end{gathered}
$$

$\sin 2 \alpha\left(\phi_{2}\right)$ and $\gamma\left(\phi_{3}\right)$

α from $\pi \pi, \rho \rho, \pi \rho$ decays:
combined SM: $(93.6 \pm 4.2)^{\circ}$
UTfit prediction: $(90.5 \pm 2.1)^{\circ}$

$$
\alpha \text { from HFLAV: } 85.5 \pm 4.6
$$

γ updated with all the latest results (LHCb)

γ from B into DK decays:
HFLAV: $(66.1 \pm 3.5)^{\circ}$
UTfit prediction: $(66.1 \pm 2.1)^{\circ}$

Angle constraints in the $\bar{\rho}-\bar{\eta}$ plane:

Unitarity Triangle analysis in the SM:

Unitarity Triangle analysis in the SM:

Unitarity Triangle analysis in the SM:

zoomed in..

Unitarity Triangle analysis in the SM:

Some interesting configurations

Compatibility plots

A way to "measure" the agreement of a single measurement with the indirect determination from the fit using all the other inputs: test for the SM description of the flavour physics

Color code: agreement between the predicted values and the measurements at better than 1, 2, ...no

The cross has the coordinates (x, y)=(central value, error) of the direct measurement

Checking the usual tensions..

Checking the usual tensions..

Marcella Bona (QMUL)

Unitarity Triangle analysis in the SM:
obtained excluding the given constraint from the fit

Observables	Measurement	Prediction	Pull (\#)
sin2 β	0.688 ± 0.020	0.751 ± 0.027	~ 1.4
γ	66.1 ± 3.5	66.1 ± 2.1	< 1
α	93.6 ± 4.2	90.5 ± 2.1	<1
$\varepsilon_{\mathrm{K}} \cdot 10^{3}$	2.228 ± 0.001	2.05 ± 0.13	~ 1.4
$\left\|\mathrm{V}_{\mathrm{cb}}\right\| \cdot 10^{\mathbf{3}}$	40.4 ± 1.3	41.9 ± 0.5	< 1
$\left\|\mathrm{V}_{\mathrm{cb}}\right\| \cdot 10^{3}$ (incl)	42.160 .50		< 1
$\left\|\mathrm{V}_{\mathrm{cb}}\right\| \cdot 10^{\mathbf{3}}$ (excl)	39.090 .68		~ 2.4
$\left\|\mathrm{V}_{\mathrm{ub}}\right\| \cdot 1 \mathbf{1 0}^{\mathbf{3}}$	3.89 ± 0.21	3.68 ± 0.10	< 1
$\left\|\mathrm{V}_{\text {ub }}\right\| \cdot 10^{3}$ (incl)	4.19 ± 0.20	-	~ 1.7
$\left\|\mathrm{V}_{\mathrm{ub}}\right\| \cdot 10^{\mathbf{3}}$ (excl)	3.73 ± 0.14	-	< 1
$B R(B \rightarrow \tau v)\left[10^{-4}\right]$	1.09 ± 0.24	0.87 ± 0.05	<1
$\mathrm{A}_{\text {SL }}{ }^{\text {d }} \cdot 10^{\mathbf{3}}$	-2.1 ± 1.7	-0.32 ± 0.03	< 1
$\mathrm{A}_{\text {SL }}{ }^{\text {e }} \cdot 10^{3}$	-0.6 ± 2.8	0.014 ± 0.001	< 1

UT analysis including new physics (NP)

Consider for example B_{s} mixing process.
Given the SM amplitude, we can define

$$
\mathrm{C}_{\mathrm{B}_{\mathrm{s}}} \mathrm{e}^{-2 i \phi_{\mathrm{s}}}=\frac{\left\langle\overline{\mathrm{B}}_{s}\right| H_{\mathrm{eff}}^{\mathrm{SM}}+\mathrm{H}_{\text {eff }}^{\mathrm{NP}}\left|\mathrm{~B}_{\mathrm{s}}\right\rangle}{\left\langle\overline{\mathrm{B}}_{s}\right| \mathrm{H}_{\text {eff }}^{S \mathrm{M}}\left|\mathrm{~B}_{\mathrm{s}}\right\rangle}=1+\frac{\mathrm{A}_{\mathrm{NP}} \mathrm{e}^{-2 i \phi_{\mathrm{NP}}}}{\mathrm{~A}_{\mathrm{SM}} \mathrm{e}^{-2 i \beta_{s}}}
$$

All NP effects can be parameterized in terms of one complex parameter for each meson mixing, to be determined in a simultaneous fit with the CKM parameters (now there are enough experimental constraints to do so).

For kaons we use Re and Im, since the two exp. constraints ε_{κ} and $\Delta \mathrm{m}_{\kappa}$ are directly related

$$
\begin{aligned}
\boldsymbol{C}_{\varepsilon_{\boldsymbol{K}}} & =\frac{\operatorname{Im}\left\langle\boldsymbol{K}^{0} \mid \boldsymbol{H}_{\text {eff }}^{\text {full }} \overline{\boldsymbol{K}}^{0}\right\rangle}{\operatorname{Im}\left\langle\boldsymbol{K}^{0}\right| \boldsymbol{H}_{\text {sff }}^{S l \mid}\left|\overline{\boldsymbol{K}}^{0}\right\rangle} \\
\boldsymbol{C}_{\Delta m_{\kappa}} & =\frac{\operatorname{Re}\left\langle\boldsymbol{K}^{0}\right| \boldsymbol{H}_{e f f}^{\text {full }}\left|\overline{\boldsymbol{K}}^{0}\right\rangle}{\operatorname{Re}\left\langle\boldsymbol{K}^{0}\right| \boldsymbol{H}_{e f f}^{S M}\left|\overline{\boldsymbol{K}}^{0}\right\rangle}
\end{aligned}
$$

to them (with distinct theoretical issues)

UT analysis including new physics (NP)

fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions to $\triangle F=2$ transitions
B_{d} and B_{s} mixing amplitudes
(2+2 real parameters):

$$
A_{q}=C_{B_{q}} e^{2 i \phi_{B_{q}}} A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N \rho}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

$$
\begin{aligned}
& \Delta m_{q / K}=C_{B_{q} / \Delta m_{K}}\left(\Delta m_{q / K}\right)^{S M} \\
& A_{C P}^{B_{d} \rightarrow J / \psi K_{S}}=\sin 2\left(\beta+\phi_{B_{d}}\right) \\
& A_{S L}^{q}=\operatorname{lm}\left(\Gamma_{12}^{q} / A_{q}\right)
\end{aligned}
$$

$$
\varepsilon_{K}=C_{\varepsilon} \varepsilon_{K}^{S M}
$$

$$
A_{C P}^{B_{s} J J / \psi \phi} \sim \sin 2\left(-\beta_{s}+\phi_{B_{s}}\right)
$$

$$
\Delta \Gamma^{q} / \Delta m_{q}=\operatorname{Re}\left(\Gamma_{12}^{q} / A_{q}\right)
$$

UT analysis including new physics (NP)

M.Bona et al (UTfit)

Phys.Rev.Lett. 97:151803,2006

	ρ, η	$\mathrm{C}_{\mathrm{Bd}}, \phi_{\text {Bd }}$	$\mathrm{C}_{\text {¢K }}$	$\mathrm{C}_{\text {Bs }}$, bs
$\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}$	X			
γ (DK)	X			
ε_{k}	X		X	
$\sin 2 \beta$	X	X		
$\Delta \mathrm{m}_{\mathrm{d}}$	X	X		
α	X	X		
$\mathrm{A}_{\text {SL }} \mathrm{B}_{\mathrm{d}}$	X	X X		
$\Delta \Gamma_{\mathrm{d}} / \Gamma_{\mathrm{d}}$	X	X X		
$\Delta \Gamma_{s} / \Gamma_{s}$	X			X X
$\Delta \mathrm{m}_{\mathrm{s}}$				X
$\mathrm{A}_{\text {CH }}$	X	X X		X X

model independent assumptions

SM
SM+NP
tree level

$\underset{\left(\mathbf{V}_{\mathrm{ub}} / \mathbf{V}_{\mathrm{cb}}\right)^{\mathrm{sM}}}{\boldsymbol{\gamma}^{\mathrm{sM}}}$	$\left(\mathbf{V}_{\mathrm{uth}} / \mathbf{V}_{\mathrm{cb}}\right)^{\mathrm{sM}}$
$\boldsymbol{\gamma}^{\mathrm{sM}}$	

Bd Mixing

$\boldsymbol{\beta}^{\mathrm{sM}}$	$\boldsymbol{\beta}^{\mathrm{sM}}+\phi_{\mathrm{Bd}}$
$\boldsymbol{\alpha}^{\mathrm{SM}}$	$\boldsymbol{\alpha}^{\mathrm{sM}}-\phi_{\mathrm{Bd}}$
$\Delta \mathbf{m}_{\mathrm{d}}$	$\mathbf{C}_{\mathrm{Bd}} \Delta \mathbf{m}_{\mathrm{d}}$

Bs Mixing

$\begin{aligned} & \Delta \mathbf{m}_{\mathrm{s}}^{\mathrm{sM}} \\ & \beta_{\mathrm{s}}^{\mathrm{sm}} \end{aligned}$	$\begin{aligned} & \mathbf{C}_{\mathrm{B},} \Delta \mathbf{m}_{\mathrm{s}}{ }^{\mathrm{sM}} \\ & \beta_{\mathrm{s}}{ }^{\mathrm{M}}+\phi_{\mathrm{Bs}} \end{aligned}$
K Mixing	
$\varepsilon_{K}{ }^{\text {SM }}$	C $\varepsilon_{\mathrm{K}} \varepsilon_{\mathrm{K}}{ }^{\text {SM }}$

New-physics-specific constraints

$$
A_{\mathrm{SL}}^{s} \equiv \frac{\Gamma\left(\bar{B}_{s} \rightarrow \ell^{+} X\right)-\Gamma\left(B_{s} \rightarrow \ell^{-} X\right)}{\Gamma\left(\bar{B}_{s} \rightarrow \ell^{+} X\right)+\Gamma\left(B_{s} \rightarrow \ell^{-} X\right)}=\operatorname{Im}\left(\frac{\Gamma_{12}^{s}}{A_{s}^{\text {full }}}\right)
$$

semileptonic asymmetries in B^{0} and B_{s} : sensitive to NP effects in both size and phase. Taken from the latest HFLAV.
same-side dilepton charge asymmetry:
admixture of B_{s} and B_{d} so sensitive to NP effects in both.

$$
A_{\mathrm{SL}}^{\mu \mu} \times 10^{3}=-7.9 \pm 2.0
$$

lifetime $\tau^{\text {Fs }}$ in flavour-specific final states:

Cleo, BaBar, Belle, D0 and LHCb average lifetime is a function to the width and the width difference

$$
\tau^{\mathrm{FS}}\left(\mathrm{~B}_{\mathrm{s}}\right)=1.527 \pm 0.011 \mathrm{ps}
$$

HFLAV
$\phi_{\mathrm{s}}=2 \beta_{\mathrm{s}}$ vs $\Delta \Gamma_{\mathrm{s}}$ from $\mathrm{B}_{\mathrm{s}} \rightarrow \mathbf{J} / \psi \phi$ angular analysis as a function of proper time and b-tagging

$$
\phi_{\mathrm{s}}=-0.050 \pm 0.019 \mathrm{rad}
$$

NP analysis results

NP parameter results

$A_{q}=C_{B_{q}} e^{2 i \phi_{\varepsilon_{g}}} A_{q}^{S M} e^{2 i \phi_{q}}$
dark: 68\%
light: 95\%
SM: red cross

K system
$C_{e_{K}}=1.05 \pm 0.10$

NP parameter results

$$
A_{q}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 \mathrm{i}\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

The ratio of NP/SM amplitudes is:
< 18\% @68\% prob. (30\% @95\%) in B_{d} mixing
$<10 \%$ @68\% prob. (18\% @95\%) in B_{s} mixing

Testing the new-physics scale

At the high scale

new physics enters according to its specific features

At the low scale use OPE to write the most general effective Hamiltonian. the operators have different chiralities than the SM

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=2} & =\sum_{i=1}^{5} C_{i} Q_{i}^{b q}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{b q} \\
Q_{1}^{q_{i} q_{j}} & =\bar{q}_{j L}^{\alpha} \gamma_{\mu} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} \gamma^{\mu} q_{i L}^{\beta} \\
Q_{2}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j R}^{\beta} q_{i L}^{\beta}, \\
Q_{3}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j R}^{\beta} q_{i L}^{\alpha}, \\
Q_{4}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} q_{i R}^{\beta}, \\
Q_{5}^{q_{i} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j L}^{\beta} q_{i R}^{\alpha} .
\end{aligned}
$$ NP effects are in the Wilson Coefficients C

F_{i} : function of the NP flavour couplings
L_{i}. loop factor (in NP models with no tree-level FCNC)
Λ : NP scale (typical mass of new particles mediating $\Delta \mathrm{F}=2$ processes)

Testing the new-physics scale

The dependence of C on Λ changes depending on the flavour structure.
 We can consider different flavour scenarios:

- Generic: $C(\Lambda)=\alpha / \Lambda^{2}$
- NMFV: $\quad \mathrm{C}(\Lambda)=\alpha \times\left|\mathrm{F}_{\mathrm{SM}}\right| / \Lambda^{2} \quad \mathrm{~F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\mathrm{SM}}\right|$, arbitrary phase
- MFV: $\quad C(\Lambda)=\alpha \times\left|F_{S M}\right| / \Lambda^{2} \quad F_{1} \sim\left|F_{S M}\right|, F_{i \neq 1} \sim 0$, SM phase
$\alpha\left(\mathrm{L}_{\mathrm{i}}\right)$ is the coupling among NP and SM
$\odot \alpha \sim 1$ for strongly coupled NP
$\odot \alpha \sim \alpha_{w}\left(\alpha_{s}\right)$ in case of loop coupling through weak (strong) interactions

If no NP effect is seen lower bound on NP scale Λ
F is the flavour coupling and so
$F_{S M}$ is the combination of CKM factors for the considered process

Results from the Wilson coefficients

Generic: $C(\Lambda)=\alpha / \Lambda^{2}$,
$\mathrm{F}_{\mathrm{i}} \sim 1$, arbitrary phase
$\alpha \sim 1$ for strongly coupled NP

$\Lambda>4.310^{5} \mathrm{TeV}$
$\alpha \sim \alpha_{w}$ in case of loop coupling through weak interactions

$$
\Lambda>1.310^{4} \mathrm{TeV}
$$

NMFV: $\quad \mathrm{C}(\Lambda)=\alpha \times\left|\mathrm{F}_{\mathrm{SM}}\right| / \Lambda^{2}$,
$\mathrm{F}_{\mathrm{i}} \sim\left|\mathrm{F}_{\text {sm }}\right|$, arbitrary phase

Lower bounds on NP scale (at 95\% prob.)
$\Lambda>89 \mathrm{TeV}$
$\alpha \sim \alpha_{w}$ in case of loop coupling through weak interactions

$$
\Lambda>2.7 \mathrm{TeV}
$$

for lower bound for loop-mediated contributions, simply multiply by $\alpha_{s}(\sim 0.1)$ or by $\alpha_{w}(\sim 0.03)$.

Conclusions

o test of the SM consistency and the CKM mechanism: comparison between inputs and indirect determinations
© using all the available inputs from experiments and theoretical and lattice QCD calculation
© extraction of the most accurate SM predictions
○ model-independent new physics:
© overconstraining of the SM fit allows for extraction of generic amplited and phase for all the systems ($\mathrm{K}, \mathrm{B}_{\mathrm{d}}, \mathrm{B}_{\mathrm{s}}$)
© scale analysis: putting bounds on the Wilson coefficients give insights into the NP scale in different NP scenarios

- LHC(b) and Belle II will reach better precision and provide new measurements

Conclusions

- SM analysis displays very good (improved) overall consistency
- Still open discussion on semileptonic inclusive vs exclusive: exclusive fit shows tension, V_{cb} now showing the biggest discrepancy..
- UTA provides determination of NP contributions to $\Delta F=2$ amplitudes. It currently leaves space for NP at the level of 2025\%
- So the scale analysis points to high scales for the generic scenario and at the limit of LHC reach for weak coupling. Indirect searches are not only complementary to direct searches, but they might be the main way to glimpse at new physics.

Back up slides

theory error on $\sin 2 \beta$:
A.Buras, L.Silvestrini

Nucl.Phys.B569:3-52(2000)

3) Fit the amplitudes in $\mathrm{J} / \psi \mathrm{K}^{0}$ imposing the upper bound on the CKM suppressed amplitude and extract the error on sin2 β

lattice QCD inputs

updated in early 2020

Observables	Measurement
B_{K}	0.756 ± 0.016
f_{Bs}	0.2301 ± 0.0012
$\mathrm{f}_{\mathrm{Bs}} / \mathrm{f}_{\mathrm{Bd}}$	1.208 ± 0.005
$\mathrm{~B}_{\mathrm{Bs}} / \mathrm{B}_{\mathrm{Bd}}$	1.032 ± 0.038
$\mathrm{~B}_{\mathrm{Bs}}$	1.35 ± 0.06

FLAG 2019 suggests to take the most precise between the $\mathrm{N}_{\mathrm{f}}=2+1+1$ and $\mathrm{N}_{\mathrm{f}}=2+1$ averages.

We quote, instead, the weighted average of the $\mathrm{N}_{\mathrm{f}}=2+1+1$ and $\mathrm{N}_{\mathrm{f}}=2+1$ results with the error rescaled when chi2/dof > 1, as done by FLAG for the $\mathrm{N}_{\mathrm{f}}=2+1+1$ and $\mathrm{N}_{\mathrm{f}}=2+1$ averages separately

exclusives vs inclusives

only exclusive values

effective BSM Hamiltonian for $\Delta \mathrm{F}=2$ transitions

Most general form of the effective Hamiltonian for $\Delta \mathrm{F}=2$ processes

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{K-\bar{K}} & =\sum_{i=1}^{5} C_{i} Q_{i}^{s d}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{s d} \\
\mathcal{H}_{\mathrm{eff}}^{B_{q}-\bar{B}_{q}} & =\sum_{i=1}^{5} C_{i} Q_{i}^{b q}+\sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{b q}
\end{aligned}
$$

The Wilson coefficients C_{i} have in general the form

$$
C_{i}(\Lambda)=F \cdot \frac{L_{i}}{\Lambda^{2}}
$$

F: function of the NP flavour couplings
L_{i} Ioop factor (in NP models with no tree-level FCNC)
人: NP scale (typical mass of new particles mediating $\Delta \mathrm{F}=2$ transitions)

contribution to the mixing amplitutes

analytic expression for the contribution to the mixing amplitudes

Lattice QCD
$\left\langle\bar{B}_{q}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta B=2}\left|B_{q}\right\rangle_{i}=\sum_{j=1}^{5} \sum_{r=1}^{5} b_{j}^{(r, i)}+\eta c_{j}^{(r, i)} \eta^{a} C_{i}(\Lambda)\left\langle\bar{B}_{q}\right| Q_{r}^{b q}\left|B_{q}\right\rangle$
arXiv:0707.0636: for "magic numbers" a, b and $c, \eta=\alpha_{s}(\Lambda) / \alpha_{s}\left(m_{t}\right)$
analogously for the K system
$\left\langle\bar{K}^{0}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta S=2}\left|K^{0}\right\rangle_{i}=\sum_{j=1}^{5} \sum_{r=1}^{5}\left(b_{j}^{(r, i)}+\eta c_{j}^{(r, i)}\right) \eta^{a_{j}} C_{i}(\Lambda) R_{r}\left\langle\bar{K}^{-0}\right| Q_{1}^{s d}\left|K^{0}\right\rangle$
to obtain the p.d.f. for the Wilson coefficients $\mathrm{C}_{i}(\Lambda)$ at the new-physics scale, we switch on one coefficient at a time in each sector and calculate its value from the result of the NP analysis.

results from the Wilson coefficients

the results obtained for the flavour scenarios:
In deriving the lower bounds on the NP scale, we assume $L_{i}=1$, corresponding to strongly-interacting and/or tree-level NP.

Parameter	95% allowed range $\left(\mathrm{GeV}^{-2}\right)$	Lower limit on $\Lambda(\mathrm{TeV})$ for arbitrary NP	Lower limit on $\Lambda(\mathrm{TeV})$ for NMFV
$\operatorname{Re} C_{K}^{1}$	$[-9.6,9.6] \cdot 10^{-13}$	$1.0 \cdot 10^{3}$	0.35
$\operatorname{Re} C_{K}^{2}$	$[-1.8,1.9] \cdot 10^{-14}$	$7.3 \cdot 10^{3}$	2.0
$\operatorname{Re} C_{K}^{3}$	$[-6.0,5.6] \cdot 10^{-14}$	$4.1 \cdot 10^{3}$	1.1
$\operatorname{Re} C_{K}^{4}$	$[-3.6,3.6] \cdot 10^{-15}$	$17 \cdot 10^{3}$	4.0
$\operatorname{Re} C_{K}^{5}$	$[-1.0,1.0] \cdot 10^{-14}$	$10 \cdot 10^{3}$	2.4
$\operatorname{Im} C_{K}^{1}$	$[-4.4,2.8] \cdot 10^{-15}$	$1.5 \cdot 10^{4}$	5.6
$\operatorname{Im} C_{K}^{2}$	$[-5.1,9.3] \cdot 10^{-17}$	$10 \cdot 10^{4}$	28
$\operatorname{Im} C_{K}^{3}$	$[-3.1,1.7] \cdot 10^{-16}$	$5.7 \cdot 10^{4}$	19
$\operatorname{Im} C_{K}^{4}$	$[-1.8,0.9] \cdot 10^{-17}$	$24 \cdot 10^{4}$	62
$\operatorname{Im} C_{K}^{5}$	$[-5.2,2.8] \cdot 10^{-17}$	$14 \cdot 10^{4}$	37

To obtain the lower bound for loop-mediated contributions, one simply multiplies the bounds by $\alpha_{s} \sim 0.1$ or by $\alpha_{w} \sim 0.03$.

some old plots coming back to fashion:

As NA62 and KOTO are analysing data:
2007 global fit area

SM central value

including
$\mathrm{BR}\left(\mathrm{K}^{0} \rightarrow \pi^{0} v \bar{v}\right)$ SM central value

look at the near future

$$
\begin{aligned}
& \rho= \pm 0.015 \\
& \eta= \pm 0.015
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\rho}=0.154 \pm 0.015 \\
& \bar{\eta}=0.344 \pm 0.013
\end{aligned}
$$

$$
\begin{aligned}
& \text { current sensitivity } \\
& \begin{array}{|c}
\bar{\rho}=0.150 \pm 0.027 \\
\bar{\eta}=0.363 \pm 0.025
\end{array}
\end{aligned}
$$

future I scenario:
errors from

Belle II at 5/ab

 + LHCb at 10/fb

