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1. Moduli space of Abelian Higgs Vortices

I Consider Abelian Higgs (Ginzburg–Landau) vortices on a
(closed, oriented, Riemannian) surface Σ of genus g, with
2nd-order dynamics.

I We use a (local) complex coordinate z = x1 + ix2 and
express the metric on Σ as

ds2 = Ω(z, z̄) dz dz̄ .

I The curvature of Σ affects vortex solutions, but vortices
have no back-reaction on the geometry.

I The fields are a section and connection on a U(1) bundle
over Σ, with first Chern number N > 0. Locally, they are a
complex scalar field φ and a Maxwell vector potential
Aj (j = 1,2), with field strength F12 = ∂1A2 − ∂2A1 and total
magnetic flux 2πN.



I At critical coupling, the minimal energy fields, for given N,
satisfy the Bogomolny equations

D1φ+ iD2φ = 0 ,
1
Ω

F12 =
1
2

(1− |φ|2) .

I Provided the surface area satisfies

A ≡
∫

Σ
Ω d2x > 4πN

these equations have non-trivial, static N-vortex solutions.
The vortex centres are where both φ = 0 and the magnetic
field 1

ΩF12 is maximal.
I There is a unique solution (up to gauge transformations)

with vortex centres at any N specified locations
Z1,Z2, . . . ,ZN [Taubes, Bradlow, Garcia-Prada].



I M, the moduli space of solutions, is the symmetrised Nth
power ΣN/SN , where SN is the permutation group. M is a
smooth manifold of complex dimension N (not an orbifold).

I M has a natural metric. This is derived from the field
theory kinetic energy, for vortices moving adiabatically
through (i.e. tangent to) the moduli space.

I Samols (and Strachan in a special case) showed that the
metric has a localised form depending only on data close
to each vortex location.

I Slow-motion vortex dynamics corresponds to free motion
(i.e. geodesic motion) on the moduli spaceM. The
vortices themselves have non-trivial interactions because
of the curvature ofM. We ignore dynamics orthogonal to
M that excites vortices.



2. Classical Partition Function and Eq. of State
I Here we use real coordinates {qi : 1 ≤ i ≤ 2N} on the

moduli spaceM (real and imaginary parts of Zr ), and
denote the Samols metric gij(q).

I The Hamiltonian for free motion onM is

H(p,q) =
1
2

g ij(q)pipj ,

where pi = gij(q)q̇j are the momenta conjugate to qi .
I The classical partition function at temperature T is

Z (T ) =
1

(2π~)2N

∫
e−H(p,q)/T [dp dq] .

I After performing the Gaussian momentum integrals,

Z (T ) =

(
T

2π~2

)N ∫
M

√
detgij [dq] =

(
T

2π~2

)N

Vol(M) ,

a multiple of the volume ofM.



I For N vortices on a surface Σ of genus 0 (topologically, a
2-sphere) with area A > 4πN, the volume of the moduli
space is

Vol(M) =
πN

N!
(A− 4πN)N

(discussed in Martin Speight’s lectures).
I The partition function of the vortex gas is therefore

Z (T ) =

(
T

2~2

)N 1
N!

(A− 4πN)N .

I This formula has a known generalisation for vortices on a
surface of genus g [NSM and S. Nasir], but this makes no
difference if g � N.



I From the partition function Z we obtain the free energy
F = −T log Z , where, for large N,

F = −T

{
N log

(
T

2~2

)
− N log N + N + N log(A− 4πN)

}
.

I The pressure of the vortex gas is therefore

P = −∂F
∂A

=
NT

A− 4πN
.

Equivalently
P(A− 4πN) = NT ,

the Clausius equation of state.
I Remarkably, this is an exact result for an interacting

system.



3. Quantized Vortices and Eq. of State at High T
I The (canonically) quantized momentum operators onM,

pi = −i~
∂

∂qi ,

are inserted into H to determine the quantum Hamiltonian.
I After operator-ordering,

H =
1
2
~2∆ ,

where ∆ ≡ −∇2 is the Laplace–Beltrami operator on the
moduli spaceM. This is our quantized Hamiltonian for
vortices. N and A are both large, with A > 4πN.

I SinceM is compact, without boundary, ∆ has a discrete
set of non-negative eigenvalues λ. The quantum partition
function is

Z (T ) =
∑
λ

exp

(
− ~2

2T
λ

)
.



I It is easiest to find Z (T ) at large T .
I The first two terms of the large T expansion are [Berger,

Gaudichon and Mazet]

Z (T ) ∼
(

T
2π~2

)N (
Vol(M) +

~2

12T
Curv(M)

)
,

where Vol(M) is the volume ofM and

Curv(M) =

∫
M

s
√

detgij [dq]

its total scalar curvature. Here, s is the local scalar
curvature of the Samols metric gij .



I For N vortices on a surface Σ of genus 0, the total volume
is

Vol(M) =
πN

N!
(A− 4πN)N

and the total curvature is [Baptista]

Curv(M) =
4N2πN

N!
(A− 4πN)N−1 .

The two-term partition function is therefore

Z (T ) =

(
T

2~2

)N 1
N!

(A− 4πN)N
[
1 +

~2N2

3T (A− 4πN)

]
,

the classical result plus the leading quantum correction.



I The free energy F = −T log Z is now

F = −T

{
N log

(
T

2~2

)
− N log N + N + N log(A− 4πN)

+
~2N2

3T (A− 4πN)

}
.

I The pressure of the vortex gas is therefore

P = −∂F
∂A

=
NT

A− 4πN
− ~2N2

3(A− 4πN)2 ,

which can be arranged into the equation of state(
P +

~2N2

3(A− 4πN)2

)
(A− 4πN) = NT .

This is similar to the van der Waals equation.



I At low density,

P =
NT
A

(
1 +

(
4π − ~2

3T

)
N
A

+ · · ·
)

so the 2nd virial coefficient is

B(T ) = 4π − ~2

3T
.

I The vortex gas is repulsive at high temperature, because
each vortex excludes some area from the others. The
repulsion softens as T decreases, but we cannot
extrapolate this result to T of order ~2.



4. Statistical Mechanics of Dissolving Vortices
[NSM and Shiyi (Franklin) Wang]

I The quantum mechanical spectrum on the N-vortex moduli
space is not known in general, but it simplifies near the
Bradlow limit, where A/N slightly exceeds 4π.

I The vortices are called “dissolving” in this regime, as the
scalar field φ is close to zero everywhere, and the
magnetic field is nearly uniform.

I The moduli space is CPN for N vortices on a surface of
genus 0, and for dissolving vortices its metric becomes the
standard Fubini–Study metric, scaled by A− 4πN to have
the correct volume [Baptista and NSM, Speight].



I The quantum Hamiltonian becomes

H =
1
2
~2 1

A− 4πN
∆FS .

I ∆FS has eigenvalues and degeneracies

λk = 4k(N + k) , gk =

(
N + k

k

)2

−
(

N + k − 1
k − 1

)2

,

with k = 0,1,2, . . . .
I The quantum partition function is therefore

Z (T ) =
∑

k

gk exp

(
− ~2

2T
4k(N + k)

A− 4πN

)
.



I For all except very low temperatures, this sum is dominated
by a range of k of order N. So can replace sum by integral.

I Introduce x = k
N and the scaled reciprocal temperature

z =
~2

2πT
4πN

A− 4πN
.

I Find
Z (z) ' N

∫ ∞
0

exp(NG(x)) dx

where

G(x) = 2(1 + x) log(1 + x)− 2x log x − z x(1 + x) .



I As N is large, we approximate integrand by a Gaussian
around maximum of G(x), whose location is where

log

(
1 +

1
x

)
= z

(
x +

1
2

)
.

I We have found the solution x0(z) numerically, and have
also found asymptotic formulae for x0(z) for small z (high
T ) and large z (intermediate to low T ).

I We can then calculate the partition function Z , the free
energy F = −T log Z = −NTG(x0(z)), and pressure
P = −∂F/∂A of the vortex gas. (Recall z = ~2

2πT
4πN

A−4πN .)



Scaled free energy F/(−NT ) for small and large z
(z � 2 log N)



I Pressure for small and large z are

P =
NT

A− 4πN

[
1− z

6
+

z2

180
+ . . .

]
(small z) ,

P =
NT

A− 4πN

[
ze−

1
2 z + z(2− z)e−z

]
(large z) .

The first two terms for small z (high T ) reproduce the
classical pressure and first quantum correction.

I Replacing sum by Gaussian integral fails for z > 2 log N
(very low T ). But sum simplifies here to a modified Bessel
function series, so

Z (z) ' I0(2Ne−
1
2 z) ' 1 + N2e−z .



I The free energy at very low T is therefore

F = −T log Z ' −TN2e−z .

Curiously, F is not extensive (proportional to N), but
proportional to N2. Pressure P proportional to N at fixed
density, and exponentially small.

I These results suggest that quantum mechanical vortices
behave like bosons in this model.

I Evidence: (a) Leading high-T quantum correction reduces
the classical pressure; (b) pressure is very small at very
low T .



Scaled pressure for large and very large z



Scaled pressure against scaled temperature; T0 corresponds to
z = 5



5. Conclusions

I Classical statistical mechanics of (critically-coupled)
Abelian Higgs vortices exactly solvable, despite vortex
interactions.

I Classical equation of state has been extended to include
first quantum correction at high temperature T .

I Calculations use exact results for volume and total scalar
curvature of N-vortex moduli space.

I For dissolving vortices, moduli space metric simplifies to
Fubini–Study. Exact quantum energy spectrum known, so
partition function calculated for all T . Asymptotic formulae
found for pressure of vortex gas at high, intermediate to
low, and very low T .


