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Proper actions Definition of a proper action

Definition

An action of a topological (Hausdorff) group G on a locally
compact Hausdorff space M is called proper if
Gs = {g ∈ G | gS ∩ S 6= ∅} is compact for every compact S ⊂ M.

Equivalently an action of G on M is proper if the map

G ×M → M ×M, (g,m) 7→ (m,gm)

is a proper map (that is, a pre-image of any compact set is
compact).

Example

The action of a Lie group G on itself (by left multiplication) is
proper.
The conjugation action of a non-compact Lie group on
itself is not proper.



Proper actions Clifford-Klein forms

Let G be a (semisimple) Lie group, H ⊂ G a closed (reductive)
connected subgroup and Γ ⊂ G a discrete subgroup.

Definition

The space Γ\G/H is called a Clifford-Klein form if Γ acts properly
and freely on G/H. If Γ\G/H is compact then it is called a
compact Clifford-Klein form.

We also say that Γ is a Clifford-Klein form for G/H and that G/H
admits a compact Clifford-Klein form. If Γ\G/H is compact then
we also say that G/H admits a tessellation. Notice that the
assumption that Γ acts freely on G/H is not very significant.

Questions:

Q1 When does a “large” discrete subgroup of G act on a
homogeneous space G/H properly?

Q2 When does the homogeneous space G/H admit a
compact Clifford-Klein form?



Proper actions Clifford-Klein forms

(M, J)- a smooth manifold with a geometric structure J,

M̃- the universal covering of M

p : M̃ → M, õ ∈ M̃

G := Aut(M̃, J), H := {g ∈ G | gõ = õ} Γ := π1(M,o) (o := p(õ))

In this case Γ ⊂ G and

Theorem

Assume that G is a Lie group and acts transitively on M̃. Then M
is diffeomorphic to Γ\G/H.



Proper actions Clifford-Klein forms

When (M, J) is a pseudo-Riemannian manifold then the group
G is a Lie group. If it acts transitively on M then M ∼= Γ\G/H.

A space form is a pseudo-Riemannian manifold M with
constant sectional curvature. A complete space form of
signature (p,q),p ≥ 2 with a constant positive sectional
curvature κ is a Clifford-Klein form of the symmetric space

O(p + 1,q)/O(p,q)

Theorem (Kulkarni)

If p,q are odd then there is no compact Clifford-Klein form of
O(p + 1,q)/O(p,q).
There exist compact complete pseudo-Riemannian space
forms of signature (3, 4n).

Idea of the proof: find a connected group (with a co-compact
lattice) in SO(4, 4n) that acts properly and co-compactly on
O(4, 4n)/O(3, 4n).
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Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Let

G be a connected linear semisimple real Lie group with the
Lie algebra g.

H, L be connected reductive subgroups of G,

θ be a Cartan involution of g and g = k + p be the Cartan
decomposition w.r.t. θ.

We may assume that θ|h and θ|l are Cartan involutions of h, l,
respectively. Thus we have compatible decompositions

h = kh + ph, l = kl + pl .



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Choose a maximal abelian subspace a ⊂ p.

Definition

The real rank of a Lie algebra g (denoted rankRg) is the
dimension of a.

Denote by K the maximal compact subgroup of G with the Lie
algebra k. Let W := NK (a)/ZK (a) be the Weyl group of G.



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Denote by ah, al the maximal abelian subspaces of ph and pl ,
respectively. We may assume that ah, al ⊂ a.

Theorem (Kobayashi)

The following conditions are equivalent
(i) H acts on G/L properly,
(ii) L acts on G/H properly,
(iii) ah ∩Wal = {0}.
Moreover, the subgroup L acts properly on G/H only if

rankR(l) + rankR(h) ≤ rankR(g).



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Example

The one sheeted hyperboloid SL(2,R)/SO(1, 1) admits only finite
Clifford-Klein forms.



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Idea: find a reductive subgroup L of G that acts properly and
co-compactly on G/H and take a co-compact lattice Γ ⊂ L.
Kobayashi gave the following list of triples (g, h, l) of Lie algebras
generating compact Clifford-Klein forms:

(su(2, 2n), sp(1,n), u(1, 2n))

(so(2, 2n), so(1, 2n), u(1,n))

(so(4, 4n), so(3, 4n), sp(1,n))

(so(4, 3), so(4, 1), g2)

(so(8, 8), so(7, 8), so(1, 8))

Surprisingly, these are the only known examples of
homogeneous spaces admitting compact Clifford-Klein forms
(with g real, absolutely simple and h simple of non-compact
type).



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Described examples can be obtain in the following way.
Assume that

G = HL and H ∩ L is compact.

Then
G/H ∼= L/(H ∩ L)

so L (and any closed subgroup of L) acts properly on G/H.
Therefore any co-compact lattice of L is a compact
Clifford-Klein form of G/H.

Definition

A compact Clifford-Klein such that Γ ⊂ L is called standard.

Classification of all triples (g, h, l), g-simple, h, l-semisimple, such
that g = h + l was obtained by Onishchik [9].



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

Conjecture (Kobayashi)

If G/H admits a compact Clifford-Klein form then it admits a
standard compact Clifford-Klein form.

But not all compact Clifford-Klein forms are standard:

Kassel, Kobayashi, Salein: Deformations of standard
Clifford-Klein forms (e.g. SO(2, 2n)/SO(1, 2n)).

Monclair, Schlenker, Tholozan: Exotic compact Clifford-Klein
forms of O(2, 2n)/U(1,n).

Problem: classify standard Clifford-Klein forms.



Kobayashi’s criterion for proper actions and standard compact
Clifford-Klein forms

In recent years the following results concerning standard
compact Clifford-Klein forms were obtained.

Theorem (Tojo [11])

Let G/H be a non-compact irreducible simple symmetric space
which admits a standard compact Clifford-Klein form. Then
g = h + l.

Theorem ([1])

Let G/H be a non-compact reductive homogeneous space of
a real linear simple exceptional Lie group G. Then G/H admits a
standard compact Clifford-Klein form if and only if H is
compact.
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Structural constrains on (g, h, l)

Assume that (g, h, l) corresponds to a standard compact
Clifford-Klein form (i.e. L acts properly and co-compactly on
G/H). Moreover assume that G is absolutely simple and
non-compact, H, L are reductive.

Idea

If g = h + l then (g, h, l) is contained in [9] .

If g 6= h + l then there exists 0 6= X ∈ g which is orthogonal
(w.r.t. the Killing form of g) to h + l. Using X one can obtain
structural restrictions on h and l.



Structural constrains on (g, h, l)

Recall that a ⊂ p denotes a maximal abelian subspace and let
m0 be the centralizer of a in k. Choose a maximal Cartan
subalgebra t in m0. Let Σ ⊂ a∗ be the real root system of g
determined by a. The subalgebra jc = (t + a)c is a Cartan
subalgebra of gc so we can take the corresponding root system
∆ of gc. Without loss of generality we assume that ah, al ⊂ a
(denote by Σh, Σl be the real root systems of h and l,
respectively). For any γ ∈ Σ we denote by gγ the corresponding
root space and by gc

γ its complexification.

Let
g = k + a + n, h = kh + ah + nh, l = kl + al + nl .

be the compatible Iwasawa decompositions.



Structural constrains on (g, h, l)

Assume that 0 6= X ∈ t. Define

∆m = {αc ∈ ∆ |αc|a = 0},

∆+
m = ∆+ \∆m,∆

−
m = ∆− \∆m,

∆p = {αc ∈ ∆+
m |αc(iX) > 0}, ∆n = {αc ∈ ∆+

m |αc(iX) < 0},

∆−p = {αc ∈ ∆−m |αc(iX) > 0}, ∆−n = {αc ∈ ∆−m |αc(iX) < 0},

∆0 = {αc ∈ ∆+
m |αc(iX) = 0}, ∆−0 = {αc ∈ ∆−m |αc(iX) = 0}.



Structural constrains on (g, h, l)

Proposition

Assume that (G,H′, L′) is a standard triple. Then there is an
equivalent standard triple (G,H, L) (H, L-semisimple) such that

n = nh ⊕ nl .

Let
Z =

∑
αc∈∆p∪∆n

gαc ⊂ nc.

Let π : nc =
∑
αc∈∆+

m
gαc → Z be the natural projection, put

Zh = π(nc
h), Zl = π(nc

l ).



Structural constrains on (g, h, l)

Theorem

Assume that g 6= h + l so there exists a non-zero X ∈ t such that X
is orthogonal to h + l. We have the following:

1 There exists a basis of Zh of the form

S i
h = xαi +

k∑
l=1

ai
k+lxαk+l ,a

i
k+l ∈ C, αi ∈ ∆p, αk+l ∈ ∆n.

2 For any S i
h ∈ Zh αi |ah ∈ Σh.

3 Each complexified real root space hc
γ is spanned by vectors

of the form

S i1
h + Q1, ..., S

is
h + Qs,Qs+1, ...,Qs+w , s + w = dim hc

γ ,

where αi1 , ..., αis are all roots from ∆p whose restrictions onto
ah coincide with γ, while all Qj satisfy the conditions

Qj ∈
∑

αc∈∆0, αc|ah
=γ

gαc .



Structural constrains on (g, h, l)

We say that h is a regular subalgebra of g if a normalizes h. We
say that h is a proper regular subalgebra of g if
rankR(h) < rankR(g). Analogously to Dynkin we say that a real
semisimple subalgebra h ⊂ g is a (proper) real R-regular
subalgebra, if it is contained in a (proper) regular subalgebra
(notice that all semisimple Lie subalgebras in a simple complex
Lie algebra also fall into two classes: R-regular and
S-subalgebras, according to Dynkin). The previous theorem fully
settles the case of real R-regular subalgebras.

Theorem

If h is a proper real R-regular subalgebra in g (of non-compact
type), then no G/H admits a compact Clifford-Klein form.

Theorem

If g is a simple split Lie algebra, then (g, h) determines a
standard compact Clifford-Klein form if and only if there exists a
semisimple Lie algebra l ⊂ g such that g = h + l.



Structural constrains on (g, h, l)

Corollary

Let G be a linear connected Lie group whose Lie algebra is one
of the following

sl(n,R), n > 1, so(n,n), n = 3, 5, 7,n > 9,

so(n,n + 1), n = 2,n > 3, sp(n,R), n > 1.

Choose any reductive subgroup H ⊂ G such that G/H is
non-compact. Then G/H admits a standard compact
Clifford-Klein form if and only if H is compact.

Corollary

Let G be a linear connected Lie group whose Lie algebra is
su(n,m), m ≥ n > 2, (so(n,m), m + 1 > n > 8). Let H ⊂ G be a
reductive subgroup whose Lie algebra is a subalgebra of a
proper regular subalgebra su(n− 1,m− 1) (so(n− 1,m− 1))
such that G/H is non-compact. Then G/H admits a standard
compact Clifford-Klein form if and only if H is compact.
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