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Ultrarelativistic heavy-ion collisions
• RHIC, BNL – Au-Au @ 200 GeV/nucleon (highest energy) à T0 ∼ 400 MeV
• LHC, CERN – Pb-Pb @ 2.76 TeV à T0 ∼ 600 MeV
• LHC, CERN – Pb-Pb @ 5.03 TeV à T0 ∼ 700 MeV
• RHIC, BNL BES – Au-Au @ 7.7 - 39 GeV à T0 ∼ 30-100 MeV  [+finite density]
• FAiR (GSI), NICA (Dubna) – U-U @ 35 GeV -> T0 ∼ 100 MeV  [+finite density]

200 MeV à 2 x 1012 K

~ 
10

-1
4

m

Entire event lasts 
~ 10 fm/c which is 
~ 3 x 10-23 s !!!
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Entire event lasts 
~ 10 fm/c which is 
~ 3 x 10-23 s !!!

Animation, B. Schenke et al
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Ideal Hydro Shear only (h/s = 0.2) Shear + Bulk

D. Bazow, U. Heinz, and MS, 1608.06577
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Pb-Pb @ 2.76 TeV - Don’t worry, be happy?

200 MeV

155 MeV

Constant h/s and z /s

200 MeV

155 MeV 155 MeV

200 MeV

Shear and bulk Inverse Reynolds Numbers

Tµ⌫ = Tµ⌫
ideal +⇧µ⌫

viscous stress tensor

Pb-Pb @ 2.76 TeV
Central collision
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p-A @ 2.76 TeV - Don’t be happy, worry!
Figure (sans emoticons):  H. Niemi and G. Denicol, 1404.7327 • Large gradients 

(Knudsen #) induce 
non-equilibrium 
deviations (measured 
by inverse Reynolds #)

• Evolution equations 
truncated at fixed order 
in these quantities à
potential inaccuracy 

• System has short 
lifetime à distribution 
function still far from 
equilibrium at freeze 
out
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• In small systems, no.

• Short lifetime + large viscous 
corrections at freezeout à large 
𝜹𝒇 corrections on freeze-out 
hypersurface

• As a result, simulations suffer from 
negative effective pressures and f
in a large hypervolume.

• Groups deal with this differently.  
SONIC, for example, uses an 
“exponentiation method” 
introduced by Pratt and Torrieri in 
PRC 82, 044901 (2010) to prevent 
𝑓 < 0 on the switching surface 
(still large correction).

Are the viscous corrections under control?

H. Mäntysaari, B. Schenke, C.Shen, P. Tribedy, PLB 772, 681 (2017)

Positivity 
violation!

p-Pb with IP-Glasma + MUSIC + URQMD
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Practical goals
Improved hydrodynamic treatments in far from 
equilibrium systems:

• Can we construct hydrodynamic frameworks that more 
accurately describe QCD thermalization and apply 
them to phenomenology? ** more computationally efficient 
than doing 3+1d kinetic theory simulations and can be extended across 
the phase boundary using a realistic equation of state

• Is there an attractor for the one-particle distribution 
function using QCD effective kinetic theory (EKT) à
improved description at freezeout?

• Today, I will present progress towards these goals
M. Strickland 11



The
non-equilibrium 

attractor
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• Keep it simple:  Bjorken 0+1d dynamics.
• Solve dynamical equations for different 

initial conditions and different values of the 
shear viscosity (gray vs blue)

• Hints of universal behavior at late times 
visible (similar levels of momentum 
anisotropy) 

𝜂/s = 1

𝜂/s = 0.2 
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𝜂/s = 1

𝜂/s = 0.2 

Collapsing the data to the attractor

Heller and Spalinski, 1503.07514
Heller, Kurkela, Spalinski, Svensson 1609.04803

= Inverse Knudsen #
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aHydro attractor

NS

Numerical solution
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The attractor concept
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Ideal hydro (EQ)

<latexit sha1_base64="(null)">(null)</latexit>

First Order Hydro

Attractor         

𝒘 t

1 0.5 fm/c

2 1.3 fm/c

5 4.9 fm/c

10 13.5 fm/c

= Inverse Knudsen #

Assuming 𝜂/s = 0.2 and T0 = 500 MeV 

MS, Noronha, and Denicol, 1709.06644
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aHydro attractor

NS

Numerical solution
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Can be used to test hydro approximations!

exact RTA

aHydro

DNMR

MIS

NS

0.05 0.10 0.50 1 5 10

0.70
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0.80

w

�

Strickland, Noronha, and Denicol, 1709.06644

LO order aHydro2nd order vHydro

• Can compare exact RTA 
result to different hydro 
frameworks

• In each case one has to
solve a 1d ODE subject 
to a self-consistent 
boundary condition

• aHydro performs the 
best because it 
“resums” an infinite # 
of terms in Re-1

Heller and Spalinski Strickland, Noronha, and Denicol

M. Strickland 17



D. Almaalol and MS, 1801.10173

(matched teq)

3d

2d

C[f ] =
pµuµ

⌧eq


feq

⇣
pµu

µ, T (x)
⌘
� f(x, p)

�

Early time behavior sensitive to the model
Kurkela, van der Scheee, Wiedemann, and Wu 1907.08101

• Top three panels shown are Mueller-Israel-
Stewart (MIS), RTA, and AdS/CFT evolution

• RTA has positive PL at all times; MIS and 
AdS/CFT have negative PL at early times.

• Early time AdS/CFT attractor sensitive to 
details of the initial conditions (two-body 
correlations in particular)

• Left panel shows comparison of the 
attractor for RTA and a scalar QFT 
with/without quantum statistics
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Beyond hydrodynamics?
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Beyond hydrodynamics?
• Can the concept of a non-equilibrium attractor be 

extended beyond the 14 degrees of freedom described 
using the energy-momentum tensor, number density, 
and diffusion current?

• In kinetic theory we describe things in terms of a one-
particle distribution function f(x,p) and the energy-
momentum tensor is obtained from low-order moments:

• What about more general moments of f?  Particularly 
ones that are sensitive to higher momenta?

Tµ⌫ =

Z
dP pµp⌫f(x, p)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MS, JHEP2018, 128; 1809.01200
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Beyond hydrodynamics?
• For a conformal system it suffices to consider

• This encompasses the moments necessary to construct the 
energy momentum tensor, e.g. below, and more

Mnm[f ] ⌘
Z

dP (p · u)n (p · z)2m f(x, p)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MS, JHEP2018, 128; 1809.01200
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• Simple model:  Boost-invariant, transversally homogeneous 
Boltzmann equation in relaxation time approximation (RTA).

• Many results in this model, so we can compare with the literature.

pµ@µf(x, p) = C[f(x, p)]Boltzmann EQ:

RTA: C[f ] =
pµuµ

⌧eq


feq

⇣
pµu

µ, T (x)
⌘
� f(x, p)

�

Solution:

Massless Particles
W. Florkowski, R. Ryblewski, and MS,
1304.0665 and 1305.7234

Massive Particles
W. Florkowski, E. Maksymiuk, 
R. Ryblewski, and MS, 1402.7348 

Bjorken Expansion: Exact RTA Solution

D(⌧2, ⌧1) = exp


�
Z ⌧2

⌧1

d⌧ ⌧�1
eq (⌧)

�
⌧eq(⌧) =

5⌘̄

T (⌧)

Time-
dependent
relaxation time

Damping 
Function
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Uses exact solution to RTA Boltzmann eq
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The attractor
for the distribution 

function itself
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RTA attractor for the distribution function
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MS, JHEP2018, 128; 1809.01200
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Comparison of exact 
attractor for moments with 

different hydrodynamics 
approximations
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QCD?
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Evidence for a QCD EKT attractor
• Numerical implementation of pure glue AMY effective kinetic theory (EKT)
• Includes elastic gluon scattering and inelastic gluon splitting with LPM 

suppression and detailed balance.
• We use the “pure glue” EKT code of Kurkela and Zhu PRL 115, 182301 (2015).
• 250 x 2000 x 1 grid in momentum space (Np x Nq x Nf)

D. Almaalol, A. Kurkela, and MS, Phys. Rev. Lett. 125, 122302 (2020).

EKT QCDRTA

l = 10
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Evidence for a QCD EKT forward attractor

t/tR t

0.2 0.32 fm/c

0.5 0.86 fm/c

1 1.88 fm/c

2 4.23 fm/c

5 14.1 fm/c

10 38.5 fm/c

D. Almaalol, A. Kurkela, and MS, Phys. Rev. Lett. 125, 122302 (2020).
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Evidence for a QCD EKT pullback attractor

t/tR t

0.2 0.32 fm/c

0.5 0.86 fm/c

1 1.88 fm/c

2 4.23 fm/c

5 14.1 fm/c

10 38.5 fm/c

D. Almaalol, A. Kurkela, and MS, Phys. Rev. Lett. 125, 122302 (2020).
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Varying initial anisotropy and t0
• Attractor seen in all 

moments and is the 
same for both types 
of initial conditions.

• For low order 
moments EKT QCD is 
closer to EQ than 
RTA and hydro 
predictions.

• For high order 
moments the 
opposite is true.

• Hydrodynamization 
is only one corner of 
a much bigger 
picture

EKT evolution (RS)
EKT evolution (CGC)
RTA attractor
vHydro attractor (i)
vHydro attractor (ii)
aHydro attractor
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D. Almaalol, A. Kurkela, and MS, Phys. Rev. Lett. 125, 122302 (2020).
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Varying initial anisotropy and t0
• Attractor seen in all 

moments and is the 
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of initial conditions.
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Varying initial anisotropy and t0
• Attractor seen in all 

moments and is the 
same for both types 
of initial conditions.

• For low order 
moments EKT QCD is 
closer to EQ than 
RTA and hydro 
predictions.

• For high order 
moments the 
opposite is true.

• Hydrodynamization 
is only one corner of 
a much bigger 
picture

EKT evolution (RS)
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aHydro attractor
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Varying initial anisotropy and t0
• Attractor seen in all 

moments and is the 
same for both types 
of initial conditions.

• For low order 
moments EKT QCD is 
closer to EQ than 
RTA and hydro 
predictions.

• For high order 
moments the 
opposite is true.

• Hydrodynamization 
is only one corner of 
a much bigger 
picture
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What can we learn from this for 
heavy-ion phenomenology?

• Can use the EKT QCD attractor to assess how well different freeze-out prescriptions 
fare in trying to reproduce the entire distribution function. 

i. Quadratic approx. which results from a 
wide set of models including RTA with 
momentum-independent relaxation time, 
momentum diffusion approximation, 
scalar field theory, etc.

ii. LPM-improved version from Dusling, 
Moore, and Teaney nucl-th/0909.0754.

iii. The aHydro “non-perturbative” form.
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EKT solution
aHydro freeze-out
vHydro freeze-out (i)
vHydro freeze-out (ii)
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• In all three cases, we fix the independent parameter, P or x, by matching to the 
scaled longitudinal pressure ( #𝑀01) obtained along the EKT attractor.

• Once we match the pressure at every proper time, we then use the ansatz to make 
predicts for the higher order moments.

• Three examples are shown below. In the paper we presented similar results for all
moments considered!

What can we learn from this for 
heavy-ion phenomenology?

D. Almaalol, A. Kurkela, and MS, Phys. Rev. Lett. 125, 122302 (2020).
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Non-equilibrium attractor with quarks
D. Almaalol, A. Mazeliauskas, and MS, forthcoming
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Preliminary results obtained using a “small” lattice
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Conclusions I
• Attractor for low-order moments well-

approximated by hydro but system is not in 
equilibrium à hydrodynamization instead of 
thermalization

• RTA and EKT higher-order moments poorly 
described by standard viscous hydrodynamics

• There is, however, a fast convergence to a non-
equilibrium attractor for higher moments à
“pseudo-thermalization” instead of 
hydrodynamization
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Conclusions II
• Like RTA, EKT QCD has a “beyond hydrodynamics” 

attractor

• For EKT, we considered two types of initial conditions

• Evidence presented for existence of early-time 
(“pullback”) attractor for EKT QCD.  

• Collapse occurs in all moments measured

• Can we use properties of EKT attractor to improve 
hydro and freeze-out?  

• Yes, collaboration with Chun Shen (Wayne State) and 
Qianqian Du (Kent State/Wuhan) to use aHydro type
freezeout in MUSIC.  Results coming soon.
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Attractor exists in many theories
rBRSSS Viscous Hydro Exact RTA Boltzmann EQ Sol AdS/CFT

Romatschke, 1704.08699

Florkowski, Ryblewski, and MS 1304.0665; 1305.7234Baier, Romatschke,  Son, Starinets, and Stephanov

�2
PL + PT

PL + 2PT
�! �4/3 (ideal fluid)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Quantity plotted is

�! �1 (2d fluid)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

3d

2d
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• Simple model:  Boost-invariant, transversally homogeneous 
Boltzmann equation in relaxation time approximation (RTA).

• Many results in this model, so we can compare with the literature.

pµ@µf(x, p) = C[f(x, p)]Boltzmann EQ:

RTA: C[f ] =
pµuµ

⌧eq


feq

⇣
pµu

µ, T (x)
⌘
� f(x, p)

�

Solution:

Massless Particles
W. Florkowski, R. Ryblewski, and MS,
1304.0665 and 1305.7234

Massive Particles
W. Florkowski, E. Maksymiuk, 
R. Ryblewski, and MS, 1402.7348 

Bjorken Expansion: Exact RTA Solution

D(⌧2, ⌧1) = exp


�
Z ⌧2

⌧1

d⌧ ⌧�1
eq (⌧)

�
⌧eq(⌧) =

5⌘̄

T (⌧)

Time-
dependent
relaxation time

Damping 
Function
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0+1d RTA Exact Solution

Once this integral equation is solved (by numerical iteration), we can construct the full 
one-particle distribution function f(t,p) and we can compute general moments:

• GPL’d CUDA code:
personal.kent.edu/~mstrick6/code

• Computes all moments and the full 
distribution function 

• CUDA enables computationon very 
fine grids (N_tau ~ 4000, N_pt, 
N_pz ~ 500, 500). 

M. Strickland 46



How does one obtain the attractor?
• Let’s look at hydrodynamics-like theories for simplicity (e.g. 

MIS, DNMR, aHydro, etc.)

• Start with the 0+1d energy conservation equation

• Change variables to 
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How does one obtain the attractor?
• Need the evolution equation for the viscous correction.

• To linear order in the shear correction (e.g. MIS, DNMR) one 
has

• Plugging this into the energy-momentum conservation 
equation gives
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How does one solve for the attractor?

• First try to approximate using “slow-roll” approx (            )

• From this, we can read off the boundary condition as

• Then numerically solve the ODE at the top of the slide

M. Strickland 49



Identified particle spectra
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Pb-Pb vs Hydro: Charged particle multiplicities
Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191
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Pb-Pb vs Hydro: Charged particle multiplicities
Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191
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How do hydro models work in practice?
• First, we must specify initial conditions for the energy density profile, viscous 

corrections (Pµn), and fluid flow velocity vector in the full 3d volume.

• One then numerically solves the viscous hydro differential equations numerically 
using an advanced PDE solver.  14 DOF are canonically: n, Tµn, ui

• From the full 4d profile, one then extracts a 
3-surface called the freeze-out hypersurface S

aka “Cooper-Frye freeze-out”. Canonically, one
takes constant energy density surface.  
Importantly, we need a form for fi on S.

• This gives the “primordial spectra” which are 
then fed into a separate hadronic code which takes care of resonance 
feed-down, hadronic re-scattering, etc.

1+1 example Eqs
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Ideal Hydro Shear only (h/s = 0.2) Shear + Bulk

• Variety of initial conditions (ICs) 
on the market.  For simplicity, 
here I only discuss Monte-Carlo 
Glauber IC.

• Top shows animation of 
sampling # of participants in a 
central collision (b = 0 fm).

• Left shows a set of fluctuating 
initial conditions for b = 8 fm.
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QGP momentum anisotropy cartoon

or
In

cr
ea

sin
g 

En
er

gy
 d

en
sit

y

De
cr

ea
sin

g 
sh

ea
r v

isc
os

ity

M. Strickland 57


