Congruent Numbers

A right triangle is called rational when its legs and hypotenuse are all rational numbers (Examples of rational right triangles include Pythagorean triples like $(3,4,5)$).

Definition(Congruent number): A positive rational number n is called a congruent number if there is a rational right triangle with area n : there are rational $a, b, c>0$ such that $a^{2}+b^{2}=c^{2}$ and $(1 / 2) a b=n$.

The congruent number problem makes its earliest appearance in an Arab manuscript traced to the tenth century and around 1000 years old.

1 Recall of Pythagoreal triples

Definition 1.1 Let X, Y, and Z be rational numbers. We say (X, Y, Z) is a Pythagorean triple if $X^{2}+Y^{2}=Z^{2}$. If $X, Y, Z \in \mathbb{Z}$ and $\operatorname{gcd}(X, Y, Z)=1$ we say (X, Y, Z) is a primitive Pythagorean triple.

Remark 1.2 Why!
Let (X, Y, Z) be a primitive Pythagorean triple. Then there exists $m, n \in \mathbb{N}$ so that $X=2 m n$, $Y=m^{2}-n^{2}$ and $Z=m^{2}+n^{2}$. Conversely, any $m, n \in \mathbb{N}$ with $m>n$ define a right triangle.

This remark allows us to construct as many congruent numbers as we want. Namely, for any $m, n \in \mathbb{N}$ we have that $N=\frac{1}{2}(2 m n)\left(m^{2}-n^{2}\right)$ is a congruent number. Following table is an example:

. Congruent numbers from Pythagorean triples

m	n	X	Y	Z	N
2	1	4	3	5	6
3	1	6	8	10	24
3	2	12	5	13	30
4	1	8	15	17	60
4	3	24	7	25	84
4	2	16	12	20	96
5	1	10	24	26	120
5	4	40	9	41	180

We would like to deal with the cases of rational right triangles also. Given a right triangle with integer sides X, Y, and Z and congruent number $N=a^{2} N_{0}$, we can form a right triangle with rational sides and congruent number N_{0} by merely dividing X and Y by a.

Remark 1.3 Why!
Enough to study positive integers that are square-free.
Using this simple technique, one can find the following table with rational sides:

Congruent numbers from rational right triangles

X	Y	Z	N
$3 / 2$	$20 / 3$	$41 / 6$	5
$4 / 9$	$7 / 4$	$65 / 36$	14
4	$15 / 2$	$17 / 2$	15
$7 / 2$	12	$25 / 2$	21
4	$17 / 36$	$145 / 36$	34

Using the method described thus far, if we cannot find a triangle with area N, it does not mean N is not congruent. It may just be that we have not looked hard enough to find the triangle. For example, the integer 157 is a congruent number with sides $X=\frac{6803298487826435051217540}{411340519227716149383203}$ and $Y=\frac{411340519227716149383203}{21666555693714761309610}$.

2 Questions

Question 2.1 The number 1 is not congruent.

Question 2.2 A number n is congruent if and only if there exists a rational number a such that $a^{2}+n$ and $a^{2}-n$ are both squares of rational numbers.

Question 2.3 (BONUS)
i) Using 1 is not congruent, prove that $\sqrt{2}$ is irrational.
ii) If there are non-zero integers X, Y, Z such that $X^{4}-Y^{4}=Z^{2}$, then 1 is a congruent number. In other words, Fermat's last theorem is true for $n=4$ (using previous questions).

