Math Circle Explorations
 IISER Mohali

October 20, 2023

Problem 1. Let n be a positive integer. Suppose we are given a set \mathcal{S} of n points in the plane. We assume that these points are not collinear. Let us consider the set \mathcal{L} of all the lines that contain two or more points of \mathcal{S}. We will investigate various questions regarding this set of lines.
(a) A line in \mathcal{L} is said to be ordinary if it contains only two of the points of \mathcal{S}. Prove that there exists at least one ordinary line.
(b) Obtain a lower bound for the number of lines in \mathcal{L}.
(c) Obtain a lower bound for the number of ordinary lines in \mathcal{L}.
(d) Two lines have the same slopes if they are parallel. How many different slopes do the lines of \mathcal{L} determine? Clearly the answer depends on our choice of \mathcal{S}. Can we find a lower bound on the number of slopes for various choices of \mathcal{S}. (Note that \mathcal{S} is subject to the restriction that the points of \mathcal{S} are not all collinear.)

For example, it is easy to see that if $n=3$, then for any choice of \mathcal{S}, there are at least 3 slopes.
If $n=4$, there exists a configuration with four slopes. For example, in the following configuration we we have the following grouping of lines according to slope: $\{A B, C D\},\{A C, B D\},\{A D\}$ and $\{B C\}$.

Can you show that you will at least find 4 slopes if $n=4$?
If $n=5$, there exists a configuration with four slopes. For example, in the following configuration we we have the following grouping of lines according to slope: $\{A B, C D\},\{A C, B D\},\{A D\}$ and $\{B C\}$.

Again, can you show that you will find at least 4 slopes if $n=5$? (This is actually obvious if you solved the case $n=4$ above!)
If $n=6$, consider the configuration of vertices of a regular hexagon. Verify that there are 6 slopes in this configuration.

If $n=7$, consider the configuration consisting of the six vertices of a regular hexagon and its center. Verify that this configuration has 6 slopes.

Can you formulate a formula or at least a lower bound for the minimum number of slopes in terms of n ?

Problem 2.

(a) Let us begin with a rectangular card (say of credit card size, which is 5×8 in centimeters, approximately) whose one side is black and other white. An identity card is made from the same by punching small holes (say of diameter 1) in a corner touching two sides of the card. ${ }^{1}$

- How many different identity cards can you make if you are allowed to punch any number of such holes (maximum four holes are possible if there were four corners)?
- What if the card was square (say 3×3) to begin with?
- What if we are also allowed to punch a hole at the midpoint of each edge?
- What if we are also allowed a punch a hole right at the centre?
- What if the card was black on both sides to begin with?
(b) Let us try to find some "formulae" instead. Instead of beginning with a card which is square, let us begin with a card which is shaped as a regular n-gon, each edge being of size 3. It is still black on one side, white on another. We can make id cards, as before, by punching a small hole (diameter 1) in the corner which touches two of the sides. If one is allowed to punch an arbitrary number of holes (maximum n such holes are possible), how many such id cards are possible? Give this in terms of n.
(c) What is the corresponding formulae when the card has both sides black?

[^0]
[^0]: ${ }^{1}$ The exact size is not important in this problem, just the relative orientation is.

