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Many-body localization edge in the random-field Heisenberg chain
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.

DOI: 10.1103/PhysRevB.91.081103 PACS number(s): 75.10.Pq, 05.30.Rt, 72.15.Rn

Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density

*luitz@irsamc.ups-tlse.fr
†laflo@irsamc.ups-tlse.fr
‡alet@irsamc.ups-tlse.fr

in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ϵ) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 ≃ 1) is separated from the localized regime (bright region with
a1 ≪ 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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What happens we start with a mobility edge  (or 
delocalized single-particle (SP) states)?

System with protected delocalized SP 
state(s) 
→ Delocalization of all SP states
Nandkishore & Potter, PRB (2015); Potter & 
Vasseur, PRB (2016); SB & Altman, PRL (2016);
.......

Generalized Aubry-Andre-Harper (GAAH) 
models
→ MBL can exist even with mobility edge
Ganeshan et al., PRL (2015); 
Modak & Mukerjee, PRL (2015); 
Nag and Garg, PRB (2017); 
Ghosh et al., PRB (2020);......
*Pomata et al. (2020) 

Ganeshan et al., PRL (2015)

→ States intermediate between MBL
and ergodic          

Non-ergodic extended (NEE) states

DIAGNOSTICS OF NONERGODIC EXTENDED STATES AND … PHYSICAL REVIEW B 107, 115155 (2023)

TABLE I. Classification of MBL, NEE, and ergodic phases in the GAAH model based on various real-space and Fock-space diagnostics.
Here L and NF are the number of sites on the real-space and Fock-space lattices, respectively.

that we have robust ergodic (h = 0.6, E = 0), NEE (h = 0.6,
E = −0.49), and MBL (h = 1.8, E = −0.49) states, i.e., we
are deep within the phases. We also look at another combi-
nation, h = 0.6, E = −0.66, which should correspond to the
MBL phase based on previous studies [55]. However, as we
discuss later, we find that states for this parameter do not show
very clear-cut MBL behaviors; they appear MBL-like in some
diagnostics and NEE-like in others. Below we briefly describe
the classification of the phases based on these diagnostics. A
summary can be found in Table I.

Half-chain entanglement entropy SA. The entanglement
entropy is obtained as SA = −Tr(ρA ln ρA) from the reduced

FIG. 1. Standard diagnostics for MBL, NEE, and ergodic phases:
(a) the half-chain (A) entanglement entropy SA, (b) subsytem particle
number fluctuations (variance) δ2NA, and (c) energy level-spacing
ratio r as function of L in the three phases, ergodic (h = 0.6, E = 0),
NEE (h = 0.6, E = −0.49), and MBL (h = 1.8, E = −0.49). (d) r
as a function of E for increasing L for h = 0.6.

density matrix ρA = TrB(ρ) for the pure-state density
matrix, ρ = |#E⟩ ⟨#E |. Here |#E⟩ is a many-body eigenstate
at an energy density E . As shown in Fig. 1(a), SA increases
with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
system-size dependence of bipartite entanglement can tell
MBL and the extended states apart, NEE and ergodic phases
cannot be distinguished easily based on this diagnostic. Er-
godic eigenstates have a thermal volume-law entanglement,
i.e., SA ≃ sth(E )L/2, with sth(E ) thermal entropy per site at
energy density E , for large L. NEE states, on the other hand,
are expected to exhibit [53,75] a subthermal volume-law en-
tanglement entropy, i.e., the coefficient of linear L dependence
less than sth(E ). However, this distinction might be hard to
verify for the limited system sizes accessed in ED [53].

Subsystem particle number variance. δ2NA measures
fluctuations of total number of particles N̂A =

∑L/2
i=1 ni in

the subsystem A compared to the average number NA =∑L/2
i=1 ⟨#E | ni |#E⟩ at an energy density E . As shown in

Fig. 1(b), δ2NA decreases with L in the ergodic phase, as
expected from ETH [30–33], while it increases and then tends
to saturate with L in MBL and the NEE phases [55]. As a
result, this quantity can differentiate the ergodic states from
nonergodic states.

Level-spacing ratio. The level-spacing ratio [5,76] ri =
min(si, si+1)/ max(si, si+1) is obtained from si = Ei+1 − Ei
with Ei’s being the many-body energy eigenvalues arranged
in ascending order. We compute the arithmetic mean of ri to
obtain the average level-spacing ratio r(E ) at energy density
E . The ergodic phase can be identified with the gaussian-
orthogonal ensemble (GOE) value r ≃ 0.528 and the MBL
phase with the Poissonian value r ≃ 0.386. In Fig. 1(c), r
approaches GOE and Poissonian values with increasing L for
the ergodic and MBL phases, respectively, whereas r tends to
an intermediate value for the NEE phase. We also discuss the
level-spacing distribution in the three phases in Appendix A.

115155-3



How non-ergodic states are realized with SP mobility 
edge? 
MBL proximity effect       Nandkishore, PRB (2015)

Delocalized SP states get
localized by coupling with
localized states

HYATT, GARRISON, POTTER, AND BAUER PHYSICAL REVIEW B 95, 035132 (2017)

FIG. 1. Schematic illustration of our setup. Here, the disorder
potential only acts on the lower chain of the ladder (α = d), whereas
the fermions in the upper chain are affected by the disorder only
through the interactions. The fermions, indicated as red dots, hop
along each chain, and interact only through a repulsive density-density
interaction on each rung.

In this paper, we investigate these questions by numerically
and analytically studying a model for spinless fermions on a
ladder, as sketched in Fig. 1. We introduce an uncorrelated
disorder potential on one chain of the ladder, while keeping
the other chain translationally invariant, and forbid hopping
between the chains such that in the noninteracting limit, the
chains are completely decoupled. We then introduce a local
density-density interaction on each rung. With interactions,
two sharply distinct scenarios appear: In one, the energy
transport through the clean chain is sufficient to trigger
delocalization of the entire system. In the other scenario, the
localized fermions—through the density-density interaction—
act as effective disorder potential for the fermions in the
clean chain, inducing their localization. To distinguish these
two scenarios, we will consider the entanglement entropy of
highly excited eigenstates as well as the time evolution of
the entanglement entropy. We find that in our model, both
scenarios can be realized depending on the parameters of
the system. We will comment on other possible intermediate
scenarios at the end.

Our model is closely related to the model of Ref. [35],
where the disorder potential is absent but the hopping strength
in the two chains is vastly different and interactions between
the chains are very strong. This model was studied in the
context of dynamical effects akin to many-body localization
in systems without explicit translational symmetry breaking
in the Hamiltonian [36–38] (see also Ref. [39]), but where
the initial conditions break translational symmetry. It was
observed that the time evolution starting from random product
state configurations exhibits slow dynamics at an intermediate
timescale, yet relaxes at the longest timescales, consistent
with the formation of a “quasi-many-body localized” (qMBL)
regime. Furthermore, the system shows a diverging suscepti-
bility towards spin glass ordering upon introducing disorder.
Our results are complementary in that we consider the case
of strong disorder and weak interactions and focus primarily
on eigenstate rather than dynamical properties. We discuss the
relationship between the models in more detail towards the
end of Sec. IV.

It should also be noted that we focus purely on the one-
dimensional case since in higher dimensions, localization of
the entire system is very unlikely to occur. In particular, in three
dimensions, there is no possibility of an interesting backaction
of the localized states on the extended ones at weak interactions
since perturbative disorder is irrelevant, i.e., the localization
length is infinite up to a finite value of V . In two dimensions,
disorder is only marginally relevant and actually tends to be
driven irrelevant in the presence of interactions [40].

The remainder of this paper is structured as follows: In
Sec. II, we describe the model, our diagnostics, and the
numerical approach in more detail. In Sec. III, we discuss
a perturbative analysis of the interchain coupling. In Sec. IV,
we describe our numerical results, and we conclude in Sec. V.

II. MODEL AND NUMERICAL APPROACH

The Hamiltonian for the system is (see Fig. 1)

Ĥ = −
∑

α

tα

L∑

i=1

(ĉ†α,i ĉα,i+1 + H.c.)

+
L∑

i=1

win̂d,i + V

L∑

i=1

n̂d,i n̂c,i . (1)

Here, c
†
α,i creates a fermion on the upper, clean (α = c) or

lower, disordered (α = d) layer. The local potential wi , acting
only on the α = d fermions in the lower layer, is drawn
uniformly from the range [−W,W ]. V is a density-density
interaction between the two chains. Each chain has length L
such that the total number of sites is 2L. Note that the particle
number on each chain is separately conserved, reducing the
size of the many-body Hilbert space. For even L, we choose
each chain to be half filled.

While the model is phrased here in terms of a ladder, it
is equivalent to a system of two different flavors of fermions
where only one flavor experiences the disorder potential. Such
a description may be applicable to experiments on cold atoms
which use different types of atoms (nonconvertible fermions)
or different states of the same atom. We also note that since
hopping between the chains is forbidden, the model can be
mapped to a local model of hard-core bosons or spins by means
of a Jordan-Wigner transformation. Since it is also possible to
apply the Jordan-Wigner transformation to only one chain of
the ladder, the model is related to spin and charge degrees of
freedom in a Hubbard chain.

In Eq. (1), we have not included interactions between
fermions on the same chain. We have confirmed numerically
that adding a repulsive nearest-neighbor interaction between
fermions on the order of the interlayer coupling or weaker on
the same chain does not qualitatively affect the results. We
have also verified that making the strength of the inter-chain
interaction random does not affect the results.

We solve for highly excited eigenstates of Eq. (1) in the
middle of the many-body spectrum using the shift-and-invert
method, which solves for low-lying states of

Â = (Ĥ − λI)−1, (2)

where λ is a target energy. This approach was first used in the
context of many-body localization in Ref. [15]. We use the
implementation of SLEPc [41] & PETSc [42–45] and rely on
its direct LU solver and MUMPS. The LU factorization is used
as a direct solver to perform the inversion after shifting. Once
the inverse has been computed, the Lanczos method [46] can be
used to target low-lying states of the shift-and-inverted matrix.
These states are the ones closest in energy to the target λ.
We average over 250 eigenstates for 500 disorder realizations
each for system sizes L = 6 and L = 8. For L = 10, we only
compute eigenstates for 50 disorder realizations. Finally, for a
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Plans for rest of the talk

o Conclusions

o Real-space and Fock space (FS) pictures for MBL and MBL transition with 
random disorder
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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FIG. 3. Single-particle excitations in the interacting GAAH model. (a) ρt vs ω for increasing L in the ergodic phase (h = 0.6, E = 0),
(b) NEE phase (h = 0.6, E = −0.49), (c) MBL phase (h = 1.8, E = −0.49), and (d) for (h = 0.6, E = −0.66). The vertical dot-dashed line
shows the location of the single particle mobility edge in the noninteracting limit.

that single-particle excitations are localized for ω < ϵc, where
ρt decreases with L but ρa does not. For ω > ϵc, the excita-
tions are delocalized, and both ρt and ρa remain finite in the
thermodynamic limit. In Fig. 2, the gapped region are marked
by dashed curves where both ρt (ω) and ρa(ω) decrease with
L. Hence by combining both ρt (ω) and ρa(ω), we are able
to detect the mobility edge as well as the gapped region in
the single-particle excitation spectrum of the GAAH model.
In the following, we employ the same diagnostics to look for
localized and delocalized excitations in the interacting system.

B. Interacting system: V ̸= 0

In the interacting case, we use Eq. (2) to obtain the LDOS
via ED for system sizes L = 8, 12, and 16. Remarkably, as
we show in Figs. 3(a)–3(c), different types of excitations, i.e.,
localized, delocalized, and gapped, as discussed in the preced-
ing section, also exist for V ̸= 0. For the ergodic phase (h =
0.6, E = 0) [Fig. 3(a)] ρt (ω) approaches a finite value over
the entire band (|ω| ! 4) except the gapped region (dashed
line), implying many-body delocalization of all single-particle
excitations due to interaction.

In contrast, in the MBL phase (h = 1.8, E = −0.49)
[Fig. 3(c)] all single-particle excitations, below and above
the noninteracting mobility edge ϵc, are localized, as evinced
by the reduction of ρt (ω) for all ω with L. This is a di-
rect signature of the MBL proximity effect [58–60]. Through
this mechanism, an otherwise delocalized system can become
localized when coupled with a localized system. The delocal-
ized system effectively sees an additional disorder through the
coupling to the localized system [58]. The MBL proximity
effect has been studied via perturbative and ED calculations
[58–60] in two coupled chains of particles or spins. In this
ladder-like system, one of the chains is in the delocalized
phase and the other in the MBL phase, and the chains are
coupled via local density-density type interaction. Reference
[58–60] have shown that the delocalized chain can become
localized due to the coupling with the MBL chain.

In previous studies [50–53,55,56], the MBL proximity ef-
fect has been invoked to rationalize the existence of the MBL
phase in the GAAH model with single-particle mobility edge.
In this case, the Hamiltonian of Eq. (1) can be rewritten in the
basis of the single-particle eigenstates ψν (i) as

H =
∑

µ

ϵµc†
µcµ +

∑

µνδγ

Vµνδγ c†
µc†

νcδcγ , (4)

where c†
µ =

∑
i ψ

∗
µ(i)c†

i and Vµνγ δ = V
∑

i ψ
∗
µ(i)ψ∗

ν (i +
1)ψγ (i)ψδ (i + 1). Thus the single-particle states for ϵν > ϵc
constitute the delocalized system and those for ϵν < ϵc form
the localized system here. They are coupled via more generic
and nonlocal interaction than the simpler models considered
in previous studies [58–60] of MBL proximity effect.
Nevertheless, we can clearly observe the MBL proximity
effect in Fig. 3(c), where the delocalized single-particle
excitations (ϵ > ϵc) of the noninteracting (V = 0) system are
localized in the presence of interaction V ̸= 0, presumably
due to the coupling with the localized single-particle states
(ϵ < ϵc).

On the contrary, in the NEE phase (h = 0.6, E = −0.49),
ρt (ω) decreases with L for ω ! ϵc and approaches a finite
value increasing with L for ω " ϵc, as shown in Fig. 3(b). This
clearly indicates the persistence of many-body single-particle
mobility edge, that separates localized and delocalized excita-
tion even for V ̸= 0, in the NEE phase. The mobility edge for
single-particle excitations can be deduced more clearly in the
semilog plots of Figs. 12(a) and 12(b) in Appendix B. Thus,
in the NEE phase, neither the localized single-particle states
are able to localize all the delocalized excitations via the MBL
proximity effect nor the delocalized states are able to act as a
bath to delocalize all the localized excitations via interaction.
However, it is not possible to determine the mobility edge for
single-particle excitations accurately for the interacting case
(V ̸= 0), e.g., from Fig. 3(b).

Figure 3(d) shows single-particle excitations for (h=0.6,
E = −0.66). In terms of the single-particle excitations, the
states at this parameter value, which has been previously
characterized as part of the MBL phase [55], are hardly dis-
tinguishable from the NEE states. This is consistent with the
level statistics not converging to the Poisson value in this
regime as discussed earlier (Appendix A). Although the states
in this regime show MBL-like behavior through SA [55], i.e.,
SA approaches an area-law (constant), for system sizes acces-
sible in ED. Note, however, that the computation of the LDOS
requires ED in three particle sectors (N − 1, N, N + 1), as
evident from Eq. (2), and thus is limited to smaller system
sizes (L ! 16) than those employed for the calculations of SA,
δ2NA, and Fock-space diagnostics, discussed later. As a result,
the NEE-like single-particle excitation spectrum [Fig. 3(d)]
for the MBL states at (h = 0.6, E = −0.66) might be an
artifact of the limited system size, and the energy binning too
close to the ground state, as discussed earlier in Sec.III. The
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FIG. 9. Fock-space localization length. [(a)–(d)] Variation of
ln[G(rIJ )] with FS-hopping distance rIJ in the ergodic (h =
0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike !t (L), the typical non-
local propagator G(rIJ ) = exp [⟨ln GIJ (E )⟩] can tell NEE
and MBL states apart. Here ⟨. . . ⟩ denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
dark dashed vertical lines denote the MBL-NEE and NEE-ergodic
transitions at Enc ≈ −0.56 and Ec ≈ −0.38, respectively.

rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ
in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln !I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I⟩} as [66,67,70]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (5)

where |I⟩ = |nI1nI2...nIL⟩ with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I⟩ and |J⟩
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI =

∑
i hinIi + V

∑
i nIinI,i+1, acts like correlated disorder

[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance µ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = ⟨I|G(E )|J⟩ for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln #t as
a function of ln NF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting #t ∼ N −(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value #t = exp [⟨ln #I⟩] of the imaginary part
of the Feenberg self energy #I (E ) = Im[G−1

II (E )] − η. Here
⟨. . . ⟩ denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I ̸= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ
values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part #I (E ) of Feenberg self en-
ergy for −0.7 ! E ! −0.1. #I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence #I provides information of ergodicity or its absence.
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Many-body localization edge in the random-field Heisenberg chain
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density

*luitz@irsamc.ups-tlse.fr
†laflo@irsamc.ups-tlse.fr
‡alet@irsamc.ups-tlse.fr

in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ϵ) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 ≃ 1) is separated from the localized regime (bright region with
a1 ≪ 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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FIG. 3. (Color online) Entanglement entropy per site SE/L and
its variance σE , as a function of system size L for different disorder
strengths in the middle of the spectrum (left) and in the upper part
(right). The volume-law scaling leading to a constant SE/L for weak
disorder contrasts with the area law (signaled by a decreasing SE/L)
at larger disorder. Black line: SE/L for a random state [58]. Close to
the transition, the prefactor of the volume law is expected to converge
only for larger system sizes.

Krylov space methods [54] to compute the eigenpairs closest
to the shift energy E.

For each disorder realization, we first calculate the extremal
eigenenergies E0 and Emax used to define the normalized
energy target ϵ = (E − Emax)/(E0 − Emax) (we considered
the Sz = 0 sector of even-sized L = 12,14,16,18,20,22 and
Sz = 1 sector of L = 15,17,19). The shift-invert method,
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collapse using the best estimates for the critical disorder strength
hc = 3.09(7) and ν = 0.77(4).
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within our error bars in the localized regime (h = 4.8). Our fits (solid
lines; see text) constrain aq ∈ [0,1] and yield a logarithmic scaling
prefactor lq ≈ 2(1) at h = 4.8, consistent with a (slow) growth of SP
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with system size in the localized phase.

based on a massively parallel LU decomposition [55,56],
is then used to calculate at least 50 eigenpairs with energy
densities closest to the targets ϵ = {0.05,0.1, . . . ,0.95}. Note
that this is a much more demanding computational task than for
the Anderson problem, as the number of off-diagonal elements
of H scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated between
50 and 250 samples). For each ϵ, observables are calculated
from the corresponding eigenvectors and averaged over target
packets and disorder realizations for each value of the disorder
strength h. As eigenvectors of the same disorder realization
are correlated, we found it crucial [51] to bin quantities over
all eigenstates of the same realization, and then compute
the standard error over these bin averages, in order not to
underestimate error bars. Investigating numerous quantities
allows one to check the consistency of our analysis and
conclusions.

Results and finite-size scaling analysis. We discuss the
transition between GOE and Poisson statistics, first using
the consecutive gap ratio r , shown in Fig. 2 (top) for
ϵ = 0.5. When varying the disorder strength h, we clearly
see a crossing around hc ∼ 3.7 between the two limiting
values. This crossing can be analyzed using a scaling form
g[L1/ν(h − hc)] which allows a collapse of the data onto a
single universal curve (see inset), yielding hc = 3.72(6) and
ν = 0.91(7) (see details of fitting procedure and error bar
estimates in Supplemental Material [57]).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ϵ and averaged
over disordered samples, also displays a crossing between
the two limit scalings KLGOE = 2 and KLPoisson ∼ ln(dimH)
(Fig. 2, bottom). A data collapse is very difficult to achieve for
KL due to a large drift of the crossing points. Nevertheless,
the distributions of KL plotted in insets, display markedly
different features. The perfect Gaussian distribution in the
ergodic phase (at h = 1) around the GOE mean value of 2 with
a variance decreasing with L provides strong evidence that
the statistical behavior of the eigenstates is well described by
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its variance σE , as a function of system size L for different disorder
strengths in the middle of the spectrum (left) and in the upper part
(right). The volume-law scaling leading to a constant SE/L for weak
disorder contrasts with the area law (signaled by a decreasing SE/L)
at larger disorder. Black line: SE/L for a random state [58]. Close to
the transition, the prefactor of the volume law is expected to converge
only for larger system sizes.

Krylov space methods [54] to compute the eigenpairs closest
to the shift energy E.

For each disorder realization, we first calculate the extremal
eigenenergies E0 and Emax used to define the normalized
energy target ϵ = (E − Emax)/(E0 − Emax) (we considered
the Sz = 0 sector of even-sized L = 12,14,16,18,20,22 and
Sz = 1 sector of L = 15,17,19). The shift-invert method,
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based on a massively parallel LU decomposition [55,56],
is then used to calculate at least 50 eigenpairs with energy
densities closest to the targets ϵ = {0.05,0.1, . . . ,0.95}. Note
that this is a much more demanding computational task than for
the Anderson problem, as the number of off-diagonal elements
of H scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated between
50 and 250 samples). For each ϵ, observables are calculated
from the corresponding eigenvectors and averaged over target
packets and disorder realizations for each value of the disorder
strength h. As eigenvectors of the same disorder realization
are correlated, we found it crucial [51] to bin quantities over
all eigenstates of the same realization, and then compute
the standard error over these bin averages, in order not to
underestimate error bars. Investigating numerous quantities
allows one to check the consistency of our analysis and
conclusions.

Results and finite-size scaling analysis. We discuss the
transition between GOE and Poisson statistics, first using
the consecutive gap ratio r , shown in Fig. 2 (top) for
ϵ = 0.5. When varying the disorder strength h, we clearly
see a crossing around hc ∼ 3.7 between the two limiting
values. This crossing can be analyzed using a scaling form
g[L1/ν(h − hc)] which allows a collapse of the data onto a
single universal curve (see inset), yielding hc = 3.72(6) and
ν = 0.91(7) (see details of fitting procedure and error bar
estimates in Supplemental Material [57]).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ϵ and averaged
over disordered samples, also displays a crossing between
the two limit scalings KLGOE = 2 and KLPoisson ∼ ln(dimH)
(Fig. 2, bottom). A data collapse is very difficult to achieve for
KL due to a large drift of the crossing points. Nevertheless,
the distributions of KL plotted in insets, display markedly
different features. The perfect Gaussian distribution in the
ergodic phase (at h = 1) around the GOE mean value of 2 with
a variance decreasing with L provides strong evidence that
the statistical behavior of the eigenstates is well described by
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
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+
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ϵi n̂i + V
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n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin
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i + V

∑
i n(I )
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and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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What happens to MBL?

How does the multifractal nature manifest in dynamical properties?

H ¼
XL

i¼1

!
ΔSziSziþ1 − hiS
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i þ

1

2
ðSþi S−iþ1 þ S−i S

þ
iþ1Þ

"
; ð2Þ

with periodic boundary conditions and hi randomly drawn
from a uniform distribution ½−h; h&. Equation (2) is equiv-
alent [33] to interacting spinless fermions in a random
potential. This system has been intensively studied
[11,14,17,18,22,36,37] and its phase diagram is well
known for the case Δ ¼ 1 with a critical disorder estimated
to be hc ¼ 3.7ð2Þ in the middle of the many-body spectrum
fEg such that ϵ ¼ ðE − EminÞ=ðEmax − EminÞ ¼ 0.5. This
Hamiltonian can be recast as a single particle Anderson
problem of the general form

H ¼
X

α

μαjαihαjþ
X

hαβi
tαβjαihβj; ð3Þ

in a given basis fjαig. Of course, the localization properties
measured by the PE depend crucially on the choice of
fjαig. We focus on two bases: spin configurations fjαigS
and Fock basis fjαigF, which we argue are the most
relevant for the model Eq. (2): (i) both bases diagonalizeH
in specific limits where localization is well understood
(the noninteracting limitΔ ¼ 0 for fjαigF, the limit h → ∞
for fjαigS) and are thus used as a starting point for the
l-bits construction or efficient numerical simulations of
MBL, (ii) they implement the U(1) conservation rule
(particle number or magnetization conservation) of the
model, and (iii) H is sparse in both bases: an ingredient
which eases numerical diagonalization and may favor
ergodicity breaking.
Spin configuration basis: The basis fjαigS uses the

local projection of Szi , i.e., jαi ¼ j↑↓↑;…i. We restrict
the study to the zero magnetization sector

P
i S

z
i ¼ 0

(half-filling for fermions) of dimension N ¼ ð L
L=2Þ≃

2L=
ffiffiffiffi
L

p
. In the spin configuration basis, Eq. (2) becomes

a hopping problem Eq. (3) with disordered on site energies

μα ¼ hαj
P

iΔSzi Sziþ1 − hiS
z
i jαi, and constant hopping

terms tαβ ¼ 1=2 [allowing tunneling between neighboring
states hαβi connected by spin-flip terms of Eq. (2)]. As the
site-dependent connectivity z̄ ≈ L=2 grows faster with
system size L than the average on site disorder strength
σμ ∼ h

ffiffiffiffi
L

p
, general arguments would prohibit genuine AL

in this complex network (note however the strong corre-
lations of the potential between neighboring sites).
Fock basis: fjαigF are many-body states built from

noninteracting localized orbitals that diagonalize the free-
fermion partH − Δ

P
i S

z
i S

z
iþ1 of Eq. (2). On site potentials

μα are the sum of the noninteracting orbital energies
corrected by the Hartree-Fock term, and off-diagonal
hoppings tαβ are built from the interaction terms
[11,33,38]. Viewing MBL as an Anderson problem on
graphs defined by these Fock states has been promoted in
very early works [5,6,39]. Nevertheless, the hopping
problem expressed in fjαigF is qualitatively different than
from in fjαigS. While diagonal terms have similar behav-
iors, there is a much larger number of nonzero matrix
elements zαβ between Fock states, which is constant over
the graph: zαβ ¼ 1

4 fðL=2Þ½ðL=2Þ − 1&g2 þ ðL2=4Þ (in theP
i S

z
i ¼ 0 sector). Moreover, hoppings tαβ are not constant

but random, both in sign and magnitude [33].
Participation entropies: large-scale numerics.—

Eigenstates of Eq. (2) are extracted from full and shift-
invert subset [40] diagonalization, focusing on high-energy
states (ϵ ¼ 0.5) on various system sizes, ranging from L ¼
8 spins (with N ¼ 70) up to L ¼ 24 (N ¼ 2705432).
Disorder average is performed over many independent
samples, typically tens of thousand for the smallest sizes
L ≤ 16, and several hundreds for the largest samples 18 ≤
L ≤ 24 [41]. We fix Δ ¼ 1.
We first discuss the scaling with Hilbert space size N of

the disorder-average PE Sq defined by Eq. (1) and shown in
Fig. 2 for both Fock and configuration spaces for a few
representative values of the disorder. In the ETH phase
[Figs. 2(a) and 2(b)], low disorder data follow a purely
ergodic scaling of the form Sq ¼ lnN þ bq with bq < 0
for both Fock and configuration spaces. Upon increasing h
a curvature develops, indicating that an asymptotic scaling
regime might be eventually reached for larger N , as
exemplified by h ¼ 2.6 and h ¼ 3.2 data. In the MBL
regime [Figs. 2(c) and 2(d)] with q ¼ 1, 2 at h ¼ 5, both
bases exhibit a delocalized behavior Sq ¼ Dq lnN þ bq
with a q- and basis-dependent multifractal dimension
Dq < 1 and a correction bq > 0.
Very interestingly, bq changes sign (negative for ETH

and positive for MBL) as seen in Fig. 3 where a crossing
point in Sq= lnN appears in the vicinity of the critical
disorder strength hc ∼ 3.8. Crossings are equally observed
for Fock and configuration spaces in Figs. 3(a), 3(d),
and 3(e). This effect is also clearly visible from the
distributions PðSq= lnN Þ shown in Figs. 3(b) and 3(c)

FIG. 1. Schematic picture of the multifractal properties of
eigenstates in Fock and spin configuration bases across the
MBL transition for Eq. (2). Two typical eigenstates of Eq. (2)
on a small L ¼ 14 system for ETH (h ¼ 0.5, blue) and MBL
(h ¼ 10, green) regimes are graphically represented, with circle
sizes proportional to jψαj2 in the spin configuration basis.
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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Recognition of the “slice structure”
⇒ well-known Recursive Green’s function
method for real space MacKinnon & Kramer (~1980) 
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(a) (b)

FIG. 4. (a) Figure on the top left corner is similar to Fig. 1(a), but rotated by 90◦. The larger figure shows a part of it, up to ℓth slice, where
the gray shaded area shows each slice. Orange circles and solid blue lines represent the FS sites and hopping, respectively. (b) As we keep on
adding the next slices, the Green’s function of the left part gets updated via the iterative Eqs. (A2)

directly controls the continuous vanishing of "t on approach
to the transition from the ergodic side and the multifractal
nature of the MBL phase was demonstrated via determina-
tion of the spectral fractal dimension Ds, which was shown
to change discontinuously across the transition. While our
focus here has been on the local FS propagator, the recursive
Green’s function method also gives access to the nonlocal
propagator, a question of immediate future interest which can
potentially provide insights into the critical scaling of a FS lo-
calization length and also enable study of the inhomogeneous
nature of MBL eigenstates on the FS lattice [36]. It would
also be interesting to explore further the connection [36]
between real-space and Fock-space critical properties, e.g.,
how rare thermal regions in real space [59–61] affect the FS

self-energy. In the same vein, possible connections between
the Fock-space propagators and one-particle density matrix
and real-space propagators [62–67] also remain a question for
future work.
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FIG. 5. Finite-size scaling collapse of ln("t/"c ) in direct parallel to that of Fig. 2 for Wc = 3.75, but shown here for Wc = 3.5 (left panel)
and Wc = 4.0 (right panel).
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of !t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter !t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
!t/

√
L, and refer to it as !t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value !t of the self-energy is finite in
the thermal phase. It vanishes ∝ N −(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of !t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale ", which diverges with an essential singularity " ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit !t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln !t as a
function of ln NF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of !t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds ≃ 0.5.

potential ϵi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑

i=1

(
c†

i ci+1 + c†
i+1ci

)
+

L∑

i=1

ϵi n̂i + V
L−1∑

i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc ≃ 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I⟩} of particles on the
real-space sites, |I⟩ = |n(I )

1 n(I )
2 . . . n(I )

L ⟩ with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I⟩ and |J⟩ are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI =

∑
i ϵin

(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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FIG. 5. G1M and its scaling collapse. (a) ln |G1M | is
shown as a function of lnNF for di↵erent W . In the ther-
mal phase, the curves do not reach the expected limit where
lnG1M ⇠ const. (b) In the MBL phase (W > Wc), we
collapse the curve in (a) by considering a scaling function
lnG1M = F (lnNF /⇠F2), where ⇠F2 is proportional to the FS
localization length ⇠F1. ⇠F2 as a function of W is shown in
the inset.

Thermal bubble
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L

FIG. 6. Schematic of the coupled system. A thermal bubble
of fixed size Lb represented by the red lattice points is coupled
to a noninteracting localized system represented by the blue
lattice points. We change the disorder strength W in the
latter part to study the e↵ects of the bubble.

ing multifractality in FS irrespective of interaction. The
distinction between interacting and noninteracting sys-
tems should be in the choice of basis. Anderson localized
systems should have no multifractality in a many-body
basis constructed out of single particle localized states,
whereas on the same basis, the MBL phase should have
multifractality. In that sense, the multifractality of MBL
should be robust. The significant multifractality of all
the three systems considered arises presumably because
of the highly correlated onsite potential ({EI}) in Fock
space.

Next, we look at nondiagonal components of the
Green’s function. Both GMM as a function of rIJ and
G1M as a function of lnNF do not show any sign of
the thermal-MBL transition. GMM vs. rIJ and G1M

vs. lnNF vary smoothly with W , as shown in Figs. 8(a)
and (c) respectively. ⇠F1 calculated by fitting GMM ⇠
exp[�rIJ/⇠F1] with rIJ fluctuates as a function of L for
low disorder strength and remains almost constant for the
strong disorder, as shown in Fig. 8(b). Then we calculate
the entanglement entropy S, the standard diagnosis for
the thermal-MBL transition. By exact diagonalization,
we obtain the wave function at the middle of the spec-
trum for the coupled system and calculate the entangle-
ment entropy of the farthest site from the bubble; details
can be found in SM. In the thermal phase, S approaches
ln 2 for a single site with large system sizes, whereas in
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FIG. 7. �t of the coupled system and its multifractal-
ity compared with other systems. (a) �t is shown as a
function of lnNF for di↵erent W for the coupled system. (b)

Direct fitting to �t ⇠ N�(1�Ds)
F produces the multifractal di-

mension Ds as a function of W . We can see a sharp change in
the Ds for the XXZ chain. Whereas due to the coupling of the
bubble, Ds does not show a di↵erent value from the Ander-
son chain. The large Ds showing high multifractality in the
localized system for small W can result from the choice of the
basis, as discussed in the main text. Data of �t vs. lnNF for
the Anderson localized (AL) and the disordered XXZ chain
are shown in the SM.

the MBL phase S < ln 2. As shown in Fig. 8(d), S vs.
W curves for di↵erent L cross near W ⇡ 0.8 for the cou-
pled system. W can be related to the Anderson local-
ization length using single-particle density of states and
Green’s function for the noninteracting system as shown
in Ref. [17] and SM. The crossing, in this case, corre-
sponds to Anderson localization length ⇠A ⇠ 10. For
weak disorder, S tends to ln 2 for large system sizes, im-
plying the system is in the thermal phase. For strong
disorder, S has a subthermal value which decreases with
L. In literature, a similar crossing in S is considered
the critical point for the thermal-MBL phase transition.
However, in contrast to the value ⇠A ⇡ 10, phenomeno-
logical theories [??] and numerical results [??] find the
critical localization length to be ⇠A = 2/ ln 2. In those
works, when ⇠A increases beyond the critical value 2/ ln 2,
the system undergoes an MBL-thermal phase transition
when the system is coupled to a thermal bath. However,
in our case, the crossing point ⇠A ⇡ 10 remains the same
irrespective of the interaction strength in the bubble, as
discussed in the SM.

To understand the above discrepancy, we look at the
two parts of the coupled system separately. We find that
the disorder-averaged level spacing ratio hri [??,SM] of
the XXZ bubble is far away from that predicted by the
GOE for most values of W < Wc for Lb = 4. The bub-
ble approaches the GOE value for larger system sizes.
Within the system considered here, we avoid taking a
larger bubble. We aim to find whether a finite-size bub-
ble can generate instability in an arbitrarily large system.
To this end, we keep the bubble size Lb = 4 smaller than
half of the smallest system size L = 12 or equal to half of
that of the smallest localized part (L�Lb = 8). To study
the e↵ect of a larger bubble, one needs a large localized
system. Otherwise, a small system L with a bubble of
size Lb . L cannot determine between a thermal-MBL

How does single-particle Anderson
localization (AL) look in Fock-space?

AL states also look multifractal
in Fock space.

Real-space uncorrelated disorder
⇒ Correlated disorder in Fock-space
Multifractality is inevitable! D. E. Logan (unpublished)
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FIG. 4. (a) Figure on the top left corner is similar to Fig. 1(a), but rotated by 90◦. The larger figure shows a part of it, up to ℓth slice, where
the gray shaded area shows each slice. Orange circles and solid blue lines represent the FS sites and hopping, respectively. (b) As we keep on
adding the next slices, the Green’s function of the left part gets updated via the iterative Eqs. (A2)

directly controls the continuous vanishing of "t on approach
to the transition from the ergodic side and the multifractal
nature of the MBL phase was demonstrated via determina-
tion of the spectral fractal dimension Ds, which was shown
to change discontinuously across the transition. While our
focus here has been on the local FS propagator, the recursive
Green’s function method also gives access to the nonlocal
propagator, a question of immediate future interest which can
potentially provide insights into the critical scaling of a FS lo-
calization length and also enable study of the inhomogeneous
nature of MBL eigenstates on the FS lattice [36]. It would
also be interesting to explore further the connection [36]
between real-space and Fock-space critical properties, e.g.,
how rare thermal regions in real space [59–61] affect the FS

self-energy. In the same vein, possible connections between
the Fock-space propagators and one-particle density matrix
and real-space propagators [62–67] also remain a question for
future work.
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Fock-space localization length 𝜉�(← 𝐺 𝑟�� ) remains finite at the transition
J. Sutradhar, S. Ghosh, S. Mukerjee, SB (unpublished)
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TABLE I. Classification of MBL, NEE, and ergodic phases in the GAAH model based on various real-space and Fock-space diagnostics.
Here L and NF are the number of sites on the real-space and Fock-space lattices, respectively.

that we have robust ergodic (h = 0.6, E = 0), NEE (h = 0.6,
E = −0.49), and MBL (h = 1.8, E = −0.49) states, i.e., we
are deep within the phases. We also look at another combi-
nation, h = 0.6, E = −0.66, which should correspond to the
MBL phase based on previous studies [55]. However, as we
discuss later, we find that states for this parameter do not show
very clear-cut MBL behaviors; they appear MBL-like in some
diagnostics and NEE-like in others. Below we briefly describe
the classification of the phases based on these diagnostics. A
summary can be found in Table I.

Half-chain entanglement entropy SA. The entanglement
entropy is obtained as SA = −Tr(ρA ln ρA) from the reduced

FIG. 1. Standard diagnostics for MBL, NEE, and ergodic phases:
(a) the half-chain (A) entanglement entropy SA, (b) subsytem particle
number fluctuations (variance) δ2NA, and (c) energy level-spacing
ratio r as function of L in the three phases, ergodic (h = 0.6, E = 0),
NEE (h = 0.6, E = −0.49), and MBL (h = 1.8, E = −0.49). (d) r
as a function of E for increasing L for h = 0.6.

density matrix ρA = TrB(ρ) for the pure-state density
matrix, ρ = |#E⟩ ⟨#E |. Here |#E⟩ is a many-body eigenstate
at an energy density E . As shown in Fig. 1(a), SA increases
with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
system-size dependence of bipartite entanglement can tell
MBL and the extended states apart, NEE and ergodic phases
cannot be distinguished easily based on this diagnostic. Er-
godic eigenstates have a thermal volume-law entanglement,
i.e., SA ≃ sth(E )L/2, with sth(E ) thermal entropy per site at
energy density E , for large L. NEE states, on the other hand,
are expected to exhibit [53,75] a subthermal volume-law en-
tanglement entropy, i.e., the coefficient of linear L dependence
less than sth(E ). However, this distinction might be hard to
verify for the limited system sizes accessed in ED [53].

Subsystem particle number variance. δ2NA measures
fluctuations of total number of particles N̂A =

∑L/2
i=1 ni in

the subsystem A compared to the average number NA =∑L/2
i=1 ⟨#E | ni |#E⟩ at an energy density E . As shown in

Fig. 1(b), δ2NA decreases with L in the ergodic phase, as
expected from ETH [30–33], while it increases and then tends
to saturate with L in MBL and the NEE phases [55]. As a
result, this quantity can differentiate the ergodic states from
nonergodic states.

Level-spacing ratio. The level-spacing ratio [5,76] ri =
min(si, si+1)/ max(si, si+1) is obtained from si = Ei+1 − Ei
with Ei’s being the many-body energy eigenvalues arranged
in ascending order. We compute the arithmetic mean of ri to
obtain the average level-spacing ratio r(E ) at energy density
E . The ergodic phase can be identified with the gaussian-
orthogonal ensemble (GOE) value r ≃ 0.528 and the MBL
phase with the Poissonian value r ≃ 0.386. In Fig. 1(c), r
approaches GOE and Poissonian values with increasing L for
the ergodic and MBL phases, respectively, whereas r tends to
an intermediate value for the NEE phase. We also discuss the
level-spacing distribution in the three phases in Appendix A.
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with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
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MBL and the extended states apart, NEE and ergodic phases
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expected from ETH [30–33], while it increases and then tends
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result, this quantity can differentiate the ergodic states from
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with Ei’s being the many-body energy eigenvalues arranged
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E . The ergodic phase can be identified with the gaussian-
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density matrix ρA = TrB(ρ) for the pure-state density
matrix, ρ = |#E⟩ ⟨#E |. Here |#E⟩ is a many-body eigenstate
at an energy density E . As shown in Fig. 1(a), SA increases
with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
system-size dependence of bipartite entanglement can tell
MBL and the extended states apart, NEE and ergodic phases
cannot be distinguished easily based on this diagnostic. Er-
godic eigenstates have a thermal volume-law entanglement,
i.e., SA ≃ sth(E )L/2, with sth(E ) thermal entropy per site at
energy density E , for large L. NEE states, on the other hand,
are expected to exhibit [53,75] a subthermal volume-law en-
tanglement entropy, i.e., the coefficient of linear L dependence
less than sth(E ). However, this distinction might be hard to
verify for the limited system sizes accessed in ED [53].
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fluctuations of total number of particles N̂A =

∑L/2
i=1 ni in

the subsystem A compared to the average number NA =∑L/2
i=1 ⟨#E | ni |#E⟩ at an energy density E . As shown in

Fig. 1(b), δ2NA decreases with L in the ergodic phase, as
expected from ETH [30–33], while it increases and then tends
to saturate with L in MBL and the NEE phases [55]. As a
result, this quantity can differentiate the ergodic states from
nonergodic states.

Level-spacing ratio. The level-spacing ratio [5,76] ri =
min(si, si+1)/ max(si, si+1) is obtained from si = Ei+1 − Ei
with Ei’s being the many-body energy eigenvalues arranged
in ascending order. We compute the arithmetic mean of ri to
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E . The ergodic phase can be identified with the gaussian-
orthogonal ensemble (GOE) value r ≃ 0.528 and the MBL
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Since r is expected to change discontinuously across the
MBL-to-ergodic transition, r has been used [5,16,20,23,77]
as an “order parameter” to detect the MBL transition, e.g.,
through finite-size scaling analysis of r in the models with the
random and quasiperiodic disorder. However, as we show in
Fig. 1(d) for h = 0.6, r is not a good diagnostic of the MBL-
NEE and NEE-MBL transitions in the quasiperiodic model
[Eq. (1)] for the system sizes accessed in ED. r fluctuates
[55] a lot as a function of E and L in the putative nonergodic
phases, even after averaging over a large number of values of
φ. As a result, we cannot do a reasonable finite-size scaling
analysis of r for the transitions in the GAAH model. We
show later that the FS diagnostics vary smoothly across the
NEE-MBL transition and thus enable us to do more controlled
finite-size scaling. We also show in Appendix A that the level
spacing statistics do not exhibit proper Poisson statistics in
the putative MBL phase for h = 0.6, presumably because the
corresponding states are too close to the ground state in en-
ergy. As a result, distinguishing states at finite-energy density
(relative to the ground state) and obtaining good statistics for
them by energy binning becomes challenging. Hence, to attain
a clear distinction of the phases, we look at MBL states for
(h = 1.8, E = −0.49), where the level statistics convincingly
converge to Poisson distribution, as shown in Appendix A.
A comparison between the level statistics for (h = 1.8, E =
−0.49) and (h = 0.6, E = −0.66) can be found in Figs. 11(c)
and 11(d).

In the next section, we provide the anatomy of the above
phases in terms of single-particle excitations.

IV. SINGLE-PARTICLE EXCITATIONS
AND MBL PROXIMITY EFFECT

In this section, we characterize single-particle excita-
tions in the MBL, NEE, and ergodic phases via eigenstate
single-particle Green’s function and the associated local
density of states (LDOS). The single-particle Green’s func-
tion in the nth many-body eigenstate |"n⟩ with energy
En of the N-particle system is obtained from Gn(i, j, t ) =
−iθ (t ) ⟨"n| {ci(t ), c†

j (0)} |"n⟩ for sites i and j. The Fourier
transform of the onsite element Gn(i, i, t ) = Gn(i, t ) is

Gn(i,ω) =
∑

m

[
| ⟨"+

m | c†
i |"n⟩ |2

ω + iη − Em + En
+ | ⟨"−

m | ci |"n⟩ |2

ω + iη + Em − En

]

.

(2)

|"+
m ⟩ and |"−

m ⟩ are the mth eigenstate with energy Em of
the system with N + 1 and N − 1 particles, respectively. For
the interacting system (V ̸= 0), the broadening parameter η
is taken to be the typical value or the geometric mean of
the many-body level spacing (∼e−L) at energy En (see Ap-
pendix C for details).

The single-particle excitation at energy ω is charac-
terized by the local density of states (LDOS) ρn(i,ω) =
−(1/π )Im[Gn(i,ω)]. In particular, we obtain the typi-
cal LDOS ρt (ω), the geometric mean, from ln ρt (ω) =
⟨ln ρn(i,ω)⟩ and the average LDOS as ρa(ω) = ⟨ρn(i,ω)⟩,
where ⟨...⟩ denotes an arithmetic average over the lattice sites
and φ. In the localized phase, for both noninteracting (V =0)

(a) (b)

FIG. 2. LDOS for noninteracting (V = 0) GAAH model.
(a) ρt (ω) vs ω for increasing system sizes L. (b) ρa(ω) vs ω for
increasing L. The vertical dashed line shows the position of the single
particle mobility edge for α = −0.8 and h = 0.6. The number of
disorder realizations over φ is at least 100 for all the plots.

and interacting (V ̸= 0) systems, the local single-particle
excitations originate from a finite number of discrete poles
of the Green’s function Gn(i,ω), effectively corresponding to
a finite system having the size of the localization length. Thus
the poles of Gn(i,ω) lead to discrete peaks in ω, having zero
measure in the LDOS even in the thermodynamic limit. As a
result, the typical value ρt (ω) decreases with system sizes and
ρt (ω) → 0 in the thermodynamic limit. In contrast, the poles
of Gn(i,ω) form a continuum in the delocalized phase for L →
∞ and ρt (ω) approaches a nonzero value with increasing
system size [57] for ω lying within the single-particle bands
of states. Thus the typical LDOS ρt (ω) acts as a probabilistic
order parameter [78–80] for localization of an excitation at en-
ergy ω. In contrast, the arithmetic mean ρa(ω) averages LDOS
over all the sites and approaches nonzero value with increas-
ing system size both in the delocalized and localized phases.

A. Noninteracting system: V = 0

In the noninteracting limit, (V = 0), Eq. (2) can be simpli-
fied and the local single-particle density of states (LDOS) can
be written as

ρ(i,ω) = 1
π

L∑

ν=1

|ψν (i)|2 ηs

(ω − ϵν )2 + η2
s
. (3)

Here ψν (i) and ϵν are the single particle eigenfunction and
energy that can be obtained by diagonalizing the noninteract-
ing GAAH model. In this case, the broadening parameter ηs
is chosen to be the mean single-particle energy level spacing
(∼1/L). We then calculate the typical value ρt (ω) of LDOS,
and the average value of LDOS ρa(ω) as discussed earlier.

The L dependence of ρt (ω) can be used to detect the single-
particle mobility edge ϵc = sgn(h)(2|t | − |h|)/α [57] of the
GAAH model in the noninteracting limit (V = 0). Apart from
the mobility edge, the single-particle spectrum of the GAAH
model also has gaps, i.e., O(1) interval of ω that does not
contain any eigenenergy ϵν . We use ρt (ω) in combination with
ρa(ω) to classify for small finite systems—(a) localized exci-
tation, when ρt (ω) decreases and ρa(ω) approaches a finite
value with L, (b) delocalized excitation, when both ρt (ω) and
ρa(ω) tend to saturate with L, and (c) gapped excitation, when
both ρt (ω) and ρa(ω) decrease with L. In Fig. 2, we show
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FIG. 3. Single-particle excitations in the interacting GAAH model. (a) ρt vs ω for increasing L in the ergodic phase (h = 0.6, E = 0),
(b) NEE phase (h = 0.6, E = −0.49), (c) MBL phase (h = 1.8, E = −0.49), and (d) for (h = 0.6, E = −0.66). The vertical dot-dashed line
shows the location of the single particle mobility edge in the noninteracting limit.

that single-particle excitations are localized for ω < ϵc, where
ρt decreases with L but ρa does not. For ω > ϵc, the excita-
tions are delocalized, and both ρt and ρa remain finite in the
thermodynamic limit. In Fig. 2, the gapped region are marked
by dashed curves where both ρt (ω) and ρa(ω) decrease with
L. Hence by combining both ρt (ω) and ρa(ω), we are able
to detect the mobility edge as well as the gapped region in
the single-particle excitation spectrum of the GAAH model.
In the following, we employ the same diagnostics to look for
localized and delocalized excitations in the interacting system.

B. Interacting system: V ̸= 0

In the interacting case, we use Eq. (2) to obtain the LDOS
via ED for system sizes L = 8, 12, and 16. Remarkably, as
we show in Figs. 3(a)–3(c), different types of excitations, i.e.,
localized, delocalized, and gapped, as discussed in the preced-
ing section, also exist for V ̸= 0. For the ergodic phase (h =
0.6, E = 0) [Fig. 3(a)] ρt (ω) approaches a finite value over
the entire band (|ω| ! 4) except the gapped region (dashed
line), implying many-body delocalization of all single-particle
excitations due to interaction.

In contrast, in the MBL phase (h = 1.8, E = −0.49)
[Fig. 3(c)] all single-particle excitations, below and above
the noninteracting mobility edge ϵc, are localized, as evinced
by the reduction of ρt (ω) for all ω with L. This is a di-
rect signature of the MBL proximity effect [58–60]. Through
this mechanism, an otherwise delocalized system can become
localized when coupled with a localized system. The delocal-
ized system effectively sees an additional disorder through the
coupling to the localized system [58]. The MBL proximity
effect has been studied via perturbative and ED calculations
[58–60] in two coupled chains of particles or spins. In this
ladder-like system, one of the chains is in the delocalized
phase and the other in the MBL phase, and the chains are
coupled via local density-density type interaction. Reference
[58–60] have shown that the delocalized chain can become
localized due to the coupling with the MBL chain.

In previous studies [50–53,55,56], the MBL proximity ef-
fect has been invoked to rationalize the existence of the MBL
phase in the GAAH model with single-particle mobility edge.
In this case, the Hamiltonian of Eq. (1) can be rewritten in the
basis of the single-particle eigenstates ψν (i) as

H =
∑

µ

ϵµc†
µcµ +

∑

µνδγ

Vµνδγ c†
µc†

νcδcγ , (4)

where c†
µ =

∑
i ψ

∗
µ(i)c†

i and Vµνγ δ = V
∑

i ψ
∗
µ(i)ψ∗

ν (i +
1)ψγ (i)ψδ (i + 1). Thus the single-particle states for ϵν > ϵc
constitute the delocalized system and those for ϵν < ϵc form
the localized system here. They are coupled via more generic
and nonlocal interaction than the simpler models considered
in previous studies [58–60] of MBL proximity effect.
Nevertheless, we can clearly observe the MBL proximity
effect in Fig. 3(c), where the delocalized single-particle
excitations (ϵ > ϵc) of the noninteracting (V = 0) system are
localized in the presence of interaction V ̸= 0, presumably
due to the coupling with the localized single-particle states
(ϵ < ϵc).

On the contrary, in the NEE phase (h = 0.6, E = −0.49),
ρt (ω) decreases with L for ω ! ϵc and approaches a finite
value increasing with L for ω " ϵc, as shown in Fig. 3(b). This
clearly indicates the persistence of many-body single-particle
mobility edge, that separates localized and delocalized excita-
tion even for V ̸= 0, in the NEE phase. The mobility edge for
single-particle excitations can be deduced more clearly in the
semilog plots of Figs. 12(a) and 12(b) in Appendix B. Thus,
in the NEE phase, neither the localized single-particle states
are able to localize all the delocalized excitations via the MBL
proximity effect nor the delocalized states are able to act as a
bath to delocalize all the localized excitations via interaction.
However, it is not possible to determine the mobility edge for
single-particle excitations accurately for the interacting case
(V ̸= 0), e.g., from Fig. 3(b).

Figure 3(d) shows single-particle excitations for (h=0.6,
E = −0.66). In terms of the single-particle excitations, the
states at this parameter value, which has been previously
characterized as part of the MBL phase [55], are hardly dis-
tinguishable from the NEE states. This is consistent with the
level statistics not converging to the Poisson value in this
regime as discussed earlier (Appendix A). Although the states
in this regime show MBL-like behavior through SA [55], i.e.,
SA approaches an area-law (constant), for system sizes acces-
sible in ED. Note, however, that the computation of the LDOS
requires ED in three particle sectors (N − 1, N, N + 1), as
evident from Eq. (2), and thus is limited to smaller system
sizes (L ! 16) than those employed for the calculations of SA,
δ2NA, and Fock-space diagnostics, discussed later. As a result,
the NEE-like single-particle excitation spectrum [Fig. 3(d)]
for the MBL states at (h = 0.6, E = −0.66) might be an
artifact of the limited system size, and the energy binning too
close to the ground state, as discussed earlier in Sec.III. The
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NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I⟩} as [66,67,70]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (5)

where |I⟩ = |nI1nI2...nIL⟩ with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I⟩ and |J⟩
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI =

∑
i hinIi + V

∑
i nIinI,i+1, acts like correlated disorder

[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance µ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = ⟨I|G(E )|J⟩ for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln #t as
a function of ln NF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting #t ∼ N −(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value #t = exp [⟨ln #I⟩] of the imaginary part
of the Feenberg self energy #I (E ) = Im[G−1

II (E )] − η. Here
⟨. . . ⟩ denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I ̸= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ
values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part #I (E ) of Feenberg self en-
ergy for −0.7 ! E ! −0.1. #I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence #I provides information of ergodicity or its absence.

115155-6

Energy density ℰ

Many-body DOS

MBL
NEE Ergodic

Fixed quasiperiodic strength ℎ
Fock-space transitions as function of energy density

MBL and NEE states are
both multifractal,
cannot be distinguished
via Δ£

ROY, SUTRADHAR, AND BANERJEE PHYSICAL REVIEW B 107, 115155 (2023)

NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I⟩} as [66,67,70]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (5)

where |I⟩ = |nI1nI2...nIL⟩ with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I⟩ and |J⟩
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI =

∑
i hinIi + V

∑
i nIinI,i+1, acts like correlated disorder

[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance µ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = ⟨I|G(E )|J⟩ for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln #t as
a function of ln NF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting #t ∼ N −(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value #t = exp [⟨ln #I⟩] of the imaginary part
of the Feenberg self energy #I (E ) = Im[G−1

II (E )] − η. Here
⟨. . . ⟩ denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I ̸= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ
values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part #I (E ) of Feenberg self en-
ergy for −0.7 ! E ! −0.1. #I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence #I provides information of ergodicity or its absence.
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NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I⟩} as [66,67,70]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (5)

where |I⟩ = |nI1nI2...nIL⟩ with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I⟩ and |J⟩
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI =

∑
i hinIi + V

∑
i nIinI,i+1, acts like correlated disorder

[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance µ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = ⟨I|G(E )|J⟩ for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln #t as
a function of ln NF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting #t ∼ N −(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value #t = exp [⟨ln #I⟩] of the imaginary part
of the Feenberg self energy #I (E ) = Im[G−1

II (E )] − η. Here
⟨. . . ⟩ denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I ̸= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ
values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part #I (E ) of Feenberg self en-
ergy for −0.7 ! E ! −0.1. #I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence #I provides information of ergodicity or its absence.
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We expect !I ∼ O(1) in the ergodic phase and !I → 0
in the nonergodic phase as NF → ∞ in the thermodynamic
limit. In Fig. 4(b), we show ln !t as a function of ln NF ∝ L.
Deep in the ergodic phase !t saturates to O(1) value as L is
increased, whereas in the nonergodic phase, which includes
both NEE and MBL phases, !t falls off with a power law
in NF . Also the typical value Dt (E ) of the local many-body
density of states DI (E ) = (−1/π )ImGII (E ) shows similar be-
havior (Fig. 14 in Appendix D).

As discussed in Refs. [37,74], for nonergodic phase with
multifractal eigenstates, !t ∼ ηθ

c ∼ N −(1−Ds )
F for a broad-

ening parameter η ∝ N −1
F ≪ ηc, where θ > 0 and ηc ∼

N −z
F (0 < z < 1) is a characteristic energy scale much larger

than the mean many-body level spacing. The spectral fractal
dimension Ds = 1 − zθ lies between 0 and 1. In the inset of
Fig. 4(c), we show Ds as function of E , extracted from linear
fitting of the ln !t vs ln NF plots in Fig. 4(b). Deep in the
ergodic phase Ds = 1, whereas in the MBL and NEE phases
0 < Ds < 1. This implies that both MBL and NEE states are
essentially nonergodic extended, i.e., multifractal. However,
as we will discuss in Sec. V D, the distinction between NEE
and MBL states can be made in terms of the distribution of
!I .

At quarter filling, we only have a few system sizes ac-
cessible to our numerics. Thus, following Ref. [74], we use
a finite-size scaling analysis [40,72] across the ergodic-to-
nonergodic transition to estimate Ds more accurately in the
thermodynamic limit which we discuss in the next section.

B. Finite-size scaling for nonergodic-ergodic transition

To analyze the nonergodic-ergodic transition and obtain a
more accurate estimate of Ds, we perform scaling collapse of
our data in Fig. 4(b) using the following finite-size scaling
form [74]:

ln
!t

!c
=

⎧
⎨

⎩
Fvol

(NF
%

)
: E > Ec

Flin
( ln NF

ξ

)
: E < Ec

(6)

with !c = !t (E = Ec) ∼ N −(1−Dc )
F . In the entire nonergodic

phase, which includes MBL and NEE phases, we are able
to obtain a data collapse using the linear scaling for E <
Ec, where ξ plays the role of correlation length in the
FS [71,72,74]. In the asymptotic limit, x = (ln NF )/ξ ≫ 1,
the scaling function is given by Flin(x) ∼ −(1 − Dc)x with
ξ = (1 − Dc)/(Dc − Ds) [74]. Figure 5(a) shows the scal-
ing collapse of the data in the nonergodic phase for Ec =
−0.38. The fit to asymptotic scaling leads to ln(!t/!c) =
−0.18(ln NF )/ξ with ξ ∼ |δE |−β where δE = E − Ec and
β ≃ 0.34, as shown in the inset of Fig. 5(a). The asymptotic
scaling form implies the critical spectral fractal dimension
Dc = 0.82. The Ds extracted from ξ is shown in Fig. 4(c).

In the ergodic phase, we use volumic scaling for E > Ec
where % represents the nonergodic volume in FS [40,72,74].
The scaling collapse is shown in Fig. 5(b). For x = NF /% ≫
1, the asymptotic scaling form is Fvol(x) ∼ (1 − Dc) ln x
[74]. From the scaling collapse, we find ln(!t/!c) =
0.18 ln(NF /%) with Dc = 0.82, which is consistent with Dc
extracted from the asymptotic scaling in the nonergodic phase,
as discussed in the preceding paragraph. The extracted Dc

FIG. 5. Finite-size scaling collapse across nonergodic-ergodic
transition. (a) Finite-size scaling collapse of ln(!t/!c ) in the non-
ergodic phase using linear scaling. The asymptotic scaling form
is given by ln(!t/!c ) = −0.18(ln NF )/ξ where ln NF ∝ L. In-
set shows the power-law divergence of the correlation length ξ ∼
|δE |−β with β ≃ 0.34 and δE = (E − Ec ). (b) Finite size scaling
of ln(!t/!c ) in the ergodic phase with a volumic scaling form
Fvol(NF /%) where nonergodic-ergodic transition point is at Ec =
−0.38. In the asymptotic limit, ln(!t/!c ) ∼ 0.18 ln(NF /%) deep
in the ergodic phase implies (1 − Dc ) ≈ 0.18 at E = Ec, where
!c ∼ N −(1−Dc )

F . Inset shows KT-like essential singularity of the
nonergodic volume % ∼ exp[b/(δE )γ ] with γ ≈ 0.4, b ∼ O(1) and
δE = E − Ec near Ec.

is also consistent with Dc ≈ 0.8 directly found [Fig. 4(c)
(inset)] by fitting the data of Fig. 4(b) with !t ∼ N −(1−Ds )

F .
The nonergodic volume % shows a KT-like essential sin-
gularity such that % ∼ exp[b/(δE )γ ] where b ∼ O(1) and
γ ≈ 0.4, as shown in Fig. 5(b) (inset). In the ergodic phase
!t ∼ %−(1−Dc ) [74] such that it continuously vanishes as %
diverges on approaching the critical point. We find similar
kind of volumic and linear scaling collapses for a choice of Ec
within −0.38 ± 0.02 although the optimized scaling collapse
is obtained when Ec = −0.38.

Hence, this analysis reveals that Ds = 1 throughout the
ergodic phase and it discontinuously jumps to Ds < 1 in the
nonergodic phase with a critical Ds = Dc ≃ 0.8. In the next
section, we compare the fractal dimension directly extracted
from many-body wave function with the spectral fractal di-
mension Ds computed from the typical Feenberg self-energy.

C. Comparison between fractal dimensions from inverse
participation ratio and FS self-energy

The inverse participation ratio (IPR) is one of the most
important quantities in the context of localization transition.
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MBL and NEE states can be distinguished in terms of
Fock-space localization length
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FIG. 9. Fock-space localization length. [(a)–(d)] Variation of
ln[G(rIJ )] with FS-hopping distance rIJ in the ergodic (h =
0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike !t (L), the typical non-
local propagator G(rIJ ) = exp [⟨ln GIJ (E )⟩] can tell NEE
and MBL states apart. Here ⟨. . . ⟩ denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
dark dashed vertical lines denote the MBL-NEE and NEE-ergodic
transitions at Enc ≈ −0.56 and Ec ≈ −0.38, respectively.

rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ
in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln !I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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FIG. 9. Fock-space localization length. [(a)–(d)] Variation of
ln[G(rIJ )] with FS-hopping distance rIJ in the ergodic (h =
0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike !t (L), the typical non-
local propagator G(rIJ ) = exp [⟨ln GIJ (E )⟩] can tell NEE
and MBL states apart. Here ⟨. . . ⟩ denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
dark dashed vertical lines denote the MBL-NEE and NEE-ergodic
transitions at Enc ≈ −0.56 and Ec ≈ −0.38, respectively.

rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ
in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln !I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike !t (L), the typical non-
local propagator G(rIJ ) = exp [⟨ln GIJ (E )⟩] can tell NEE
and MBL states apart. Here ⟨. . . ⟩ denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
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rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ
in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln !I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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TABLE I. Classification of MBL, NEE, and ergodic phases in the GAAH model based on various real-space and Fock-space diagnostics.
Here L and NF are the number of sites on the real-space and Fock-space lattices, respectively.

that we have robust ergodic (h = 0.6, E = 0), NEE (h = 0.6,
E = −0.49), and MBL (h = 1.8, E = −0.49) states, i.e., we
are deep within the phases. We also look at another combi-
nation, h = 0.6, E = −0.66, which should correspond to the
MBL phase based on previous studies [55]. However, as we
discuss later, we find that states for this parameter do not show
very clear-cut MBL behaviors; they appear MBL-like in some
diagnostics and NEE-like in others. Below we briefly describe
the classification of the phases based on these diagnostics. A
summary can be found in Table I.

Half-chain entanglement entropy SA. The entanglement
entropy is obtained as SA = −Tr(ρA ln ρA) from the reduced

FIG. 1. Standard diagnostics for MBL, NEE, and ergodic phases:
(a) the half-chain (A) entanglement entropy SA, (b) subsytem particle
number fluctuations (variance) δ2NA, and (c) energy level-spacing
ratio r as function of L in the three phases, ergodic (h = 0.6, E = 0),
NEE (h = 0.6, E = −0.49), and MBL (h = 1.8, E = −0.49). (d) r
as a function of E for increasing L for h = 0.6.

density matrix ρA = TrB(ρ) for the pure-state density
matrix, ρ = |#E⟩ ⟨#E |. Here |#E⟩ is a many-body eigenstate
at an energy density E . As shown in Fig. 1(a), SA increases
with L in ergodic and NEE phases, implying a volume-law
entanglement ∼L. On the contrary, SA remains almost in-
dependent of system size in the MBL phase, i.e., exhibits
an area law SA ∼ L0, as expected [16]. Thus, though the
system-size dependence of bipartite entanglement can tell
MBL and the extended states apart, NEE and ergodic phases
cannot be distinguished easily based on this diagnostic. Er-
godic eigenstates have a thermal volume-law entanglement,
i.e., SA ≃ sth(E )L/2, with sth(E ) thermal entropy per site at
energy density E , for large L. NEE states, on the other hand,
are expected to exhibit [53,75] a subthermal volume-law en-
tanglement entropy, i.e., the coefficient of linear L dependence
less than sth(E ). However, this distinction might be hard to
verify for the limited system sizes accessed in ED [53].

Subsystem particle number variance. δ2NA measures
fluctuations of total number of particles N̂A =

∑L/2
i=1 ni in

the subsystem A compared to the average number NA =∑L/2
i=1 ⟨#E | ni |#E⟩ at an energy density E . As shown in

Fig. 1(b), δ2NA decreases with L in the ergodic phase, as
expected from ETH [30–33], while it increases and then tends
to saturate with L in MBL and the NEE phases [55]. As a
result, this quantity can differentiate the ergodic states from
nonergodic states.

Level-spacing ratio. The level-spacing ratio [5,76] ri =
min(si, si+1)/ max(si, si+1) is obtained from si = Ei+1 − Ei
with Ei’s being the many-body energy eigenvalues arranged
in ascending order. We compute the arithmetic mean of ri to
obtain the average level-spacing ratio r(E ) at energy density
E . The ergodic phase can be identified with the gaussian-
orthogonal ensemble (GOE) value r ≃ 0.528 and the MBL
phase with the Poissonian value r ≃ 0.386. In Fig. 1(c), r
approaches GOE and Poissonian values with increasing L for
the ergodic and MBL phases, respectively, whereas r tends to
an intermediate value for the NEE phase. We also discuss the
level-spacing distribution in the three phases in Appendix A.
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FIG. 3. Single-particle excitations in the interacting GAAH model. (a) ρt vs ω for increasing L in the ergodic phase (h = 0.6, E = 0),
(b) NEE phase (h = 0.6, E = −0.49), (c) MBL phase (h = 1.8, E = −0.49), and (d) for (h = 0.6, E = −0.66). The vertical dot-dashed line
shows the location of the single particle mobility edge in the noninteracting limit.

that single-particle excitations are localized for ω < ϵc, where
ρt decreases with L but ρa does not. For ω > ϵc, the excita-
tions are delocalized, and both ρt and ρa remain finite in the
thermodynamic limit. In Fig. 2, the gapped region are marked
by dashed curves where both ρt (ω) and ρa(ω) decrease with
L. Hence by combining both ρt (ω) and ρa(ω), we are able
to detect the mobility edge as well as the gapped region in
the single-particle excitation spectrum of the GAAH model.
In the following, we employ the same diagnostics to look for
localized and delocalized excitations in the interacting system.

B. Interacting system: V ̸= 0

In the interacting case, we use Eq. (2) to obtain the LDOS
via ED for system sizes L = 8, 12, and 16. Remarkably, as
we show in Figs. 3(a)–3(c), different types of excitations, i.e.,
localized, delocalized, and gapped, as discussed in the preced-
ing section, also exist for V ̸= 0. For the ergodic phase (h =
0.6, E = 0) [Fig. 3(a)] ρt (ω) approaches a finite value over
the entire band (|ω| ! 4) except the gapped region (dashed
line), implying many-body delocalization of all single-particle
excitations due to interaction.

In contrast, in the MBL phase (h = 1.8, E = −0.49)
[Fig. 3(c)] all single-particle excitations, below and above
the noninteracting mobility edge ϵc, are localized, as evinced
by the reduction of ρt (ω) for all ω with L. This is a di-
rect signature of the MBL proximity effect [58–60]. Through
this mechanism, an otherwise delocalized system can become
localized when coupled with a localized system. The delocal-
ized system effectively sees an additional disorder through the
coupling to the localized system [58]. The MBL proximity
effect has been studied via perturbative and ED calculations
[58–60] in two coupled chains of particles or spins. In this
ladder-like system, one of the chains is in the delocalized
phase and the other in the MBL phase, and the chains are
coupled via local density-density type interaction. Reference
[58–60] have shown that the delocalized chain can become
localized due to the coupling with the MBL chain.

In previous studies [50–53,55,56], the MBL proximity ef-
fect has been invoked to rationalize the existence of the MBL
phase in the GAAH model with single-particle mobility edge.
In this case, the Hamiltonian of Eq. (1) can be rewritten in the
basis of the single-particle eigenstates ψν (i) as

H =
∑

µ

ϵµc†
µcµ +

∑

µνδγ

Vµνδγ c†
µc†

νcδcγ , (4)

where c†
µ =

∑
i ψ

∗
µ(i)c†

i and Vµνγ δ = V
∑

i ψ
∗
µ(i)ψ∗

ν (i +
1)ψγ (i)ψδ (i + 1). Thus the single-particle states for ϵν > ϵc
constitute the delocalized system and those for ϵν < ϵc form
the localized system here. They are coupled via more generic
and nonlocal interaction than the simpler models considered
in previous studies [58–60] of MBL proximity effect.
Nevertheless, we can clearly observe the MBL proximity
effect in Fig. 3(c), where the delocalized single-particle
excitations (ϵ > ϵc) of the noninteracting (V = 0) system are
localized in the presence of interaction V ̸= 0, presumably
due to the coupling with the localized single-particle states
(ϵ < ϵc).

On the contrary, in the NEE phase (h = 0.6, E = −0.49),
ρt (ω) decreases with L for ω ! ϵc and approaches a finite
value increasing with L for ω " ϵc, as shown in Fig. 3(b). This
clearly indicates the persistence of many-body single-particle
mobility edge, that separates localized and delocalized excita-
tion even for V ̸= 0, in the NEE phase. The mobility edge for
single-particle excitations can be deduced more clearly in the
semilog plots of Figs. 12(a) and 12(b) in Appendix B. Thus,
in the NEE phase, neither the localized single-particle states
are able to localize all the delocalized excitations via the MBL
proximity effect nor the delocalized states are able to act as a
bath to delocalize all the localized excitations via interaction.
However, it is not possible to determine the mobility edge for
single-particle excitations accurately for the interacting case
(V ̸= 0), e.g., from Fig. 3(b).

Figure 3(d) shows single-particle excitations for (h=0.6,
E = −0.66). In terms of the single-particle excitations, the
states at this parameter value, which has been previously
characterized as part of the MBL phase [55], are hardly dis-
tinguishable from the NEE states. This is consistent with the
level statistics not converging to the Poisson value in this
regime as discussed earlier (Appendix A). Although the states
in this regime show MBL-like behavior through SA [55], i.e.,
SA approaches an area-law (constant), for system sizes acces-
sible in ED. Note, however, that the computation of the LDOS
requires ED in three particle sectors (N − 1, N, N + 1), as
evident from Eq. (2), and thus is limited to smaller system
sizes (L ! 16) than those employed for the calculations of SA,
δ2NA, and Fock-space diagnostics, discussed later. As a result,
the NEE-like single-particle excitation spectrum [Fig. 3(d)]
for the MBL states at (h = 0.6, E = −0.66) might be an
artifact of the limited system size, and the energy binning too
close to the ground state, as discussed earlier in Sec.III. The
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FIG. 9. Fock-space localization length. [(a)–(d)] Variation of
ln[G(rIJ )] with FS-hopping distance rIJ in the ergodic (h =
0.6, E = −0.18), NEE (h = 0.6, E = −0.46), and MBL phases
[(h = 1.8, E = −0.49), (h = 0.6, E = −0.66)], respectively. G(rIJ )
for the smallest rIJ has been scaled such that plots for different L all
start from the same point.

This is in spite of the fact that the states for h = 0.6 and
E < Enc show anomalous behaviors, in between MBL and
NEE, when all the other diagnostics, like entanglement en-
tropy, subsystem particle number fluctuations [55], level
spacing statistics (Appendix A) and real-space single-particle
excitations [Fig. 3(d)], are combined. Here we would like to
note that, currently, we do not have any theoretical under-
standing of behavior of the distribution of the FS Feenberg
self-energy and its various Gaussian/non-Gaussian character-
istics in the MBL, NEE, and ergodic phases and across the
transitions. We report here the apparent scale invariance of
the non-Gaussian characteristics at the putative MBL-NEE
transition as interesting observations. In the future, it will
be worthwhile to get a better theoretical understanding of
the distribution of the local self-energy and find out suitable
finite-size scaling ansatzes for the non-Gaussianity parameters
across the MBL-NEE and NEE-ergodic transition.

In the next section, we show that another distinction be-
tween the MBL and NEE states can be obtained from the
system-size dependence of an FS localization length.

VI. FOCK-SPACE LOCALIZATION LENGTH

We now show that, unlike !t (L), the typical non-
local propagator G(rIJ ) = exp [⟨ln GIJ (E )⟩] can tell NEE
and MBL states apart. Here ⟨. . . ⟩ denotes average over
φ and all the off-diagonal elements GIJ for pair of FS
sites connected by hopping distance rIJ , i.e., the min-
imum number of nearest-neighbor hops to reach from
I to J on the middle slice. Figure 9(a)–9(d) show
ln[G(rIJ )] as a function of rIJ for increasing L in the
ergodic, NEE, and MBL [Figs. 9(c) and 9(d)] phases, re-
spectively, for (h, E ) values same as in Figs. 3(a)–3(d).
In all the phases, the plots show a linear regime, ln G(rIJ ) ∝

FIG. 10. Fock-space transitions from localization length.
System-size L dependence of FS localization length ξF extracted
from GIJ (see main text) as a function of E for h = 0.6. The grey and
dark dashed vertical lines denote the MBL-NEE and NEE-ergodic
transitions at Enc ≈ −0.56 and Ec ≈ −0.38, respectively.

rIJ , before deviating from the linearity at larger rIJ depending
on L. The deviation of linearity of ln G(rIJ ) vs rIJ for larger
rIJ ’s in Figs. 9(a)–9(c) presumably corresponds to rare hop-
ping paths and associated multiple length scales in the FS. The
linear regime implies existence of an FS decay length ξF (L)
through the relation G(rIJ ) ∼ exp [−rIJ/ξF (L)]. The curves
for different L approximately overlap for a certain range of rIJ
in the MBL phase (h = 1.8, E = −0.49) [Fig. 9(c)] indicating
a localization length ξF almost independent of L or weakly
dependent on L, unlike the decay length in the ergodic (h =
0.6, E = −0.18) and NEE phases (h = 0.6, E = −0.46) in
Figs. 9(a,b), where ξF evidently has quite strong dependence
on L.

In Fig. 9(d), we show ln[G(rIJ )] as a function of FS-
hopping distance rIJ for h = 0.6 and E = −0.66. Similar
to Fig. 9(c), which corresponds to the MBL phase, in
Fig. 9(d), we also find that all the curves in the linear
regime, ln G(rIJ ) ∝ rIJ , for different L almost overlap, im-
plying G(rIJ ) ∼ exp(−rIJ/ξF ) with L-independent ξF . Hence,
the states for (h = 0.6, E = −0.66) [Fig. 9(d)] show MBL
behavior, consistent with that of SA [55], unlike the NEE-
like behavior seen in single-particle excitations spectrum
[Fig. 3(d)] and in level-spacing statistics [Fig. 11(d)]. We
show the L dependence of ξF as a function of E in Fig. 10
for h = 0.6 across the MBL, NEE, and ergodic phases. It is
evident that ξF is almost independent of L in the MBL phase,
whereas ξF increases with L in the NEE and ergodic phases.
Based on this and the non-Gaussianity of the distribution
of ln !I (Sec. V D), we deduce an MBL-to-NEE transition
around E ≈ −0.56 consistent with previous estimates [55].
We leave a detailed finite-size scaling analysis of the FS local-
ization length across the MBL-NEE and NEE-ergodic phase
transitions for future study.

VII. DISCUSSION AND CONCLUSIONS

In summary, by combining the diagnostics of real-space
single-particle excitation, and multifractality, statistics of lo-
cal self-energy and decay length in Fock space, we provide a
direct signature of MBL proximity effect and classification of
the MBL, NEE, and ergodic phases in the GAAH model.
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NEE-like level spacing statistics (Appendix A) at this param-
eter value might also be due to energy binning. Future studies
with larger systems and finer energy binning is required for
(h = 0.6, E = −0.66) to resolve this issue.

Overall, we find that qualitative distinctions between MBL,
NEE, and ergodic phases in the GAAH model can be made
based on single-particle excitations in real space, as cap-
tured by typical LDOS. Thus the latter provides a diagnostic
complementary to standard diagnostics, like entanglement
entropy, subsystem particle number fluctuations, and level
spacing statistics, to distinguish the phases (Table I). Due to
the many-body nature of an interacting system, yet another
complementary perspective [65–73] of the phases and noner-
godic to ergodic phase transition can be obtained by looking
at the localization and ergodicity in the Fock space, as we
discuss in the next section.

V. FOCK-SPACE PROPAGATOR

In the Fock-space the Hamiltonian of Eq. (1) can be
rewritten as a tight-binding model in terms of the occupation
number basis {|I⟩} as [66,67,70]

H =
∑

I,J

TIJ |I⟩ ⟨J| +
∑

I

EI |I⟩ ⟨I| , (5)

where |I⟩ = |nI1nI2...nIL⟩ with onsite real-space occupation
ni ∈ 0 or1. Here “FS hopping” TIJ = −t when |I⟩ and |J⟩
are connected by a single nearest-neighbor hop in real space
and TIJ = 0 otherwise. The onsite potential at the FS site I ,
EI =

∑
i hinIi + V

∑
i nIinI,i+1, acts like correlated disorder

[65–70]. The many-body density of states (MDOS) (per FS
site) of the GAAH model, D(E ) = (1/NF )

∑
n δ(E − En), for

large L approaches a Gaussian function of the many-body
energy E with the mean energy Ē ∝ L and variance µ2

E ∝
L, where the proportionality constants are found from ED
(Appendix C). In order to approach a well-defined thermody-
namics limit through our numerical calculations we consider
the rescaled Hamiltonian H̃ = H/

√
L, as in the earlier studies

[66,67,69].
The FS sites can be organized in slices [74], such that

any site in a particular slice is connected to the sites of
nearest-neighbor slices via a single FS hopping, as shown
in Fig. 4(a). This locality in the FS lattice allows for an
efficient implementation of the standard recursive Green’s
function method [81–84], which has been recently applied to
FS lattice [74] for a system with the random disorder. The
scaled retarded FS propagator at energy E is given by G(E ) =
(E

√
L + iη − H̃ )−1 with a broadening η = 1/[

√
LNF D(E )],

i.e. the scaled mean many-body level spacing, at the energy
density E = E/L. Note that that recursive Green’s function
method [81–84] obtains the G(E ) exactly and there is no ap-
proximation involved here. The organization [Fig. 4(a)] of the
FS lattice into slices facilitates a transparent implementation
[74] of the method in the Fock space. Here we also note that
the calculations of FS propagator do not have any energy
binning issue, unlike the other diagnostics discussed earlier,
since the FS propagator by definition is calculated at given
energy density E .

In particular, we compute GIJ (E ) = ⟨I|G(E )|J⟩ for I, J on
the middle slice [Fig. 4(a)]. The diagonal element GII provides

FIG. 4. Feenberg self energy and multifractality in the Fock
space. (a) FS lattice constructed out of real-space occupation-number
basis states (orange circles), illustrated for L = 8 at quarter filling,
starting at the top with |11..0000⟩, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (grey lines) are indicated. (b) ln #t as
a function of ln NF for increasing E (color bar). (c) The fractal
dimension Ds is found from the finite size scaling theory. Ds = 1
in the ergodic phase and Ds < 1 in the nonergodic extended (NEE)
and MBL phases. Ds jumps at the nonergodic-ergodic transition
point Ec = −0.38 denoted by the dark dashed vertical line. The
grey dashed vertical line denotes the MBL-NEE transition at Enc =
−0.56, estimated from previous study [55] and statistics of Feenberg
self-energy [Sec.V D]. Inset shows Ds extracted from (a) by directly
fitting #t ∼ N −(1−Ds )

F .

an order parameter [74] for nonergodic-to-ergodic transition,
namely, typical value #t = exp [⟨ln #I⟩] of the imaginary part
of the Feenberg self energy #I (E ) = Im[G−1

II (E )] − η. Here
⟨. . . ⟩ denotes the average over disorder realizations and FS
sites in the middle slice. The off-diagonal elements GIJ (E )
(I ̸= J) encode information about the nonlocal propagation of
an FS excitation. A Fock-space localization length or decay
length ξF can be extracted from GIJ in the MBL phase, as
we discuss below. For numerical computation in the FS, we
average over 2000 and 1000 values of φ for L = 16 and 20,
respectively. For L = 24, we average over 400 and 100 φ
values for the local and nonlocal propagators, respectively.

A. Nonergodic-to-ergodic transition in the Fock-space

We study the transition as a function of energy density for
h = 0.6. Based on standard diagnostics like transport, entan-
glement entropy, and variance of local observable, previous
studies [49,55] have detected MBL-to-NEE and NEE-to-
ergodic transition around energy density E1 ≈ −0.60 and
E2 ≈ −0.39, respectively.

We compute the imaginary part #I (E ) of Feenberg self en-
ergy for −0.7 ! E ! −0.1. #I (E ) quantifies the inverse life-
time of an excitation created at FS site I with energy E [85].
Hence #I provides information of ergodicity or its absence.
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MBL: Real-space picture
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Spectral signatures of MBL
o Local spectral function of an eigenstate 𝜌%,�(𝜔)
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Controversies and Caveats

o Till ∼2020, the big question was about the nature of MBL transition

ED ⇒ 𝜈 ≤ 1 < 2/𝑑 Phenomenological RGs  𝜈 ≃ 2.5 − 3 > 2/𝑑

GO
E

Anderson 
Insulatoro MBL unstable for 𝑑 > 1 due to rare regions

of weak disorder (thermal bubble)
De Roeck and Huveneers, PRB (2017) 

Indications of chaos in the MBL phase
Suntajs et al, PRE, PRB (2020)

Numerical evidences of delocalizatin in the
MBL phase
Sels, Polkovnikov et al.

Long-range resonances in the MBL spectrum
Mornigstar, Huse et al.

MBL maybe unstable
in the thermodynamic limit
at any finite disorder even 
in 1d

vs.
MBL transition shifted much 
larger 𝑊G



Crowley & Chandran, Sci. Post. (2022)

Finite-size MBL phenomenology


