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Inspiration for this work

▸ “On the one-dimensional “learning from neighbours” model” (2010),
by Antar Bandyopadhyay, Rahul Roy and Anish Sarkar.

▸ They studied a model of a discrete-time interacting particle system
on Z in which infinitely many changes are allowed at each time-step.

▸ Imagine chameleons of two colours, blue (B) and red (R) inhabiting
the cells in Z. At each time-step, each chameleon tosses a coin (the
outcomes of the coins are assumed i.i.d.).

▸ If the coin-toss-outcome is a success, then the chameleon retains its
colour.

▸ Else, it looks at the colours and coin-toss-outcomes of its 2 nearest
neighbours and changes its colour if and only if, out of its 2 neigh-
bours and itself, the proportion of successes among vertices of the
other colour exceeds the proportion of successes among vertices of
its own colour.
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How the transitions happen

u1 u u2

The colours of u1, u and u2 at time-step t:

Let Xt(u1), Xt(u) and Xt(u2) be the coin-toss-outcomes associated with u1, u

and u2 respectively at time-step t. When Xt(u) = 0, then at time-step t + 1:

u1 u u2
? ?

if and only if Xt(u1) +Xt(u2) ≥ 1, and

u1 u u2
? ?

if Xt(u1) = Xt(u2) = 0.
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How the transitions happen

u1 u u2

The colours of u1, u and u2 at time-step t:

Let Xt(u1), Xt(u) and Xt(u2) be the coin-toss-outcomes associated with u1, u

and u2 respectively at time-step t. When Xt(u) = 0, then at time-step t + 1:

u1 u u2
? ?

if and only if Xt(u2) = 1, whether Xt(u1) = 1 or not

u1 u u2
? ?

if Xt(u2) = 0.
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Motivation for such a model

▸ One motivation for studying such models arises from the notion of
“social learning” studied by economists.

▸ “Rule of thumb for social learning” (1993), Ellison and Fudenberg
introduced the concept of social learning. They studied how the
speed of learning and market equilibrium is affected by social net-
works and other institutions governing communication among mar-
ket participants.

▸ Two other papers that studied such models are “Learning from
neighbours” (1998) and “A non-cooperative model of network for-
mation” (2000) by Bala and Goyal.

▸ In “Technology diffusion by learning from neighbours” (2004), Chat-
terjee and Xu introduced a model consisting of particles of two types
inhabiting the cells in Z, where the type of each particle evolves with
time depending on the behaviour of its neighbouring particles.
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Our model

▸ We let Tm denote the rooted tree in which each vertex has precisely
m children, for any m ∈ N with m ⩾ 2.

▸ We let Ct(u) ∈ {B,R} denote the colour of a vertex u ∈ Tm at time-
step t.

▸ We assume that {C0(u) ∶ u ∈ Tm} is a collection of i.i.d. random
variables, with

C0(u) =
⎧⎪⎪⎨⎪⎪⎩

B with probability π0,

R with probability 1 − π0

for some π0 ∈ [0,1].
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Questions for us all!

Interesting questions that we do not know the answers to, yet:

▸ What happens if {C0(u) ∶ u ∈ Tm} is not an i.i.d. collection of ran-
dom variables?

▸ Can we at least say something if we assume that {C0(u) ∶ u ∈ Tm} is
a collection of independent random variables, not necessarily iden-
tically distributed?
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Our ‘general’ updating / learning rule

▸ We define a policy function f ∶ [m] → [0,1], where [m] =
{0,1,2, . . . ,m}.

▸ We assume that this function is symmetric, i.e.

f(k) + f(m − k) = 1 for each k ∈ [m].

▸ Let u ∈ Tm, and denote its children by u1, u2, . . . , um.

▸ Then we define

f(k) = P [Ct+1(u) = B∣
m

∑
i=1

1Ct(ui)=B = k]

for each k ∈ [m].
▸ The update from Ct(u) to Ct+1(u) happens independently over all

vertices u of Tm.
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The absolute majority updating / learning rule

▸ The update rule which we are particularly interested in is the abso-
lute majority rule.

▸ Let Xt(u) ∈ {0,1} denote the outcome of the coin-toss performed by
vertex u at time-step t. Assume {Xt(u) ∶ u ∈ Tm, t ∈ N0} i.i.d. with
each Xt(u) ∼ Bernoulli(p) for some p ∈ [0,1].

▸ Let {Yt(u) ∶ u ∈ Tm, t ∈ N0} be a collection of i.i.d. Bernoulli(12) ran-
dom variables, independent of the former collection.

▸ The collection {Xt(u) ∶ u ∈ Tm}⋃{Yt(u) ∶ u ∈ Tm} is independent of
{Cs(u) ∶ u ∈ Tm, s ∈ [t]}.
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The absolute majority update rule, continued

▸ As before, let u1, u2, . . . , um denote the children of u.

▸ Conditioned on the colours Ct(u1),Ct(u2), . . . ,Ct(um) of the chil-
dren at time t,

the distribution of the colour Ct+1(u) of the parent
u at time t + 1 is defined as follows:

Ct+1(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B if ∑m
i=1Xt(ui)1Ct(ui)=B > ∑

m
i=1Xt(ui)1Ct(ui)=R,

B if ∑m
i=1Xt(ui)1Ct(ui)=B = ∑

m
i=1Xt(ui)1Ct(ui)=R

and Yt(u) = 1,
R otherwise.

▸ In other words, u is assigned blue if the number of blue children
of u with successful coin-tosses exceeds the number of red children
of u with successful coin-tosses, or if these two numbers are exactly
the same and the tie-breaking coin-toss Yt(u) results in a success.
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When m = 3, at time-step t:

u1 u2 u3

u

u1 u2 u3

u

? ? ?

if either Xt(u1) +Xt(u2) ≥ 1 and Xt(u3) = 0

or Xt(ui) = 1 for each i = 1, 2, 3

or Xt(u1) +Xt(u2) = 1 and Xt(u3) = 1 and Yt(u) = 1

or Xt(ui) = 0 for each i = 1, 2, 3 and Yt(u) = 1

At time-step t + 1:
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When m = 3, at time-step t:

u1 u2 u3

u

u1 u2 u3

u

? ? ?

if either Xt(u1) = 1 and Xt(u2) = Xt(u3) = 0

or Xt(u1) = 1 and Xt(u2) +Xt(u3) = 1 and Yt(u) = 1

At time-step t + 1:

or Xt(ui) = 0 for each i = 1, 2, 3 and Yt(u) = 1
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The absolute majority policy function

▸ We condition on ∑m
i=1 1Ct(ui)=B = k, i.e. there being exactly k blue

children of u at time-step t.

▸ In particular, we let Ct(ui) = B for each i = 1,2, . . . , k, and Ct(ui) =
R for each i = k + 1, . . . ,m.

▸ Then

fabs(k) = P [
k

∑
i=1

Xt(ui) >
m

∑
i=k+1

Xt(ui)]

+P [
k

∑
i=1

Xt(ui) =
m

∑
i=k+1

Xt(ui), Yt(u) = 1] ,

for each k ∈ {0,1, . . . ,m} (here, the sum over an empty set simply
equals 0).

▸ Easy to check that the symmetry condition is satisfied.
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Recursive distributional equations

▸ Let the distribution of Ct(u), for each u, be as follows:

Ct(u) =
⎧⎪⎪⎨⎪⎪⎩

B with probability πt,

R with probability 1 − πt

for some πt ∈ [0,1]. Since we begin with an i.i.d. initial distribution,
the joint distribution remains i.i.d. throughout.

▸ Then

P [
m

∑
i=1

1Ct(ui)=B = k] = (
m

k
)πk

t (1 − πt)m−k.

▸ Thus

πt+1 = P [Ct+1(u) = B] =
m

∑
k=0

fabs(k)(
m

k
)πk

t (1 − πt)m−k.
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Recursive distributional equations, continued

▸ Let us define the function

gabs(x) =
m

∑
k=0

fabs(k)(
m

k
)xk(1 − x)m−k,

for each k ∈ [m].
▸ The recurrence relation in the previous slide yields

πt+1 = g (πt) for each t ∈ N0.

▸ If π ∶= limt→∞ πt exists, then it must satisfy

π = gabs(π).

Thus, our task boils down to investigating all fixed points of the
function gabs in [0,1].
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Fixed points of gabs

▸ Since fabs satisfies the symmetry condition, π = 1
2 is a fixed point

for all p ∈ [0,1] (recall that Xt(u) ∼ Bernoulli(p) for each u ∈ Tm).

▸ Since fabs satisfies the symmetry condition, π is a fixed point of gabs
if and only if 1 − π is a fixed point of gabs.

Theorem (P., Sarkar)

For each m ∈ N with m ⩾ 2, there exists p(m) ∈ (0,1) such that the
function gabs has a unique fixed point for all p ⩽ p(m), and multiple
fixed points for all p > p(m).
This result is proved by proving the following:

Theorem (P., Sarkar)

For each m ∈ N with m > 4, for each p ∈ [0,1], the function gabs is
strictly convex in the interval [0, 12] and strictly concave in the interval

[1
2 ,1].
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Idea for proving the second result

▸ We can write

g′(x) =mE{fabs(X + 1) − fabs(X)} , where X ∼ Binomial (m − 1, x) .

▸ Applying the same idea one more time, we obtain

g′′(x) =m(m − 1)E{fabs(Y + 2) − 2fabs(Y + 1) + fabs(Y )} ,
where Y ∼ Binomial (m − 2, x)

=m(m − 1)
m−2

∑
j=0

{fabs(j + 2) − 2fabs(j + 1) + fabs(j)}

(m − 2
j
)xj(1 − x)m−2−j .

▸ We focus on determining the sign of this last summation.
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Idea for proof, continued

▸ Using the symmetry condition satisfied by fabs, we can rewrite g′′

as

g′′(x) =m(m − 1)
⌈m−4

2
⌉

∑
j=0

{fabs(j + 2) − 2fabs(j + 1) + fabs(j)}

(m − 2
j
)xj(1 − x)j {(1 − x)m−2−2j − xm−2−2j} .

▸ If we can show that fabs(j + 2) − 2fabs(j + 1) + fabs(j) ⩾ 0 for each
0 ⩽ j ⩽ ⌈m−42

⌉, then for x ⩽ 1
2 , we obtain g′′(x) ⩾ 0, and for x > 1

2 , we
have g′′(x) < 0.
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Idea for computing fabs(j + 2) − 2fabs(j + 1) + fabs(j)

▸ Recall that, if, at time t, we fix the colours of the children u1, u2, . . . , uj
to be B and the colour of uj+1, uj+2, . . . , um to be R, then

fabs(j) = P

⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) >
m

∑
i=j+1

Xt(ui)
⎤⎥⎥⎥⎥⎦

+P
⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+1

Xt(ui), Yt(u) = 1
⎤⎥⎥⎥⎥⎦
.

▸ Similar expressions hold for fabs(j + 1) and fabs(j + 2).
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Idea for computing fabs(j + 2) − 2fabs(j + 1) + fabs(j)

▸ We compute fabs(j + 2) − 2fabs(j + 1) + fabs(j) by considering the
following different cases.

▸ Case 1: ∑j
i=1Xt(ui) > ∑m

i=j+3Xt(ui) + 2.
▸ Case 2: ∑j

i=1Xt(ui) = ∑m
i=j+3Xt(ui) + 2.

▸ Case 3: ∑j
i=1Xt(ui) = ∑m

i=j+3Xt(ui) + 1.
▸ Case 4: ∑j

i=1Xt(ui) = ∑m
i=j+3Xt(ui).

▸ Case 5: ∑j
i=1Xt(ui) = ∑m

i=j+3Xt(ui) − 1.
▸ Case 6: ∑j

i=1Xt(ui) = ∑m
i=j+3Xt(ui) − 2.

▸ Case 7: ∑j
i=1Xt(ui) < ∑m

i=j+3Xt(ui) − 2.
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Demonstration of analysis in one such case

▸ Case 2: where ∑j
i=1Xt(ui) = ∑m

i=j+3Xt(ui) + 2. Here, the values of
Xt(uj+1) and Xt(uj+2) act as pivots.

▸ For instance,

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2 >Xt(uj+1) +Xt(uj+2) +
m

∑
i=j+3

Xt(ui)

if and only if Xt(uj+1) +Xt(uj+2) < 2, whereas

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2 =Xt(uj+1) +Xt(uj+2) +
m

∑
i=j+3

Xt(ui)

if and only if Xt(uj+1) =Xt(uj+2) = 1.
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Demonstration of analysis in one such case
▸ Thus, the contribution of Case 2 to fabs(j) is

P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2, (Xt(uj+1),Xt(uj+2))

∈ {(0,0), (0,1), (1,0)}] +P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2,

Xt(uj+1) =Xt(uj+2) = 1, Yt(u) = 1].
▸

j+1

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2 +Xt(uj+1) >
m

∑
i=j+3

Xt(ui) +Xt(uj+2)

no matter what the values of Xt(uj+1) and Xt(uj+2) are. Thus, the
contribution of this case to fabs(j + 1) is

P

⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2
⎤⎥⎥⎥⎥⎦
.
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Demonstration of analysis in one such case
▸ The same is true for the contribution of Case 2 to fabs(j + 2).
▸ The contribution of Case 2 to fabs(j + 2) − 2fabs(j + 1) + fabs(j) is

P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2] − 2P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2]

+P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2, (Xt(uj+1),Xt(uj+2))

∈ {(0,0), (0,1), (1,0)}] +P [
j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2,

Xt(uj+1) =Xt(uj+2) = 1, Yt(u) = 1]

= − 1

2
P [

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2,Xt(uj+1) =Xt(uj+2) = 1]

= − p2

2
P [

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2].
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Putting together all the cases
▸ Arguing likewise, we obtain such a simplified expression for the

contribution of each case to fabs(j + 2) − 2fabs(j + 1) + fabs(j).
▸ Adding them yields

2

p2
{fabs(j + 2) − 2fabs(j + 1) + fabs(j)} =

P

⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) − 2
⎤⎥⎥⎥⎥⎦
−P
⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 2
⎤⎥⎥⎥⎥⎦

+P
⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) − 1
⎤⎥⎥⎥⎥⎦
−P
⎡⎢⎢⎢⎢⎣

j

∑
i=1

Xt(ui) =
m

∑
i=j+3

Xt(ui) + 1
⎤⎥⎥⎥⎥⎦
.

▸ Recall that we only consider 0 ⩽ j ⩽ ⌈m−42
⌉, and we show that in

this range, each of the above differences is strictly positive for each
p ∈ [0,1]. Incorporating into the previously shown expression for
g′′(x), we conclude that g′′(x) > 0 for x ∈ [0, 12) and g′′(x) < 0 for

x ∈ (12 ,1].
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To get the first result from the second

(α, α)

(
1
2,

1
2

)

(1− α, 1− α)

(
1
2,

1
2

)

y = gabs(x)

y = x

y = gabs(x)

y = x

Here, g′abs(α) < 1 and g′abs

(
1
2

)
> 1. Here, g′abs

(
1
2

)
≤ 1.

This allows us to conclude that gabs has a unique fixed point if and
only if g′ (12) ⩽ 1.
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To get the first result from the second
▸ It suffices to show that there exists p(m) ∈ (0,1) such that

g′abs (
1

2
) ⩽ 1 for each p ∈ [0, p(m)],

and

g′abs (
1

2
) > 1 for each p ∈ (p(m),1].

▸ We show this by showing that g′abs (12) is a strictly increasing func-
tion of p.

▸ Writing

g′ (1
2
) =m

m−1

∑
j=0

{fabs(j + 1) − fabs(j)}(
m − 1
j
)(1

2
)
m−1

,

we prove a formula for d
dpfabs(j) for each j using an idea similar to

proving Russo’s formula.
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Further questions we could not address
▸ Recall that in “On the one-dimensional “learning from neighbours”

model”, the authors studied a policy function that takes into ac-
count proportional majority.

▸ When we try to study the same in our set-up, we run into computa-
tional complications. Is it possible to avoid that and get meaningful
results?

▸ In “On the one-dimensional “learning from neighbours” model”,
the authors allowed each particle to retain, at time-step t + 1, its
colour from time-step t, unless the proportion of successes among
vertices (in its neighbourhood) of the other colour strictly exceeds
the proportion of successes among vertices of its own colour. If we
incorporate this into our set-up, what happens?

▸ What about general policy functions that satisfy the symmetry con-
dition? We could find necessary and sufficient conditions for the
corresponding function g to have a unique fixed point in [0,1] only
for m ∈ {2,3,4}. What about higher values of m?
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Thank you!
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