Meeting of Random Walks \& Consensus Dynamics on Random Directed Graphs

LUCA AVENA (DIMAI, Florence)

ICTS-NETWORKS workshop "Challenges in Networks", Bengaluru, January 30, 2024.
joint work with Federico Capannoli, Rajat Hazra and Matteo Quattropani

Voter model (on finite graphs)

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process $\left(\eta_{t}\right)_{t>0}$ with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=1 / 0=\text { Blue/Red opinion on vertex } x \text { at time } t
$$

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process $\left(\eta_{t}\right)_{t \geq 0}$ with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=1 / 0=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process $\left(\eta_{t}\right)_{t \geq 0}$ with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=1 / 0=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

and infinitesimal generator, acting on $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, given by

$$
L_{\text {voter }} f(\eta)=\sum_{x \in V} \sum_{y \sim x} \frac{1}{d_{x}}\left[f\left(\eta^{x \leftarrow y}\right)-f(\eta)\right]
$$

with $d_{x}=$ (out-)degree of x and

$$
\eta^{x \leftarrow y}(z)= \begin{cases}\eta(y), & \text { if } z=x \\ \eta(z), & \text { otherwise }\end{cases}
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process $\left(\eta_{t}\right)_{t \geq 0}$ with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=1 / 0=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

and infinitesimal generator, acting on $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, given by

$$
L_{\text {voter }} f(\eta)=\sum_{x \in V} \sum_{y \sim x} \frac{1}{d_{x}}\left[f\left(\eta^{x \leftarrow y}\right)-f(\eta)\right]
$$

with $d_{x}=$ (out-)degree of x and

$$
\eta^{x \leftarrow y}(z)= \begin{cases}\eta(y), & \text { if } z=x \\ \eta(z), & \text { otherwise }\end{cases}
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on verte } x \text { at time } t
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on verte } x \text { at time } t
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

Two absorbing states: monochromatic configurations $\overline{\mathbf{1}}, \overline{\mathbf{0}} \in\{0,1\}^{V}$.
Consensus Time:

$$
\tau_{\text {cons }}:=\inf \left\{t \geq 0: \eta_{t} \in\{\overline{\mathbf{1}}, \overline{\mathbf{0}}\}\right\}
$$

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on verte } x \text { at time } t
$$

Two absorbing states: monochromatic configurations $\overline{\mathbf{1}}, \overline{\mathbf{0}} \in\{0,1\}^{V}$.
Consensus Time:

$$
\text { a.s. } \tau_{\text {cons }}:=\inf \left\{t \geq 0: \eta_{t} \in\{\overline{\mathbf{1}}, \overline{\mathbf{0}}\}\right\}<\infty
$$

Voter model (on finite graphs)

- Network: $G=(V, E),|V|=n$, finite connected.
- Voter model: Markov process η_{t} with state space $\{0,1\}^{V}$,

$$
\eta_{t}(x)=\mathbf{1} / \mathbf{0}=\text { Blue } / \text { Red opinion on vertex } x \text { at time } t
$$

How does the system reach consensus?

Consensus Time:

a.s. $\tau_{\text {cons }}:=\inf \left\{t \geq 0: \eta_{t} \in\{\overline{\mathbf{1}}, \overline{\mathbf{0}}\}\right\}<\infty$.

Voter model: Graphical Construction

Voter model: Graphical Construction

- Assign an independent Poisson clock $\mathcal{P}_{\vec{e}}$ of rate 1
to every oriented edge $\vec{e}=(x, y)$.
- When a clock at $\vec{e}=(x, y)$ rings, vertex y receives the opinion of x.
- Determine η_{t} from η_{0} "following backwards the Poisson arrows"

Voter model: Graphical Construction

- Assign an independent Poisson clock $\mathcal{P}_{\vec{e}}$ of rate 1 to every oriented edge $\vec{e}=(x, y)$.
-When a clock at $\vec{e}=(x, y)$ rings, vertex y receives the opinion of x.
- Determine η_{t} from η_{0} "following backwards the Poisson arrows"

Voter model: Graphical Construction

- Assign an independent Poisson clock $\mathcal{P}_{\vec{e}}$ of rate 1 to every oriented edge $\vec{e}=(x, y)$.
-When a clock at $\vec{e}=(x, y)$ rings, vertex y receives the opinion of x.
- Determine η_{t} from η_{0} "following backwards the Poisson arrows" .

Example: The red path says that $\eta_{t}(1)$ is equal to $\eta_{0}(2)$.

Voter: dual system of Coalescing Random Walks

Voter: dual system of Coalescing Random Walks

- The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

Voter: dual system of Coalescing Random Walks

- The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

Voter: dual system of Coalescing Random Walks

- The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

On G finite, any two RWs meet in finite time. Thus, a.s., the coalescence time

$$
\tau_{\text {coal }}:=\inf \{t \geq 0: n \text {-RWs coalesce }\}<\infty, \quad \& \quad \tau_{\text {cons }} \leq \tau_{\text {coal }}<\infty
$$

Mean-field theory for growing graphs

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π. Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting" : $t_{\text {mix }} / \mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.
Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting" : $t_{\text {mix }} / \mathrm{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.
Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting": $t_{\text {mix }} / \mathrm{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Theorem (Meeting $=\tau_{\text {meet }}^{\pi \otimes \pi}$, Coalescence $=\tau_{\text {coal }}$, Consensus $=\tau_{\text {cons }}$)

- (Coalescence V/s Meeting -Oliveira(2014)):

$$
\frac{\tau_{\text {coal }}}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \Rightarrow Z:=\bigoplus_{k \geq 2} \exp \binom{k}{2}, \quad \frac{\mathbf{E}\left[\tau_{\text {coal }}\right]}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \longrightarrow 2
$$

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.
Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting" : $t_{\text {mix }} / \mathrm{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Theorem (Meeting $=\tau_{\text {meet }}^{\pi \otimes \pi}$, Coalescence $=\tau_{\text {coal }}$, Consensus $\left.=\tau_{\text {cons }}\right)$

- (Coalescence Vs Meeting -Oliveira(2014)):

$$
\frac{\tau_{\text {coal }}}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \Rightarrow Z:=\bigoplus_{k \geq 2} \exp \binom{k}{2}, \quad \frac{\mathbf{E}\left[\tau_{\text {coal }}\right]}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \longrightarrow 2
$$

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π.
Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting" : $t_{\text {mix }} / \mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Theorem (Meeting $=\tau_{\text {meet }}^{\pi \otimes \pi}$, Coalescence $=\tau_{\text {coal }}$, Consensus $\left.=\tau_{\text {cons }}\right)$

- (Coalescence Vs Meeting -Oliveira(2014)):

$$
\frac{\tau_{\text {coal }}}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \Rightarrow Z:=\bigoplus_{k \geq 2} \exp \binom{k}{2}, \quad \frac{\mathbf{E}\left[\tau_{\text {coal }}\right]}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \longrightarrow 2
$$

- (Consensus Vs Meeting -Chen,Choi, Cox(2016)): On the meeting scale, the density of Blue opinions converges to the Wright-Fisher diffusion:

Mean-field theory for growing graphs

Key quantity: $\tau_{\text {meet }}^{\pi \otimes \pi}=$ meeting time of 2 indep. RWs starting from invariant π. Mean-field geometries (beyond complete K_{n}): graphs seq. $\left(G_{n}\right)_{n \geq 1}$ such that

1. "Mixing before meeting" : $t_{\text {mix }} / \mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \rightarrow 0$
2. invariant π not too concentrated.

Theorem (Meeting $=\tau_{\text {meet }}^{\pi \otimes \pi}$, Coalescence $=\tau_{\text {coal }}$, Consensus $\left.=\tau_{\text {cons }}\right)$

- (Coalescence Vs Meeting -Oliveira(2014)):

$$
\frac{\tau_{\text {coal }}}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \Rightarrow Z:=\bigoplus_{k \geq 2} \exp \binom{k}{2}, \quad \frac{\mathbf{E}\left[\tau_{\text {coal }}\right]}{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]} \longrightarrow 2
$$

- (Consensus Vs Meeting -Chen, Choi, Cox(2016)): On the meeting scale, the density of Blue opinions converges to the Wright-Fisher diffusion:

$$
\frac{1}{n} \sum_{x \in[n]} \eta_{t \mathrm{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]}(x) \Rightarrow Y_{t}, \quad d Y_{t}=\sqrt{Y_{t}\left(1-Y_{t}\right)} d B_{t}, \quad B_{t}=\text { Brownian motion }
$$

Wright-Fisher approx.: Voter on d-regular Random Graphs

Evolution until Consensus ("at time-scale $\mathrm{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]$ ")

Simulation with: time-steps $\approx 10^{6}$, graph size $=10^{3}, u=0.5, d=3$.

- Blue curve: density of Blue opinions $\sum_{x \in[n]} \eta_{t}(x) / n$, with starting η_{0} sampled from i.i.d. Bernoulli's of density u.
- Orange curve: density of discordant edges.

Meetings of two random walks from stationarity

- Deterministic graphs:
$\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \\ \sim \frac{1}{2 \pi} n \log n, & \\ \sim \text { 2-dim torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989)\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{P}}{\sim}\left\{\begin{array}{l}
\frac{d-1}{d-2} n, \quad d \text {-regular,-Cooper et al(2010) Chen(2021) } \\
\end{array}\right.
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{P}}{\sim} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular, -Cooper et al(2010) Chen(2021) } \\ n, & \text { out-d-regular (CA), -Quattropani, Sau(2023) }\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{P}}{\sim} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular,-Cooper et al(2010) Chen(2021) } \\ n, & \text { out-d-regular (CA), -Quattropani, Sau(2023) }\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{R}}{\sim} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular, -Cooper et al(2010) Chen }(2021) \\ n, & \text { out- } d \text {-regular (CA), -Quattropani, Sau(2023) } \\ \vec{\theta}\left(\mathrm{d}^{ \pm}\right) n, & \text { Sparse Digraphs, -A.C.H.Q. (2023) }\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \mathbb{P} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular,-Cooper et al(2010) Chen(2021) } \\ n, & \text { out- } d \text {-regular (CA), -Quattropani, Sau(2023) } . \\ \vec{\theta}\left(\mathbf{d}^{ \pm}\right) n, & \text { Sparse Digraphs, -A.C.H.Q.(2023) }\end{cases}
$$

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{P}}{\sim} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular,-Cooper et al(2010) Chen(2021) } \\ n, & \text { out- } d \text {-regular (CA), -Quattropani, Sau(2023) } \\ \vec{\theta}\left(\mathbf{d}^{ \pm}\right) n, & \text { Sparse Digraphs, -A.C.H.Q.(2023) }\end{cases}
$$

Remarks:

- (Aldous, Durrett, etc...) For graphs with local weak limit being a supercritical Galton-Watson to be expected order n meeting with pre-constant given by mean observable of G-W limit.
- Recent works offer for various geometries bounds and/or other implicit characterizations: see e.g. Fernley, Ortgiese (2019) Hermon et al (2021)

Meetings of two random walks from stationarity

- Deterministic graphs:

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \begin{cases}=\frac{1}{2}(n-1), & \text { complete graph } K_{n}, \text {-Aldous, Fill(1994) } \\ \sim \frac{1}{2 \pi} n \log n, & 2-\operatorname{dim} \text { torus } \mathbb{T}_{L}^{2},-\operatorname{Cox}(1989) \\ \sim C n, & d \geq 3 \text { torus } \mathbb{T}_{L}^{d},-\operatorname{Cox}(1989) .\end{cases}
$$

- Random graphs (with high probab. \mathbb{P}):

$$
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \stackrel{\mathbb{P}}{\sim} \begin{cases}\frac{d-1}{d-2} n, & d \text {-regular, -Cooper et al(2010) Chen(2021) } \\ n, & \text { out-d-regular (CA), -Quattropani, Sau(2023) } \\ \vec{\theta}\left(\mathbf{d}^{ \pm}\right) n, & \text { Sparse Digraphs, -A.C.H.Q.(2023) }\end{cases}
$$

Remarks:

- (Aldous, Durrett, etc...) For graphs with local weak limit being a supercritical Galton-Watson to be expected order n meeting with pre-constant given by mean observable of G-W limit.
- Recent works offer for various geometries bounds and/or other implicit characterizations: see e.g. Fernley, Ortgiese (2019) Hermon et al (2021)

Meetings of Random Walks

$$
\begin{gathered}
\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right] \\
\text { on Sparse }
\end{gathered}
$$

Random Digraphs
(Directed Configuration Model)

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
$\rightarrow \min _{x \in[n]} d_{x}^{ \pm} \geq 2$, (strongly connected)
$\Rightarrow \max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$. (sparse)

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
(strongly connected)
(sparse)
+: out-degrees/"tails"
-: in-degrees/"heads"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
(strongly connected)
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
+: out-degrees/"tails"

-: in-degrees/ "heads"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
(strongly connected)
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
+: out-degrees/"tails"
$d_{2}^{+}=3$

$$
d_{3}^{+}=2
$$

$$
d_{4}^{+}=3
$$

$$
d_{5}^{+}=2
$$

-: in-degrees/"heads"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
(strongly connected)
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
+: out-degrees/"tails"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
(strongly connected)
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
+: out-degrees/"tails"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
(strongly connected)
+: out-degrees/ "tails"
-: in-degrees/ "heads"

(Sparse) Directed Configuration Model - DCM($\mathbf{d}^{ \pm}$)

Consider a fixed bi-degree sequence $\mathbf{d}^{ \pm}=\left(d_{x}^{+}, d_{x}^{-}\right)_{x \in[n]}$ such that

- $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$,
(graphical)
- $\min _{x \in[n]} d_{x}^{ \pm} \geq 2$,
- $\max _{x \in[n]} d_{x}^{ \pm}=\mathcal{O}(1)$.
(strongly connected)
$+:$ out-degrees/"tails" -: in-degrees/"heads"

Geometry of Sparse Random Digraphs

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.
- RW Invariant measure π :
π not explicit though $\pi_{\text {max }}$ and $\pi_{\text {min }}$ not too concentrated (quantitatively)
- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.
- RW Invariant measure π :
π not explicit though $\pi_{\text {max }}$ and $\pi_{\text {min }}$ not too concentrated (quantitatively)
- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.
- RW Invariant measure π :
π not explicit though $\pi_{\text {max }}$ and $\pi_{\text {min }}$ not too concentrated (quantitatively)
- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).
- Precise cutoff at $\log n$:
- Bordenave, Caputo, Salez $(2018,2019)$ For all $\alpha \neq 1$,

with $t_{\text {ent }}:=\frac{\log (n)}{H}$ and $H:=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \log \left(d_{x}^{+}\right)$

Geometry of Sparse Random Digraphs

- Tipycal distances/Diameter: $\sim \log n \&$ Cover time $\sim n \log n$
- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).
- Locally tree-like verteces
W.h.p. for almost every vertex $\mathcal{B}_{v}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text {biased }}^{+}(k)=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2$.
- RW Invariant measure π :
π not explicit though $\pi_{\text {max }}$ and $\pi_{\text {min }}$ not too concentrated (quantitatively)
- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).
- Precise cutoff at $\log n$:
- Bordenave, Caputo, Salez $(2018,2019)$ For all $\alpha \neq 1$,

$$
\max _{x \in[n]}\left|\left\|P^{\left\lfloor\alpha t_{\mathrm{ent}}\right\rfloor}(x, \cdot)-\pi(\cdot)\right\|_{\mathrm{TV}}-\mathbb{1}_{\alpha<1}\right| \xrightarrow{\mathbb{P}} 0
$$

with $t_{\text {ent }}:=\frac{\log (n)}{H}$ and $H:=\sum_{x \in[n]} \frac{d_{x}^{-}}{m} \log \left(d_{x}^{+}\right)$

Main Theorem: - A.C.H.Q. (2023).

Given a (graphical) bi-degree sequence $\mathbf{d}^{ \pm}$with $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$, set:

$$
\delta:=\frac{m}{n}, \quad \beta:=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}, \quad \rho:=\frac{1}{m} \sum_{x \in[n]} \frac{d_{x}^{-}}{d_{x}^{+}}, \quad \gamma:=\frac{1}{m} \sum_{x \in[n]} \frac{\left(d_{x}^{-}\right)^{2}}{d_{x}^{+}} .
$$

Main Theorem: - A.C.H.Q. (2023) .

Given a (graphical) bi-degree sequence $\mathbf{d}^{ \pm}$with $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$, set:

$$
\delta:=\frac{m}{n}, \quad \beta:=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}, \quad \rho:=\frac{1}{m} \sum_{x \in[n]} \frac{d_{x}^{-}}{d_{x}^{+}}, \quad \gamma:=\frac{1}{m} \sum_{x \in[n]} \frac{\left(d_{x}^{-}\right)^{2}}{d_{x}^{+}} .
$$

Theorem (Meeting time for Sparse Random Digraphs)

Consider the sparse DCM with law \mathbb{P} and bi-degree sequence $\mathbf{d}^{ \pm}$. Then, there exists an (explicit) functional of the in and out degree sequences:

$$
\vec{\theta}_{n}=\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{1}{2} \frac{\delta}{\frac{\gamma-\rho}{1-\rho} \frac{1-\sqrt{1-\rho}}{\rho}+\beta-1}=\Theta(1)
$$

such that, as $n \rightarrow \infty$:

$$
\frac{\tau_{\text {meet }}^{\pi \otimes \pi}}{n \vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)} \stackrel{\mathbb{P}}{\Rightarrow} \exp (1)
$$

In particular:

Main Theorem: - A.C.H.Q. (2023) .

Given a (graphical) bi-degree sequence $\mathbf{d}^{ \pm}$with $m:=\sum_{x \in[n]} d_{x}^{+}=\sum_{x \in[n]} d_{x}^{-}$, set:

$$
\delta:=\frac{m}{n}, \quad \beta:=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}, \quad \rho:=\frac{1}{m} \sum_{x \in[n]} \frac{d_{x}^{-}}{d_{x}^{+}}, \quad \gamma:=\frac{1}{m} \sum_{x \in[n]} \frac{\left(d_{x}^{-}\right)^{2}}{d_{x}^{+}} .
$$

Theorem (Meeting time for Sparse Random Digraphs)
Consider the sparse DCM with law \mathbb{P} and bi-degree sequence $\mathbf{d}^{ \pm}$. Then, there exists an (explicit) functional of the in and out degree sequences:

$$
\vec{\theta}_{n}=\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{1}{2} \frac{\delta}{\frac{\gamma-\rho}{1-\rho} \frac{1-\sqrt{1-\rho}}{\rho}+\beta-1}=\Theta(1)
$$

such that, as $n \rightarrow \infty$:

$$
\frac{\tau_{\text {meet }}^{\pi \otimes \pi}}{n \vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)} \stackrel{\mathbb{P}}{\Rightarrow} \exp (1)
$$

In particular:

$$
\frac{\mathbf{E}\left[\tau_{\text {meet }}^{\pi \otimes \pi}\right]}{n \vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)} \xrightarrow{\mathbb{P}} 1
$$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed-d-regular } \\
\left(\text { i.e. } d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}}
\end{gathered}
$$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed- } d \text {-regular } \\
\text { (i.e. } d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n] \text {): } \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}}
\end{gathered}
$$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}} \leq \frac{d-1}{d-2}=\theta_{n}(d), \quad d \geq 3,
\end{gathered}
$$

with $\theta_{n}(d)$ the known constant for the undirected d-regular case.

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}} \leq \frac{d-1}{d-2}=\theta_{n}(d), \quad d \geq 3
\end{gathered}
$$

with $\theta_{n}(d)$ the known constant for the undirected d-regular case.

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed- } d \text {-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}} \leq \frac{d-1}{d-2}=\theta_{n}(d), \quad d \geq 3
\end{gathered}
$$

with $\theta_{n}(d)$ the known constant for the undirected d-regular case.
If more proper to be compared with undirected $2 d$ regular, it is still true that

$$
\vec{\theta}_{n}(d):=\sqrt{\frac{d}{d-1}} \leq \frac{2 d-1}{2 d-2}=: \theta_{n}(2 d), \quad d \geq 2
$$

\Rightarrow "For regular degrees, faster meeting in directed geometry"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Directed-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d_{x}^{-}=: d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}(d)=\sqrt{\frac{d}{d-1}} \leq \frac{d-1}{d-2}=\theta_{n}(d), \quad d \geq 3
\end{gathered}
$$

with $\theta_{n}(d)$ the known constant for the undirected d-regular case.
If more proper to be compared with undirected $2 d$ regular, it is still true that

$$
\vec{\theta}_{n}(d):=\sqrt{\frac{d}{d-1}} \leq \frac{2 d-1}{2 d-2}=: \theta_{n}(2 d), \quad d \geq 2
$$

\Rightarrow "For regular degrees, faster meeting in directed geometry"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

Out-d-regular
(i.e. $d_{x}^{+}=d$ for all $x \in[n]$):

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Out- } d \text {-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}\left(\mathrm{~d}^{ \pm}\right)=\frac{\sqrt{d(d-1)}}{\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\beta=d \gamma=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}=2$ nd moment of in-degree sequence

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Out-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\sqrt{d(d-1)}}{\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\beta=d \gamma=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}=$ 2nd moment of in-degree sequence

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Out-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\sqrt{d(d-1)}}{\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right],
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\beta=d \gamma=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}=$ 2nd moment of in-degree sequence \Rightarrow "Among the out- d-regular,
the directed d-regular has the slowest meeting time"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Out-d-regular } \\
\text { (i.e. } \left.d_{x}^{+}=d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\sqrt{d(d-1)}}{\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right],
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\beta=d \gamma=\frac{1}{m} \sum_{x \in[n]}\left(d_{x}^{-}\right)^{2}=$ 2nd moment of in-degree sequence
\Rightarrow "Among the out- d-regular,
the directed d-regular has the slowest meeting time"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { In- } d \text {-regular } \\
\text { (i.e. } d_{x}^{-}=d \text { for all } x \in[n] \text {): }
\end{gathered}
$$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{aligned}
& \text { In- } \boldsymbol{d} \text {-regular } \\
& \left.\qquad \begin{array}{l}
\text { (i.e. } \left.d_{x}^{-}=\boldsymbol{d} \text { for all } x \in[n]\right): \\
\\
\vec{\theta}_{n}\left(d^{ \pm}\right)=\frac{d \sqrt{(1-\rho)}}{d-1} \in\left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right] \\
>
\end{array}\right) \text { with } \sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d) \text { the constant for the directed } d \text {-regular case. } \\
& P=\frac{d}{m} \sum_{x \in[n]}\left(d_{x}^{+}\right)^{-1}
\end{aligned}
$$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { In- } d \text {-regular } \\
\text { (i.e. } \left.d_{x}^{-}=d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{d \sqrt{(1-\rho)}}{d-1} \in\left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\rho=\frac{d}{m} \sum_{x \in[n]}\left(d_{x}^{+}\right)^{-1}$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { In- } d \text {-regular } \\
\text { (i.e. } \left.d_{x}^{-}=d \text { for all } x \in[n]\right): \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{d \sqrt{(1-\rho)}}{d-1} \in\left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\rho=\frac{d}{m} \sum_{x \in[n]}\left(d_{x}^{+}\right)^{-1}$
\Rightarrow "Among the in-d-regular,
the directed d-regular has the slowest meeting time"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { In- } d \text {-regular } \\
\text { (i.e. } \left.d_{x}^{-}=d \text { for all } x \in[n]\right) \text { : } \\
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{d \sqrt{(1-\rho)}}{d-1} \in\left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\rho=\frac{d}{m} \sum_{x \in[n]}\left(d_{x}^{+}\right)^{-1}$

$$
\Rightarrow \text { "Among the in- } d \text {-regular, }
$$ the directed d-regular has the slowest meeting time"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

Eulerian case
 (i.e. $\mathbf{d}=\left(d_{x}\right)_{x \in[n]}$ and $d_{x}^{+}=d_{x}^{-}=d_{x}$ for all x)

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Eulerian case } \\
\text { (i.e. } \mathbf{d}=\left(d_{x}\right)_{x \in[n]} \text { and } \boldsymbol{d}_{x}^{+}=\boldsymbol{d}_{x}^{-}=d_{x} \text { for all } x \text {) } \\
\vec{\theta}_{n}(d)=\left(\frac{\beta}{\delta}-1+\sqrt{1-\frac{1}{\delta}}\right)^{-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\delta=m / n$ and $\beta / \delta=$ measure of non-regularity of the degree sequence $\left(d_{x}\right)_{x \in[n]}$.

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Eulerian case } \\
\text { (i.e. } \left.\mathbf{d}=\left(d_{x}\right)_{x \in[n]} \text { and } d_{x}^{+}=d_{x}^{-}=d_{x} \text { for all } x\right) \\
\vec{\theta}_{n}(\mathbf{d})=\left(\frac{\beta}{\delta}-1+\sqrt{1-\frac{1}{\delta}}\right)^{-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
$-\delta=m / n$ and $\beta / \delta=$ measure of non-regularity of the degree sequence $\left(d_{x}\right)_{x \in[n]}$.

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

Eulerian case

(i.e. $\mathbf{d}=\left(d_{x}\right)_{x \in[n]}$ and $d_{x}^{+}=d_{x}^{-}=d_{x}$ for all x)

$$
\vec{\theta}_{n}(\mathbf{d})=\left(\frac{\beta}{\delta}-1+\sqrt{1-\frac{1}{\delta}}\right)^{-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
$-\delta=m / n$ and $\beta / \delta=$ measure of non-regularity of the degree sequence $\left(d_{x}\right)_{x \in[n]}$.

$$
\Rightarrow \text { "The more irregular is the degree sequence, }
$$

the faster the meeting"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

$$
\begin{gathered}
\text { Eulerian case } \\
\text { (i.e. } \left.\mathbf{d}=\left(d_{x}\right)_{x \in[n]} \text { and } d_{x}^{+}=d_{x}^{-}=d_{x} \text { for all } x\right) \\
\vec{\theta}_{n}(\mathbf{d})=\left(\frac{\beta}{\delta}-1+\sqrt{1-\frac{1}{\delta}}\right)^{-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
\end{gathered}
$$

- with $\sqrt{\frac{d}{d-1}}=\vec{\theta}_{n}(d)$ the constant for the directed d-regular case.
- $\delta=m / n$ and $\beta / \delta=$ measure of non-regularity of the degree sequence $\left(d_{x}\right)_{x \in[n]}$.
\Rightarrow "The more irregular is the degree sequence, the faster the meeting"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

General effects of in and out degrees

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

General effects of in and out degrees

Set $\alpha:=\frac{\gamma-\rho}{1-\rho} \in[1, \infty)$, then

$$
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\delta}{(1-f(\rho)) \alpha+\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
$$

- with $\alpha=$ measure of correlation between in and out degrees ($\alpha=1$ in the Eulerian case)
- $\beta=$ measure of volatility of the in-degrees
- $f(\rho) \in[0.5,0.59)$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

General effects of in and out degrees

Set $\alpha:=\frac{\gamma-\rho}{1-\rho} \in[1, \infty)$, then

$$
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\delta}{(1-f(\rho)) \alpha+\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
$$

- with $\alpha=$ measure of correlation between in and out degrees ($\alpha=1$ in the Eulerian case)
- $\beta=$ measure of volatility of the in-degrees
- $f(\rho) \in[0.5,0.59)$

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

General effects of in and out degrees

Set $\alpha:=\frac{\gamma-\rho}{1-\rho} \in[1, \infty)$, then

$$
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\delta}{(1-f(\rho)) \alpha+\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
$$

- with $\alpha=$ measure of correlation between in and out degrees ($\alpha=1$ in the Eulerian case)
- $\beta=$ measure of volatility of the in-degrees
- $f(\rho) \in[0.5,0.59)$
\Rightarrow "The more irregular the in-degrees (high β)
or the more anti-correlated the in- and out- sequences (high α),
the faster the meeting"

RW flow in directed networks: analysis of $\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)$.

General effects of in and out degrees

Set $\alpha:=\frac{\gamma-\rho}{1-\rho} \in[1, \infty)$, then

$$
\vec{\theta}_{n}\left(\mathbf{d}^{ \pm}\right)=\frac{\delta}{(1-f(\rho)) \alpha+\beta-1} \in\left(0, \sqrt{\frac{d}{d-1}}\right]
$$

- with $\alpha=$ measure of correlation between in and out degrees ($\alpha=1$ in the Eulerian case)
- $\beta=$ measure of volatility of the in-degrees
- $f(\rho) \in[0.5,0.59)$
\Rightarrow "The more irregular the in-degrees (high β) or the more anti-correlated the in- and out- sequences (high α), the faster the meeting"

Proof Skeleton

Proof Skeleton

1. From Meeting to Hitting times: collapsed product graph (standard approach)
2. Hitting times distribution via First Visit Time Lemma (Aldous like clumping heuristic)
3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
4. Coupling collapsed process with Rooted Forest for "short time scales" (local exploration/annealing)
5. Extension to non-Eulerian setting (concentration plus continuity arguments)

Proof Skeleton

1. From Meeting to Hitting times: collapsed product graph (standard approach)
2. Hitting times distribution via First Visit Time Lemma (Aldous like clumping heuristic)
3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
4. Coupling collapsed process with Rooted Forest for "short time scales" (local exploration/annealing)
5. Extension to non-Eulerian setting (concentration plus continuity arguments)

Proof Skeleton

1. From Meeting to Hitting times: collapsed product graph (standard approach)
2. Hitting times distribution via First Visit Time Lemma (Aldous like clumping heuristic)
3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
4. Coupling collapsed process with Rooted Forest for "short time scales" (local exploration/annealing)
5. Extension to non-Eulerian setting (concentration plus continuity arguments)

From Meeting to Hitting times: collapsed graph \tilde{G}

Take two copies of realized graph $G:=([n], E)$, to generate the product graph

$$
G^{\otimes 2}:=G \times G=\left(V^{\otimes 2}, E^{\otimes 2}\right)
$$

with $V^{\otimes 2}=\{(x, y): x, y \in[n]\}$ and $E^{\otimes 2}$ such that

$$
(x, y) \rightarrow(w, z) \Longleftrightarrow\left\{\begin{array}{l}
x \rightarrow w \text { and } y=z, \text { or } \\
y \rightarrow z \text { and } x=w .
\end{array}\right.
$$

From Meeting to Hitting times: collapsed graph \tilde{G}

Take two copies of realized graph $G:=([n], E)$, to generate the product graph

$$
G^{\otimes 2}:=G \times G=\left(V^{\otimes 2}, E^{\otimes 2}\right)
$$

with $V^{\otimes 2}=\{(x, y): x, y \in[n]\}$ and $E^{\otimes 2}$ such that

$$
(x, y) \rightarrow(w, z) \Longleftrightarrow\left\{\begin{array}{l}
x \rightarrow w \text { and } y=z, \text { or } \\
y \rightarrow z \text { and } x=w .
\end{array}\right.
$$

Set the diagonal vertex as $\Delta=\{(x, x): x \in[n]\}$, then define Collapsed Graph

$$
\tilde{G}=(\tilde{V}, \tilde{E})
$$

such that $\tilde{V}=\left\{(x, y) \in V^{\otimes 2}: x \neq y\right\} \cup \Delta$ and all vertices in Δ retain the in- and outstubs with their multiplicity.

From Meeting to Hitting times: collapsed graph \tilde{G}

Take two copies of realized graph $G:=([n], E)$, to generate the product graph

$$
G^{\otimes 2}:=G \times G=\left(V^{\otimes 2}, E^{\otimes 2}\right)
$$

with $V^{\otimes 2}=\{(x, y): x, y \in[n]\}$ and $E^{\otimes 2}$ such that

$$
(x, y) \rightarrow(w, z) \Longleftrightarrow\left\{\begin{array}{l}
x \rightarrow w \text { and } y=z, \text { or } \\
y \rightarrow z \text { and } x=w .
\end{array}\right.
$$

Set the diagonal vertex as $\Delta=\{(x, x): x \in[n]\}$, then define Collapsed Graph

$$
\tilde{G}=(\tilde{V}, \tilde{E})
$$

such that $\tilde{V}=\left\{(x, y) \in V^{\otimes 2}: x \neq y\right\} \cup \Delta$ and all vertices in Δ retain the in- and outstubs with their multiplicity.

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $\left(X_{t}\right)_{t \in \mathbb{N}}$ on V with matrix P, define $\left(\tilde{X}_{t}\right)_{t \in \mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

- (Product chain out of Δ)

$$
\tilde{P}((x, y),(w, z))=\frac{1}{2} P(x, w) \mathbb{1}_{y=z}+\frac{1}{2} P(y, z) \mathbb{1}_{x=w}, \quad \text { if } x \neq y
$$

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $\left(X_{t}\right)_{t \in \mathbb{N}}$ on V with matrix P, define $\left(\tilde{X}_{t}\right)_{t \in \mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

- (Product chain out of Δ)

$$
\tilde{P}((x, y),(w, z))=\frac{1}{2} P(x, w) \mathbb{1}_{y=z}+\frac{1}{2} P(y, z) \mathbb{1}_{x=w}, \quad \text { if } x \neq y,
$$

- (Exit law from Δ)

$$
\tilde{P}(\Delta,(w, z))=\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(w, z)+\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(z, w), \quad \text { if } w \neq z,
$$

- (Staying put in Δ)

$$
\tilde{P}(\Delta, \Delta)=\sum_{x \in[n]} \frac{\pi^{2}(x)}{\sum_{z \in[n]} \pi^{2}(z)} P(x, x) .
$$

This way: $\tilde{\pi}:=\pi \otimes \pi$ is the unique stationary distribution for \tilde{X}, and
"meeting becomes hitting": i.e. with $H_{\Delta}:=\inf \left\{t \geq 0: \tilde{X}_{t}=\Delta\right\}$

$$
\mathrm{P}\left(\tau_{\text {meet }}^{\pi \otimes \pi}=t\right)=\tilde{\mathrm{P}}_{\tilde{\pi}}\left(H_{\Delta}=t\right)
$$

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $\left(X_{t}\right)_{t \in \mathbb{N}}$ on V with matrix P, define $\left(\tilde{X}_{t}\right)_{t \in \mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

- (Product chain out of Δ)

$$
\tilde{P}((x, y),(w, z))=\frac{1}{2} P(x, w) \mathbb{1}_{y=z}+\frac{1}{2} P(y, z) \mathbb{1}_{x=w}, \quad \text { if } x \neq y
$$

- (Exit law from Δ)

$$
\tilde{P}(\Delta,(w, z))=\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(w, z)+\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(z, w), \quad \text { if } w \neq z
$$

- (Staying put in Δ)

$$
\tilde{P}(\Delta, \Delta)=\sum_{x \in[n]} \frac{\pi^{2}(x)}{\sum_{z \in[n]} \pi^{2}(z)} P(x, x) .
$$

This way: $\tilde{\pi}:=\pi \otimes \pi$ is the unique stationary distribution for \tilde{X}, and "meeting becomes hitting" : i.e. with $H_{\Delta}:=\inf \left\{t \geq 0: \tilde{X}_{t}=\Delta\right\}$

$$
\mathrm{P}\left(\tau_{\text {meet }}^{\pi \otimes \pi}=t\right)=\tilde{\mathrm{P}}_{\tilde{\pi}}\left(H_{\Delta}=t\right)
$$

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $\left(X_{t}\right)_{t \in \mathbb{N}}$ on V with matrix P, define $\left(\tilde{X}_{t}\right)_{t \in \mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

- (Product chain out of Δ)

$$
\tilde{P}((x, y),(w, z))=\frac{1}{2} P(x, w) \mathbb{1}_{y=z}+\frac{1}{2} P(y, z) \mathbb{1}_{x=w}, \quad \text { if } x \neq y
$$

- (Exit law from Δ)

$$
\tilde{P}(\Delta,(w, z))=\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(w, z)+\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(z, w), \quad \text { if } w \neq z
$$

- (Staying put in Δ)

$$
\tilde{P}(\Delta, \Delta)=\sum_{x \in[n]} \frac{\pi^{2}(x)}{\sum_{z \in[n]} \pi^{2}(z)} P(x, x) .
$$

This way: $\tilde{\pi}:=\pi \otimes \pi$ is the unique stationary distribution for \tilde{X}, and "meeting becomes hitting": i.e. with $H_{\Delta}:=\inf \left\{t \geq 0: \tilde{X}_{t}=\Delta\right\}$

$$
\mathrm{P}\left(\tau_{\text {meet }}^{\pi \otimes \pi}=t\right)=\tilde{\mathrm{P}}_{\tilde{\pi}}\left(H_{\Delta}=t\right)
$$

Note: In our directed setup π may depend on the realisation of the random graph!

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $\left(X_{t}\right)_{t \in \mathbb{N}}$ on V with matrix P, define $\left(\tilde{X}_{t}\right)_{t \in \mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

- (Product chain out of Δ)

$$
\tilde{P}((x, y),(w, z))=\frac{1}{2} P(x, w) \mathbb{1}_{y=z}+\frac{1}{2} P(y, z) \mathbb{1}_{x=w}, \quad \text { if } x \neq y
$$

- (Exit law from Δ)

$$
\tilde{P}(\Delta,(w, z))=\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(w, z)+\frac{1}{2} \frac{\pi^{2}(w)}{\sum_{x \in[n]} \pi^{2}(x)} P(z, w), \quad \text { if } w \neq z
$$

- (Staying put in Δ)

$$
\tilde{P}(\Delta, \Delta)=\sum_{x \in[n]} \frac{\pi^{2}(x)}{\sum_{z \in[n]} \pi^{2}(z)} P(x, x) .
$$

This way: $\tilde{\pi}:=\pi \otimes \pi$ is the unique stationary distribution for \tilde{X}, and "meeting becomes hitting": i.e. with $H_{\Delta}:=\inf \left\{t \geq 0: \tilde{X}_{t}=\Delta\right\}$

$$
\mathrm{P}\left(\tau_{\text {meet }}^{\pi \otimes \pi}=t\right)=\tilde{\mathrm{P}}_{\tilde{\pi}}\left(H_{\Delta}=t\right)
$$

Note : In our directed setup π may depend on the realisation of the random graph!

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ, if the chain mixes fast compared to the stationary mass of Δ, then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ."

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ, if the chain mixes fast compared to the stationary mass of Δ, then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ."

Lemma (Cooper, Frieze (2005) Manzo, Quattropani, Scoppola (2021))
Consider a sequence of irreducible Markov chains on N states with transition matrices \tilde{P}_{N} and invariant measures $\tilde{\pi}_{N}$. Assume that

1. There exists some sequence of times $T=T(N)$ such that
$-\max _{N \in N \mid}\left|\tilde{P}_{N}^{T}(x, y)-\tilde{\pi}_{N}(y)\right| \leq N^{-3}$.
$>\max _{x \in I N]} T \tilde{\pi}_{N}(x)=o(1)$.
2. $\min _{x \in[N]} N^{2} \tilde{\pi}_{N}(x) \rightarrow \infty$.

Then, for any fixed target $\Lambda \in[\Lambda]$, its first hitting time H_{Δ} satisfies:

$$
\sup _{t \geq 0}\left|\frac{\tilde{P}_{\tilde{\pi}_{N}}\left(H_{\Delta}>t\right)}{(1-\lambda)^{t}}-1\right| \rightarrow 0, \quad \frac{\lambda}{\tilde{\pi}_{N}(\Delta) / R_{\Delta}^{T}} \rightarrow 1
$$

with

$$
R_{\Delta}^{T}=\sum_{t \leq T} \tilde{P}_{N}^{t}(\Delta, \Delta)=\text { Green's function in } \Delta \text { up to time } T .
$$

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ, if the chain mixes fast compared to the stationary mass of Δ, then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ."

Lemma (Cooper, Frieze (2005) Manzo, Quattropani, Scoppola (2021))

Consider a sequence of irreducible Markov chains on N states with transition matrices \tilde{P}_{N} and invariant measures $\tilde{\pi}_{N}$. Assume that

1. There exists some sequence of times $T=T(N)$ such that
$>\max _{x, y \in[N]}\left|\tilde{P}_{N}^{T}(x, y)-\tilde{\pi}_{N}(y)\right| \leq N^{-3}$.
$-\max _{x \in[N]} T \tilde{\pi}_{N}(x)=o(1)$.
2. $\min _{x \in[N]} N^{2} \tilde{\pi}_{N}(x) \rightarrow \infty$.

Then, for any fixed target $\Delta \in[N]$, its first hitting time H_{Δ} satisfies:

$$
\sup _{t \geq 0}\left|\frac{\tilde{P}_{\tilde{\pi}_{N}}\left(H_{\Delta}>t\right)}{(1-\lambda)^{t}}-1\right| \rightarrow 0, \quad \frac{\lambda}{\tilde{\pi}_{N}(\Delta) / R_{\Delta}^{T}} \rightarrow 1
$$

with

$$
R_{\Delta}^{T}=\sum_{t \leq T} \tilde{P}_{N}^{t}(\Delta, \Delta)=\text { Green's function in } \Delta \text { up to time } T
$$

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\text {ann }}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\text {ann }}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).
\Rightarrow For short times \tilde{X}_{t} trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\text {ann }}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).

- For short times \tilde{X}_{t} trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).

- For short times \tilde{X}_{t} trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled
- Building blocks:

$$
\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=2 t\right), \quad t \in \mathbb{N},
$$

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T=\log ^{4} n\left(\geq \tilde{t}_{\text {mix }}\right)$:

$$
\mathbb{E}\left[R_{\Delta}^{T}\right]=1+\sum_{t=1}^{T} \mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]
$$

- Via local exploration

$$
\mathbb{E}\left[\tilde{P}_{\Delta}\left(\tilde{X}_{t} \in \Delta\right)\right]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(\tilde{X}_{t} \in \Delta\right)
$$

"annealed non-Markov process" that generates locally graph and walk steps (for non-random μ).

- For short times \tilde{X}_{t} trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled
- Building blocks:

$$
\mathbb{P}_{\mu}^{\mathrm{ann}}\left(H_{\Delta}=2 t\right), \quad t \in \mathbb{N}
$$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

$$
x_{0}=Y_{0} \sim_{I}^{\text {vil }}
$$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

$$
x_{0}=Y_{0} \overbrace{v_{1}}^{I I} \sim \mu
$$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Start from the empty matching of the graph (Eulerian case)
Ex. $\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=4\right)$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Denoting by D_{i} the out-offspring distribution of $v_{i}, D_{1} \sim \mu$ and $D_{i} \sim \mu_{\text {biased }}^{+}, i \neq 1$.

$$
\mathbb{P}_{\mu}^{\text {ann }}\left(H_{\Delta}=2 t\right)=2^{-2 t+1} \frac{1}{t}\binom{2 t-2}{t-1} f\left(\left\{D_{i}\right\}_{i \leq t-1}\right)
$$

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Denoting by D_{i} the out-offspring distribution of $v_{i}, D_{1} \sim \mu$ and $D_{i} \sim \mu_{\text {biased }}^{+}, i \neq 1$.

Similar computations for the second moment $\mathbb{E}\left[\left(R_{\Delta}^{T}\right)^{2}\right]$ to show concentration.

Idea: Tree Construction for 1st Return in Coupled Rooted Forest

Denoting by D_{i} the out-offspring distribution of $v_{i}, D_{1} \sim \mu$ and $D_{i} \sim \mu_{\text {biased }}^{+}, i \neq 1$.

Similar computations for the second moment $\mathbb{E}\left[\left(R_{\Delta}^{T}\right)^{2}\right]$ to show concentration.

Thanks!

