Meeting of Random Walks & Consensus Dynamics on Random Directed Graphs

LUCA AVENA (DIMAI, Florence)

DIMAI DIPARTIMENTO DI MATEMATICA E INFORMATICA "ULISSE DINI"

ICTS-NETWORKS workshop "Challenges in Networks", Bengaluru, January 30, 2024.

joint work with Federico Capannoli, Rajat Hazra and Matteo Quattropani

Luca Avena (Mathematics, Florence)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 2 / 39

Network: G = (V, E), |V| = n, finite connected.

Voter model: Markov process $(\eta_t)_{t\geq 0}$ with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

- Network: G = (V, E), |V| = n, finite connected.
- Voter model: Markov process $(\eta_t)_{t\geq 0}$ with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 =$ Blue/Red opinion on vertex x at time t

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process $(\eta_t)_{t\geq 0}$ with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

and infinitesimal generator, acting on $f: \{0,1\}^V \to \mathbb{R}$, given by

$$L_{voter}f(\eta) = \sum_{x \in V} \sum_{y \sim x} \frac{1}{d_x} \left[f(\eta^{x \leftarrow y}) - f(\eta) \right],$$

with $d_x = (out-)degree of x and$

$$\eta^{x \leftarrow y}(z) = \begin{cases} \eta(y), & \text{if } z = x, \\ \eta(z), & \text{otherwise.} \end{cases}$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process $(\eta_t)_{t\geq 0}$ with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

and infinitesimal generator, acting on $f: \{0,1\}^V
ightarrow \mathbb{R},$ given by

$$L_{voter}f(\eta) = \sum_{x \in V} \sum_{y \sim x} \frac{1}{d_x} \left[f(\eta^{x \leftarrow y}) - f(\eta) \right],$$

with $d_x = (out-)degree of x and$

$$\eta^{x \leftarrow y}(z) = \begin{cases} \eta(y), & \text{if } z = x, \\ \eta(z), & \text{otherwise.} \end{cases}$$

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Each vertex $x \in V$ has an exponential clock of rate 1, when this rings, vertex x chooses a uniform neighbour and adopts its opinion.

Luca Avena (Mathematics, Florence)

Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Two absorbing states: monochromatic configurations $\overline{\mathbf{1}}, \overline{\mathbf{0}} \in \{0, 1\}^V$.

Consensus Time: $\tau_{cons} := \inf \left\{ t \geq 0 \colon \eta_t \in \{\overline{1}, \overline{0}\} \right\}$

Luca Avena (Mathematics, Florence)

• Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

Two absorbing states: monochromatic configurations $\overline{\mathbf{1}}, \overline{\mathbf{0}} \in \{0, 1\}^V$.

 $\begin{array}{l} \text{Consensus Time:}\\ \text{a.s. } \tau_{\text{cons}} := \inf \left\{ t \geq 0 \colon \eta_t \in \{\overline{1}, \overline{0}\} \right\} < \infty. \end{array}$

Luca Avena (Mathematics, Florence)

Network: G = (V, E), |V| = n, finite connected.

• Voter model: Markov process η_t with state space $\{0,1\}^V$,

 $\eta_t(x) = 1/0 = \text{Blue}/\text{Red}$ opinion on vertex x at time t

How does the system reach consensus?

 $\begin{array}{l} \text{Consensus Time:}\\ \text{a.s. } \tau_{\text{cons}} := \inf \left\{ t \geq 0 \colon \ \eta_t \in \{\overline{1}, \overline{0}\} \right\} < \infty. \end{array}$

Luca Avena (Mathematics, Florence)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 10 / 39

- ▶ Assign an independent Poisson clock P_e of rate 1 to every oriented edge e = (x, y).
- When a clock at $\vec{e} = (x, y)$ rings, vertex y receives the opinion of x.

Determine η_t from η_0 "following backwards the Poisson arrows".

- ► Assign an independent Poisson clock P_e of rate 1 to every oriented edge e = (x, y).
- When a clock at $\vec{e} = (x, y)$ rings, vertex y receives the opinion of x.

Determine η_t from η_0 "following backwards the Poisson arrows".

- Assign an independent Poisson clock P_e of rate 1 to every oriented edge e = (x, y).
- When a clock at $\vec{e} = (x, y)$ rings, vertex y receives the opinion of x.
- **Determine** η_t from η_0 "following backwards the Poisson arrows".

Example: The **red path** says that $\eta_t(1)$ is equal to $\eta_0(2)$.

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 12 / 39

The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

The process that tracks backward the origin of the opinions can be viewed as a collection of Coalescing Random Walks (CRWs).

On G finite, any two RWs meet in finite time. Thus, a.s., the *coalescence time*

 $\tau_{\mathrm{coal}} := \inf\{t \geq 0 \colon \text{ n-RWs coalesce}\} < \infty, \quad \& \quad \tau_{\mathrm{cons}} \leq \tau_{\mathrm{coal}} < \infty.$

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 14 / 39

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 14 / 39

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{mix}/\mathbf{E}[\tau_{meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{mix}/\mathbf{E}[\tau_{meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{mix}/\mathbf{E}[\tau_{meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Theorem (Meeting= $\tau_{\text{meet}}^{\pi\otimes\pi}$, Coalescence= τ_{coal} , Consensus= τ_{cons}) (Coalescence Vs Meeting -Oliveira(2014)):

$$\frac{\tau_{\text{coal}}}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \Rightarrow Z := \bigoplus_{k\geq 2} \exp\binom{k}{2}, \qquad \frac{\mathsf{E}[\tau_{\text{coal}}]}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \longrightarrow 2.$$

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{mix}/\mathbf{E}[\tau_{meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Theorem (Meeting= $\tau_{meet}^{\pi\otimes\pi}$, Coalescence= τ_{coal} , Consensus= τ_{cons})

Coalescence Vs Meeting -Oliveira(2014)):

$$\frac{\tau_{\text{coal}}}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \Rightarrow Z := \bigoplus_{k\geq 2} \exp\binom{k}{2}, \qquad \frac{\mathsf{E}[\tau_{\text{coal}}]}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \longrightarrow 2.$$

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{\rm mix}/\mathsf{E}[\tau_{\rm meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Theorem (Meeting= $\tau_{meet}^{\pi\otimes\pi}$, Coalescence= τ_{coal} , Consensus= τ_{cons})

Coalescence Vs Meeting -Oliveira(2014)):

$$\frac{\tau_{\text{coal}}}{\mathbf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \Rightarrow Z := \bigoplus_{k\geq 2} \exp\binom{k}{2}, \qquad \frac{\mathbf{E}[\tau_{\text{coal}}]}{\mathbf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \longrightarrow 2.$$

(Consensus Vs Meeting -Chen, Choi, Cox(2016)): On the meeting scale, the density of Blue opinions converges to the Wright-Fisher diffusion:

$$\frac{1}{n} \sum_{x \in [n]} \eta_{t\mathsf{E}\left[\tau_{\mathrm{meet}}^{\pi \otimes \pi}\right]}(x) \Rightarrow Y_t, \quad dY_t = \sqrt{Y_t(1 - Y_t)} dB_t, \quad B_t = \text{ Brownian motion}$$

Luca Avena (Mathematics, Florence)

Key quantity: $\tau_{meet}^{\pi\otimes\pi}$ = meeting time of 2 indep. RWs starting from invariant π .

Mean-field geometries (beyond complete K_n): graphs seq. $(G_n)_{n\geq 1}$ such that

- 1. "Mixing before meeting": $t_{\rm mix}/\mathbf{E}[\tau_{\rm meet}^{\pi\otimes\pi}] \to 0$
- 2. invariant π not too concentrated.

Theorem (Meeting= $\tau_{meet}^{\pi\otimes\pi}$, Coalescence= τ_{coal} , Consensus= τ_{cons})

Coalescence Vs Meeting -Oliveira(2014)):

$$\frac{\tau_{\text{coal}}}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \Rightarrow Z := \bigoplus_{k\geq 2} \exp\binom{k}{2}, \qquad \frac{\mathsf{E}[\tau_{\text{coal}}]}{\mathsf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]} \longrightarrow 2.$$

(Consensus Vs Meeting -Chen, Choi, Cox(2016)): On the meeting scale, the density of Blue opinions converges to the Wright-Fisher diffusion:

$$\frac{1}{n} \sum_{x \in [n]} \eta_{t \mathsf{E}} \big[\tau_{\text{meet}}^{\pi \otimes \pi} \big](x) \Rightarrow Y_t, \quad dY_t = \sqrt{Y_t(1 - Y_t)} dB_t, \quad B_t = \text{ Brownian motion}$$

Luca Avena (Mathematics, Florence)

Wright-Fisher approx.: Voter on *d*-regular Random Graphs

Evolution until Consensus ("at time-scale $E[\tau_{meet}^{\pi\otimes\pi}]$ ")

Simulation with: time-steps $\approx 10^6$, graph size $= 10^3$, u = 0.5, d = 3.

- - Orange curve: density of discordant edges.

Luca Avena (Mathematics, Florence)

Deterministic graphs:

Deterministic graphs:

$$\mathbf{E}[\boldsymbol{\tau}_{\text{meet}}^{\boldsymbol{\pi}\otimes\boldsymbol{\pi}}] \begin{cases} = \frac{1}{2}(n-1), & \alpha \\ \sim \frac{1}{2\pi}n\log n, & \alpha \\ \sim Cn, & \alpha \end{cases}$$

complete graph K_n , -Aldous, Fill(1994) 2-dim torus \mathbb{T}_L^2 , -Cox(1989) $d \ge 3$ torus \mathbb{T}_L^d , -Cox(1989).

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & 2\text{-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & 2\text{-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

Random graphs (with high probab. P):

$$\mathsf{E}\big[\tau_{\mathrm{meet}}^{\pi\otimes\pi}\big] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular, -Cooper et al(2010) Chen(2021)} \\ \end{cases}$$

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & \text{2-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

▶ Random graphs (with high probab. P):

$$\mathsf{E}\big[\tau_{\mathrm{meet}}^{\pi\otimes\pi}\big] \overset{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular, -Cooper et al(2010) Chen(2021)} \\ \end{cases}$$

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & \text{2-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

Random graphs (with high probab. P):

$$\mathsf{E}\big[\tau_{\mathrm{meet}}^{\pi\otimes\pi}\big] \overset{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, \\ n, \end{cases}$$

d-regular, -Cooper et al(2010) Chen(2021) out-*d*-regular (CA), -Quattropani, Sau(2023)

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & 2\text{-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

▶ Random graphs (with high probab. P):

$$\mathbf{E}\big[\tau_{\text{meet}}^{\pi\otimes\pi}\big] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular, -Cooper et al(2010) Chen(2021)} \\ n, & \text{out-}d\text{-regular (CA), -Quattropani, Sau(2023)} \end{cases}$$

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & 2\text{-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

▶ Random graphs (with high probab. P):

$$\mathbf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular}, -\text{Cooper et al}(2010) \text{ Chen}(2021) \\ n, & \text{out-}d\text{-regular (CA)}, -\text{Quattropani}, \text{Sau}(2023) \\ \vec{\theta}(\mathbf{d}^{\pm})n, & \text{Sparse Digraphs}, -\text{A.C.H.Q.}(2023). \end{cases}$$

Luca Avena (Mathematics, Florence)

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & 2\text{-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

▶ Random graphs (with high probab. P):

$$\mathbf{E}[\tau_{\mathrm{meet}}^{\pi\otimes\pi}] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular, -Cooper et al(2010) Chen(2021)} \\ n, & \text{out-}d\text{-regular (CA), -Quattropani, Sau(2023)} \\ \vec{\theta}(\mathbf{d}^{\pm})n, & \text{Sparse Digraphs, -A.C.H.Q.(2023).} \end{cases}$$

Luca Avena (Mathematics, Florence)

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & \text{2-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

Random graphs (with high probab. P):

$$\mathbf{E}[\tau_{\mathrm{meet}}^{\pi\otimes\pi}] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular}, -\mathbf{Cooper \ et \ al(2010) \ Chen(2021)} \\ n, & \text{out-}d\text{-regular} \ (CA), -\mathbf{Quattropani}, \mathbf{Sau}(2023) \\ \vec{\theta}(\mathbf{d}^{\pm})n, & \mathbf{Sparse \ Digraphs}, -\mathbf{A.C.H.Q.}(2023). \end{cases}$$

Remarks:

- (Aldous, Durrett, etc...) For graphs with local weak limit being a supercritical Galton-Watson to be expected order *n* meeting with pre-constant given by mean observable of G-W limit.
- Recent works offer for various geometries bounds and/or other implicit characterizations: see e.g. Fernley, Ortgiese (2019) Hermon et al (2021)

Luca Avena (Mathematics, Florence)

Deterministic graphs:

$$\mathbf{E}\left[\tau_{\text{meet}}^{\pi\otimes\pi}\right] \begin{cases} = \frac{1}{2}(n-1), & \text{complete graph } K_n, \text{-Aldous, Fill(1994)} \\ \sim \frac{1}{2\pi}n\log n, & \text{2-dim torus } \mathbb{T}_L^2, \text{-Cox(1989)} \\ \sim Cn, & d \ge 3 \text{ torus } \mathbb{T}_L^d, \text{-Cox(1989)}. \end{cases}$$

Random graphs (with high probab. P):

$$\mathsf{E}\big[\tau_{\mathrm{meet}}^{\pi\otimes\pi}\big] \stackrel{\mathbb{P}}{\sim} \begin{cases} \frac{d-1}{d-2}n, & d\text{-regular}, -\text{Cooper et al}(2010) \text{ Chen}(2021)\\ n, & \text{out-}d\text{-regular (CA)}, -\text{Quattropani}, \text{Sau}(2023) \\ \vec{\theta}(\mathsf{d}^{\pm})n, & \text{Sparse Digraphs}, -\text{A.C.H.Q.}(2023). \end{cases}$$

Remarks:

- (Aldous, Durrett, etc...) For graphs with local weak limit being a supercritical Galton-Watson to be expected order *n* meeting with pre-constant given by mean observable of G-W limit.
- Recent works offer for various geometries bounds and/or other implicit characterizations: see e.g. Fernley, Ortgiese (2019) Hermon et al (2021)

Luca Avena (Mathematics, Florence)

Meetings of Random Walks

on Sparse

Random Digraphs

(Directed Configuration Model)

Luca Avena (Mathematics, Florence)

Consider a fixed bi-degree sequence $\mathbf{d}^\pm = (d^+_{\!\scriptscriptstyle X}, d^-_{\!\scriptscriptstyle X})_{\!\scriptscriptstyle X \in [n]}$ such that

$$m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$$
 (graphical)

$$min_{x \in [n]} d_x^{\pm} \ge 2,$$
 (strongly connected)

$$max_{x \in [n]} d_x^{\pm} = \mathcal{O}(1).$$
 (sparse)

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm} = (d^+_x, d^-_x)_{x \in [n]}$ such that

 $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$ (graphical) $min_{x \in [n]} d_x^{\pm} \ge 2,$ (strongly connected) $max_{x \in [n]} d_x^{\pm} = \mathcal{O}(1).$ (sparse)

+: out-degrees / "tails"

-: in-degrees/ "heads"

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm} = (d_x^+, d_x^-)_{x \in [n]}$ such that

- $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$ (graphical) $min_{x \in [n]} d_x^\pm \ge 2,$ (strongly connected) $max_{x \in [n]} d_x^\pm = \mathcal{O}(1).$ (sparse)
 - +: out-degrees/ "tails"

-: in-degrees/ "heads"

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm} = (d_x^+, d_x^-)_{x \in [n]}$ such that

 $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$ (graphical) $min_{x \in [n]} d_x^\pm \ge 2,$ (strongly connected) $max_{x \in [n]} d_x^\pm = \mathcal{O}(1).$ (sparse)

+: out-degrees/ "tails"

-: in-degrees/ "heads"

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm} = (d_x^+, d_x^-)_{x \in [n]}$ such that

 $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$ (graphical) $min_{x \in [n]} d_x^{\pm} \ge 2,$ (strongly connected) $max_{x \in [n]} d_x^{\pm} = \mathcal{O}(1).$ (sparse)

> +: out-degrees / "tails" -: in-degrees/ "heads" $d_1^+ = 4$ $d_1^- = 2$ $d_2^- = 3$ $d_2^+ = 3$ $d_3^+ = 2$ $d_{3}^{-} = 3$ V3 $) d_4^- = 3$ $d_4^+ = 3$ V_4 V_4 $d_{5}^{+} = 2$ $d_{5}^{-}=3$ V5

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm} = (d_x^+, d_x^-)_{x \in [n]}$ such that

 $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-,$ (graphical) $min_{x \in [n]} d_x^{\pm} \ge 2,$ (strongly connected) $max_{x \in [n]} d_x^{\pm} = \mathcal{O}(1).$ (sparse)

> +: out-degrees / "tails" -: in-degrees/ "heads" $d_1^+ = 4$ $d_1^- = 2$ $d_2^- = 3$ $d_2^+ = 3$ $d_3^+ = 2$ $d_{3}^{-} = 3$ V3 $) d_4^- = 3$ $d_4^+ = 3$ V_4 V_4 $d_{5}^{+} = 2$ $d_{5}^{-}=3$ V5

Luca Avena (Mathematics, Florence)

Consider a fixed bi-degree sequence $\mathbf{d}^\pm = (d^+_x, d^-_x)_{x\in [n]}$ such that

$$\begin{split} \mathbf{m} &:= \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-, \qquad (\text{graphical}) \\ \mathbf{min}_{x \in [n]} d_x^\pm \geq 2, \qquad (\text{strongly connected}) \\ \mathbf{max}_{x \in [n]} d_x^\pm = \mathcal{O}(1). \qquad (\text{sparse}) \end{split}$$

+: out-degrees/ "tails"

Luca Avena (Mathematics, Florence)

Consider a fixed bi-degree sequence $\mathbf{d}^{\pm}=(d_x^+,d_x^-)_{x\in[n]}$ such that

$$\begin{split} \mathbf{m} &:= \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-, \qquad (\text{graphical}) \\ \mathbf{min}_{x \in [n]} d_x^\pm \geq 2, \qquad (\text{strongly connected}) \\ \mathbf{max}_{x \in [n]} d_x^\pm = \mathcal{O}(1). \qquad (\text{sparse}) \end{split}$$

+: **out-degrees**/ "tails"

-: in-degrees/ "heads"

Luca Avena (Mathematics, Florence)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

• Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}^+_{\nu}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu^+_{\text{biased}}(k) = \sum_{x \in [n]} \frac{d_x^-}{m} \mathbbm{1}_{d_x^+=k}, \quad k \ge 2.$

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

• Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}^+_{\nu}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu^+_{ ext{biased}}(k) = \sum_{x \in [n]} \frac{d_x^-}{m} \mathbbm{1}_{d_x^+=k}, \quad k \ge 2.$

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

• Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}_{\nu}^{+}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu_{\text{biased}}^{+}(k) = \sum_{x \in [n]} \frac{d_{x}^{-}}{m} \mathbb{1}_{d_{x}^{+}=k}, \quad k \geq 2.$

• RW Invariant measure π :

 π not explicit though π_{\max} and π_{\min} not too concentrated (quantitatively)

- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}^+_{\nu}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu^+_{\text{biased}}(k) = \sum_{x \in [n]} \frac{d_x^-}{m} \mathbb{1}_{d_x^+=k}, \quad k \ge 2.$

• RW Invariant measure π :

 π not explicit though π_{max} and π_{min} not too concentrated (quantitatively)

- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

• Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}^+_{\nu}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu^+_{ ext{biased}}(k) = \sum_{x \in [n]} \frac{d_x^-}{m} \mathbbm{1}_{d_x^+=k}, \quad k \ge 2.$

• RW Invariant measure π :

 π not explicit though π_{\max} and π_{\min} not too concentrated (quantitatively)

- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).

• Precise cutoff at log n:

- Bordenave, Caputo, Salez (2018,2019) For all $\alpha \neq 1$,

$$\max_{x \in [n]} ||| P^{\lfloor \alpha t_{\text{ent}} \rfloor}(x, \cdot) - \pi(\cdot)||_{\text{TV}} - \mathbb{1}_{\alpha < 1}| \stackrel{\mathbb{P}}{\longrightarrow} 0.$$

with $t_{\text{ent}} := \frac{\log(n)}{H}$ and $H := \sum_{x \in [n]} \frac{d_x^-}{m} \log(d_x^+)$

Luca Avena (Mathematics, Florence)

• Tipycal distances/Diameter: $\sim \log n$ & Cover time $\sim n \log n$

- Cooper, Frieze (2004) van der Hoorn, Olvera-cravioto (2018), Caputo, Quattropani (2020) Cai, Perarnau (2021).

• Locally tree-like verteces

W.h.p. for almost every vertex $\mathcal{B}^+_{\nu}(\log n)$ is coupled to Galton-Watson tree with offspring distribution $\mu^+_{ ext{biased}}(k) = \sum_{x \in [n]} \frac{d_x^-}{m} \mathbbm{1}_{d_x^+=k}, \quad k \ge 2.$

• RW Invariant measure π :

 π not explicit though π_{\max} and π_{\min} not too concentrated (quantitatively)

- Caputo, Quattropani (2020) Cai, Perarnau (2021) Cai et al(2021).
 - Precise cutoff at log n:
- Bordenave, Caputo, Salez (2018,2019) For all $\alpha \neq 1$,

$$\max_{x\in [n]} |\| \boldsymbol{P}^{\lfloor \alpha t_{\mathrm{ent}} \rfloor}(x, \cdot) - \pi(\cdot) \|_{\mathrm{TV}} - \mathbb{1}_{\alpha < 1} | \stackrel{\mathbb{P}}{\longrightarrow} 0.$$

with $t_{\text{ent}} := rac{\log(n)}{H}$ and $H := \sum_{x \in [n]} rac{d_x^-}{m} \log(d_x^+)$

Luca Avena (Mathematics, Florence)

Main Theorem: - A.C.H.Q. (2023) .

Given a (graphical) bi-degree sequence \mathbf{d}^{\pm} with $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-$, set:

$$\delta := rac{m}{n}\,, \quad eta := rac{1}{m} \sum_{x \in [n]} (d^-_x)^2\,, \quad
ho := rac{1}{m} \sum_{x \in [n]} rac{d^-_x}{d^+_x}\,, \quad \gamma := rac{1}{m} \sum_{x \in [n]} rac{(d^-_x)^2}{d^+_x}\,.$$

Main Theorem: - A.C.H.Q. (2023) .

Given a (graphical) bi-degree sequence \mathbf{d}^{\pm} with $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-$, set:

$$\delta := \frac{m}{n}, \quad \beta := \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2, \quad \rho := \frac{1}{m} \sum_{x \in [n]} \frac{d_x^-}{d_x^+}, \quad \gamma := \frac{1}{m} \sum_{x \in [n]} \frac{(d_x^-)^2}{d_x^+}$$

Theorem (Meeting time for Sparse Random Digraphs)

Consider the sparse DCM with law \mathbb{P} and bi-degree sequence d^{\pm} . Then, there exists an (explicit) functional of the in and out degree sequences:

$$ec{ heta}_n = ec{ heta}_n(\mathsf{d}^{\pm}) = rac{1}{2} \, rac{\lambda}{rac{\gamma-
ho}{1-
ho} \, rac{1-\sqrt{1-
ho}}{
ho}} + eta - 1 = \Theta(1),$$

such that, as $n \to \infty$:

$$\frac{\tau_{\text{meet}}^{\pi\otimes\pi}}{n\vec{\theta}_n(\mathbf{d}^{\pm})} \stackrel{\mathbb{P}}{\Rightarrow} \exp(1).$$

In particular:

$$\frac{\mathbf{E}[\tau_{\text{meet}}^{\pi\otimes\pi}]}{n\vec{\theta}_n(\mathbf{d}^{\pm})} \stackrel{\mathbb{P}}{\longrightarrow} 1$$

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Main Theorem: - A.C.H.Q. (2023) .

Given a (graphical) bi-degree sequence \mathbf{d}^{\pm} with $m := \sum_{x \in [n]} d_x^+ = \sum_{x \in [n]} d_x^-$, set:

$$\delta := \frac{m}{n}, \quad \beta := \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2, \quad \rho := \frac{1}{m} \sum_{x \in [n]} \frac{d_x^-}{d_x^+}, \quad \gamma := \frac{1}{m} \sum_{x \in [n]} \frac{(d_x^-)^2}{d_x^+}$$

Theorem (Meeting time for Sparse Random Digraphs)

Consider the sparse DCM with law \mathbb{P} and bi-degree sequence d^{\pm} . Then, there exists an (explicit) functional of the in and out degree sequences:

$$ec{ heta}_{n}=ec{ heta}_{n}(extbf{d}^{\pm})=rac{1}{2}\,rac{\lambda-
ho}{rac{\gamma-
ho}{1-
ho}\,rac{1-\sqrt{1-
ho}}{
ho}+eta-1}=\Theta(1),$$

such that, as $n \to \infty$:

$$\frac{\tau_{\text{meet}}^{\pi\otimes\pi}}{n\vec{\theta}_n(\mathbf{d}^{\pm})} \stackrel{\mathbb{P}}{\Rightarrow} \exp(1).$$

In particular:

$$\frac{\mathsf{E}[\tau_{\mathrm{meet}}^{\pi\otimes\pi}]}{n\vec{\theta}_n(\mathsf{d}^{\pm})} \stackrel{\mathbb{P}}{\longrightarrow} 1$$

Luca Avena (Mathematics, Florence)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Directed-*d*-regular (i.e. $d_x^+ = d_x^- =: d$ for all $x \in [n]$):

$$\vec{\theta}_n(d) = \sqrt{\frac{d}{d-1}}$$

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Directed-*d*-regular
(i.e.
$$d_x^+ = d_x^- =: d$$
 for all $x \in [n]$):

$$\vec{\theta}_n(d) = \sqrt{\frac{d}{d-1}}$$

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Directed-*d*-regular
(i.e.
$$d_x^+ = d_x^- =: d$$
 for all $x \in [n]$):

$$\vec{\theta}_n(d) = \sqrt{rac{d}{d-1}} \le rac{d-1}{d-2} = heta_n(d), \quad d \ge 3,$$

with $\theta_n(d)$ the known constant for the undirected *d*-regular case.

Directed-*d*-regular
(i.e.
$$d_x^+ = d_x^- =: d$$
 for all $x \in [n]$):

$$ec{ heta}_n(d)=\sqrt{rac{d}{d-1}}\quad\leq\quad rac{d-1}{d-2}= heta_n(d),\quad d\geq 3,$$

with $\theta_n(d)$ the known constant for the undirected *d*-regular case.

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Directed-*d*-regular (i.e. $d_x^+ = d_x^- =: d$ for all $x \in [n]$):

$$ec{ heta}_n(d)=\sqrt{rac{d}{d-1}}\quad\leq\quad rac{d-1}{d-2}= heta_n(d),\quad d\geq 3,$$

with $\theta_n(d)$ the known constant for the undirected *d*-regular case.

If more proper to be compared with undirected 2d regular, it is still true that

$$ec{ heta}_n(d):=\sqrt{rac{d}{d-1}} \quad \leq \quad rac{2d-1}{2d-2}=: heta_n(2d), \quad d\geq 2.$$

 \Rightarrow "For regular degrees, faster meeting in directed geometry"

Luca Avena (Mathematics, Florence)

Directed-*d*-regular (i.e. $d_x^+ = d_x^- =: d$ for all $x \in [n]$):

$$ec{ heta}_n(d)=\sqrt{rac{d}{d-1}}\quad\leq\quad rac{d-1}{d-2}= heta_n(d),\quad d\geq 3,$$

with $\theta_n(d)$ the known constant for the undirected *d*-regular case. If more proper to be compared with undirected 2*d* regular, it is still true that

$$ec{ heta}_n(d):=\sqrt{rac{d}{d-1}} \quad \leq \quad rac{2d-1}{2d-2}=: heta_n(2d), \quad d\geq 2.$$

 \Rightarrow "For regular degrees, faster meeting in directed geometry"

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Out-*d*-regular (i.e. $d_x^+ = d$ for all $x \in [n]$):

Out-d-regular
(i.e.
$$d_x^+ = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{\sqrt{d(d-1)}}{\beta - 1} \in \left(0, \sqrt{\frac{d}{d-1}}\right]$

▶ with $\sqrt{\frac{d}{d-1}} = \vec{\theta}_n(d)$ the constant for the directed *d*-regular case. ▶ $\beta = d\gamma = \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2 = 2$ nd moment of in-degree sequence

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Out-d-regular
(i.e.
$$d_x^+ = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{\sqrt{d(d-1)}}{\beta - 1} \in \left(0, \sqrt{\frac{d}{d-1}}\right]$

,

▶ with $\sqrt{\frac{d}{d-1}} = \vec{\theta}_n(d)$ the constant for the directed *d*-regular case. ▶ $\beta = d\gamma = \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2 = 2$ nd moment of in-degree sequence

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Out-d-regular
(i.e.
$$d_x^+ = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{\sqrt{d(d-1)}}{\beta - 1} \in \left(0, \sqrt{\frac{d}{d-1}}\right]$

,

▶ with $\sqrt{\frac{d}{d-1}} = \vec{\theta}_n(d)$ the constant for the directed *d*-regular case. ▶ $\beta = d\gamma = \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2 = 2$ nd moment of in-degree sequence

 \Rightarrow "Among the out-*d*-regular,

the directed *d*-regular has the slowest meeting time"

Luca Avena (Mathematics, Florence)

Out-d-regular
(i.e.
$$d_x^+ = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{\sqrt{d(d-1)}}{\beta - 1} \in \left(0, \sqrt{\frac{d}{d-1}}\right]$

,

▶ with $\sqrt{\frac{d}{d-1}} = \vec{\theta}_n(d)$ the constant for the directed *d*-regular case. ▶ $\beta = d\gamma = \frac{1}{m} \sum_{x \in [n]} (d_x^-)^2 = 2$ nd moment of in-degree sequence

 \Rightarrow "Among the out-*d*-regular,

the directed *d*-regular has the slowest meeting time"

Luca Avena (Mathematics, Florence)

In-*d***-regular** (i.e. $d_x^- = d$ for all $x \in [n]$):

In-*d*-regular
(i.e.
$$d_x^- = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{d\sqrt{(1-\rho)}}{d-1} \in \left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]$

with √(d/d-1) = θ̃_n(d) the constant for the directed *d*-regular case.
 ρ = d/m ∑_{x∈[n]}(d⁺_x)⁻¹

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 28 / 39

In-*d*-regular
(i.e.
$$d_x^- = d$$
 for all $x \in [n]$):
 $\vec{\theta_n}(\mathbf{d}^{\pm}) = \frac{d\sqrt{(1-\rho)}}{d-1} \in \left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]$

with √(d/d-1) = θ_n(d) the constant for the directed *d*-regular case.
 ρ = d/m ∑_{x∈[n]}(d⁺_x)⁻¹

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 28 / 39

In-*d*-regular
(i.e.
$$d_x^- = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{d\sqrt{(1-\rho)}}{d-1} \in \left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right]$

with √(d/d-1) = θ_n(d) the constant for the directed *d*-regular case.
 ρ = d/m ∑_{x∈[n]}(d⁺_x)⁻¹ ⇒ "Among the in-*d*-regular.

directed d regular has the slowest meeting tin

Luca Avena (Mathematics, Florence)

In-*d*-regular
(i.e.
$$d_x^- = d$$
 for all $x \in [n]$):
 $\vec{\theta}_n(\mathbf{d}^{\pm}) = \frac{d\sqrt{(1-\rho)}}{d-1} \in \left(\frac{d}{\sqrt{2}(d-1)}, \sqrt{\frac{d}{d-1}}\right],$

with √(d/d-1) = θ_n(d) the constant for the directed *d*-regular case.
 ρ = d/m ∑_{x∈[n]}(d⁺_x)⁻¹ ⇒ "Among the in-*d*-regular,

the directed *d*-regular has the slowest meeting time"

Luca Avena (Mathematics, Florence)

Eulerian case (i.e. $\mathbf{d} = (d_x)_{x \in [n]}$ and $d_x^+ = d_x^- = d_x$ for all x)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 29 / 39

Eulerian case
(i.e.
$$\mathbf{d} = (d_x)_{x \in [n]}$$
 and $d_x^+ = d_x^- = d_x$ for all x)
 $\vec{\theta}_n(\mathbf{d}) = \left(\frac{\beta}{\delta} - 1 + \sqrt{1 - \frac{1}{\delta}}\right)^{-1} \in \left(0, \sqrt{\frac{d}{d-1}}\right]$

with √(d/d-1) = θn(d) the constant for the directed *d*-regular case.
 δ = m/n and β/δ = measure of non-regularity of the degree sequence (d_x)_{x∈[n]}.

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 29 / 39

Eulerian case
(i.e.
$$\mathbf{d} = (d_x)_{x \in [n]}$$
 and $d_x^+ = d_x^- = d_x$ for all x)
 $\vec{\theta}_n(\mathbf{d}) = \left(\frac{\beta}{\delta} - 1 + \sqrt{1 - \frac{1}{\delta}}\right)^{-1} \in \left(0, \sqrt{\frac{d}{d-1}}\right],$

with √(d/d-1) = θ_n(d) the constant for the directed *d*-regular case.
 δ = m/n and β/δ = measure of non-regularity of the degree sequence (d_x)_{x∈[n]}.

Eulerian case
(i.e.
$$\mathbf{d} = (d_x)_{x \in [n]}$$
 and $d_x^+ = d_x^- = d_x$ for all x)
 $\vec{\theta}_n(\mathbf{d}) = \left(\frac{\beta}{\delta} - 1 + \sqrt{1 - \frac{1}{\delta}}\right)^{-1} \in \left(0, \sqrt{\frac{d}{d-1}}\right],$

with √(d/d-1) = θn(d) the constant for the directed *d*-regular case.
 δ = m/n and β/δ = measure of non-regularity of the degree sequence (d_x)_{x∈[n]}.
 ⇒ "The more irregular is the degree sequence,

the faster the meeting"

Eulerian case
(i.e.
$$\mathbf{d} = (d_x)_{x \in [n]}$$
 and $d_x^+ = d_x^- = d_x$ for all x)
 $\vec{\theta}_n(\mathbf{d}) = \left(\frac{\beta}{\delta} - 1 + \sqrt{1 - \frac{1}{\delta}}\right)^{-1} \in \left(0, \sqrt{\frac{d}{d-1}}\right],$

with √(d/d-1) = θ̂n(d) the constant for the directed *d*-regular case.
 δ = m/n and β/δ = measure of non-regularity of the degree sequence (d_x)_{x∈[n]}.
 ⇒ "The more irregular is the degree sequence, the faster the meeting"

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 29 / 39

General effects of in and out degrees

General effects of in and out degrees

Set $\alpha := \frac{\gamma - \rho}{1 - \rho} \in [1, \infty)$, then

$$ec{ heta}_n(\mathsf{d}^{\pm}) = rac{\delta}{\left(1-f(
ho)
ight)lpha+eta-1} \in \left(\mathsf{0},\sqrt{rac{d}{d-1}}
ight].$$

with α = measure of correlation between in and out degrees
 (α = 1 in the Eulerian case)

 $\triangleright \beta =$ measure of volatility of the in-degrees

▶ $f(\rho) \in [0.5, 0.59)$

General effects of in and out degrees

Set $\alpha := \frac{\gamma - \rho}{1 - \rho} \in [1, \infty)$, then

$$ec{ heta}_n(\mathbf{d}^{\pm}) = rac{\delta}{\left(1-f(
ho)
ight)lpha+eta-1} \in \left(0,\sqrt{rac{d}{d-1}}
ight],$$

with α = measure of correlation between in and out degrees
 (α = 1 in the Eulerian case)

• $\beta =$ measure of volatility of the in-degrees

•
$$f(\rho) \in [0.5, 0.59)$$

General effects of in and out degrees

Set $\alpha := \frac{\gamma - \rho}{1 - \rho} \in [1, \infty)$, then

$$ec{ heta}_n(\mathbf{d}^{\pm}) = rac{\delta}{\left(1-f(
ho)
ight)lpha+eta-1} \in \left(0,\sqrt{rac{d}{d-1}}
ight],$$

with α = measure of correlation between in and out degrees
 (α = 1 in the Eulerian case)

- $\beta =$ measure of volatility of the in-degrees
- *f*(*ρ*) ∈ [0.5, 0.59)

 \Rightarrow "The more irregular the in-degrees (high eta)

or the more anti-correlated the in- and out- sequences (high α),

the faster the meeting"

Luca Avena (Mathematics, Florence)

General effects of in and out degrees

Set $\alpha := \frac{\gamma - \rho}{1 - \rho} \in [1, \infty)$, then

$$ec{ heta}_n(\mathbf{d}^{\pm}) = rac{\delta}{\left(1-f(
ho)
ight)lpha+eta-1} \in \left(0,\sqrt{rac{d}{d-1}}
ight],$$

with α = measure of correlation between in and out degrees
 (α = 1 in the Eulerian case)

•
$$f(\rho) \in [0.5, 0.59)$$

 \Rightarrow "The more irregular the in-degrees (high β)

or the more anti-correlated the in- and out- sequences (high α),

the faster the meeting"

Luca Avena (Mathematics, Florence)

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 31 / 39

- 1. From Meeting to Hitting times: collapsed product graph (standard approach)
- 2. **Hitting times distribution via First Visit Time Lemma** (*Aldous like clumping heuristic*)
- 3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
- 4. Coupling collapsed process with Rooted Forest for "short time scales" (*local exploration/annealing*)
- 5. Extension to non-Eulerian setting (concentration plus continuity arguments)

- 1. From Meeting to Hitting times: collapsed product graph (*standard approach*)
- 2. Hitting times distribution via First Visit Time Lemma (Aldous like clumping heuristic)
- 3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
- 4. Coupling collapsed process with Rooted Forest for "short time scales" (*local exploration/annealing*)
- 5. Extension to non-Eulerian setting (concentration plus continuity arguments)

- 1. From Meeting to Hitting times: collapsed product graph (*standard approach*)
- 2. Hitting times distribution via First Visit Time Lemma (Aldous like clumping heuristic)
- 3. Lifting Mixing of original RW to Process on the collapsed graph (non-trivial comparison with product chain)
- 4. Coupling collapsed process with Rooted Forest for "short time scales" (*local exploration/annealing*)
- 5. Extension to non-Eulerian setting (concentration plus continuity arguments)

From Meeting to Hitting times: collapsed graph \tilde{G}

Take two copies of realized graph G := ([n], E), to generate the product graph

$$G^{\otimes 2} := G \times G = (V^{\otimes 2}, E^{\otimes 2})$$

with $V^{\otimes 2} = \{(x, y) : x, y \in [n]\}$ and $E^{\otimes 2}$ such that

$$(x,y) \to (w,z) \iff \begin{cases} x \to w \text{ and } y = z, \text{ or} \\ y \to z \text{ and } x = w. \end{cases}$$

From Meeting to Hitting times: collapsed graph \hat{G}

Take two copies of realized graph G := ([n], E), to generate the product graph

$$G^{\otimes 2} := G \times G = (V^{\otimes 2}, E^{\otimes 2})$$

with $V^{\otimes 2} = \{(x, y) : x, y \in [n]\}$ and $E^{\otimes 2}$ such that

$$(x,y) \to (w,z) \iff \begin{cases} x \to w \text{ and } y = z, \text{ or } \\ y \to z \text{ and } x = w. \end{cases}$$

Set the diagonal vertex as $\Delta = \{(x, x) : x \in [n]\}$, then define **Collapsed Graph**

$$\tilde{G} = (\tilde{V}, \tilde{E})$$

such that $\tilde{V} = \{(x, y) \in V^{\otimes 2} : x \neq y\} \cup \Delta$ and all vertices in Δ retain the *in-* and *out-*stubs with their multiplicity.

From Meeting to Hitting times: collapsed graph \tilde{G}

Take two copies of realized graph G := ([n], E), to generate the product graph

$$G^{\otimes 2} := G \times G = (V^{\otimes 2}, E^{\otimes 2})$$

with $V^{\otimes 2} = \{(x, y) : x, y \in [n]\}$ and $E^{\otimes 2}$ such that

$$(x,y) \to (w,z) \iff \begin{cases} x \to w \text{ and } y = z, \text{ or} \\ y \to z \text{ and } x = w. \end{cases}$$

Set the diagonal vertex as $\Delta = \{(x, x) : x \in [n]\}$, then define **Collapsed Graph**

$$\tilde{G} = (\tilde{V}, \tilde{E})$$

such that $\tilde{V} = \{(x, y) \in V^{\otimes 2} : x \neq y\} \cup \Delta$ and all vertices in Δ retain the *in*- and *out*-stubs with their multiplicity.

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $(X_t)_{t\in\mathbb{N}}$ on V with matrix P, define $(\tilde{X}_t)_{t\in\mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

• (Product chain out of Δ)

$$ilde{\mathcal{P}}((x,y),(w,z))=rac{1}{2}\mathcal{P}(x,w)\mathbbm{1}_{y=z}+rac{1}{2}\mathcal{P}(y,z)\mathbbm{1}_{x=w},\quad ext{if }x
eq y,$$

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $(X_t)_{t\in\mathbb{N}}$ on V with matrix P, define $(\tilde{X}_t)_{t\in\mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

• (Product chain out of Δ)

$$\tilde{P}((x,y),(w,z)) = \frac{1}{2}P(x,w)\mathbb{1}_{y=z} + \frac{1}{2}P(y,z)\mathbb{1}_{x=w}, \quad \text{if } x \neq y,$$

 \blacktriangleright (Exit law from \triangle)

$$\tilde{P}(\Delta, (w, z)) = \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(w, z) + \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(z, w), \quad \text{if } w \neq z,$$

• (Staying put in Δ)

$$\tilde{P}(\Delta, \Delta) = \sum_{x \in [n]} \frac{\pi^2(x)}{\sum_{z \in [n]} \pi^2(z)} P(x, x).$$

This way: $\tilde{\pi} := \pi \otimes \pi$ is the unique stationary distribution for \tilde{X} , and

"meeting becomes hitting": i.e. with $H_{\Delta} := \inf\{t \ge 0 : \tilde{X}_t = \Delta\}$ $P(\tau_{meet}^{\pi \otimes \pi} = t) = \tilde{P}_{\tilde{\pi}}(H_{\Delta} = t)$

Luca Avena (Mathematics, Florence)

From Meeting to Hitting times: Collapsed Process X

Given $(X_t)_{t\in\mathbb{N}}$ on V with matrix P, define $(\tilde{X}_t)_{t\in\mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

• (Product chain out of Δ)

$$\tilde{P}((x,y),(w,z)) = \frac{1}{2}P(x,w)\mathbb{1}_{y=z} + \frac{1}{2}P(y,z)\mathbb{1}_{x=w}, \quad \text{if } x \neq y,$$

► (Exit law from Δ)

$$\tilde{P}(\Delta, (w, z)) = \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(w, z) + \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(z, w), \quad \text{if } w \neq z,$$

• (Staying put in Δ)

$$\tilde{P}(\Delta, \Delta) = \sum_{x \in [n]} \frac{\pi^2(x)}{\sum_{z \in [n]} \pi^2(z)} P(x, x).$$

This way: $\tilde{\pi} := \pi \otimes \pi$ is the unique stationary distribution for \tilde{X} , and

"meeting becomes hitting": i.e. with $H_{\Delta} := \inf\{t \ge 0 : \tilde{X}_t = \Delta\}$

$$P(\tau_{meet}^{\pi\otimes\pi}=t)=\tilde{P}_{\tilde{\pi}}(H_{\Delta}=t)$$

Luca Avena (Mathematics, Florence)

From Meeting to Hitting times: Collapsed Process X

Given $(X_t)_{t\in\mathbb{N}}$ on V with matrix P, define $(\tilde{X}_t)_{t\in\mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

(Product chain out of Δ)

$$\tilde{P}((x,y),(w,z)) = \frac{1}{2}P(x,w)\mathbb{1}_{y=z} + \frac{1}{2}P(y,z)\mathbb{1}_{x=w}, \quad \text{if } x \neq y,$$

► (Exit law from Δ)

$$\tilde{P}(\Delta, (w, z)) = \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(w, z) + \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(z, w), \quad \text{if } w \neq z,$$

► (Staying put in Δ)

$$\tilde{P}(\Delta, \Delta) = \sum_{x \in [n]} \frac{\pi^2(x)}{\sum_{z \in [n]} \pi^2(z)} P(x, x).$$

This way: $\tilde{\pi} := \pi \otimes \pi$ is the unique stationary distribution for \tilde{X} , and

"meeting becomes hitting": i.e. with $H_{\Delta} := \inf\{t \ge 0 : \tilde{X}_t = \Delta\}$

$$P(\tau_{meet}^{\pi\otimes\pi}=t)=\tilde{P}_{\tilde{\pi}}(H_{\Delta}=t)$$

Note : In our directed setup π may depend on the realisation of the random graph!

Luca Avena (Mathematics, Florence)

From Meeting to Hitting times: Collapsed Process \tilde{X}

Given $(X_t)_{t\in\mathbb{N}}$ on V with matrix P, define $(\tilde{X}_t)_{t\in\mathbb{N}}$ on \tilde{V} with matrix \tilde{P} as follows:

(Product chain out of Δ)

$$\tilde{P}((x,y),(w,z)) = \frac{1}{2}P(x,w)\mathbb{1}_{y=z} + \frac{1}{2}P(y,z)\mathbb{1}_{x=w}, \quad \text{if } x \neq y,$$

► (Exit law from Δ)

$$\tilde{P}(\Delta, (w, z)) = \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(w, z) + \frac{1}{2} \frac{\pi^2(w)}{\sum_{x \in [n]} \pi^2(x)} P(z, w), \quad \text{if } w \neq z,$$

► (Staying put in Δ)

$$\tilde{P}(\Delta, \Delta) = \sum_{x \in [n]} \frac{\pi^2(x)}{\sum_{z \in [n]} \pi^2(z)} P(x, x).$$

This way: $\tilde{\pi} := \pi \otimes \pi$ is the unique stationary distribution for \tilde{X} , and

"meeting becomes hitting": i.e. with $H_{\Delta} := \inf\{t \ge 0 : \tilde{X}_t = \Delta\}$

$$P(\tau_{meet}^{\pi\otimes\pi}=t)=\tilde{P}_{\tilde{\pi}}(H_{\Delta}=t)$$

Note : In our directed setup π may depend on the realisation of the random graph!

Luca Avena (Mathematics, Florence)

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ , if the chain mixes fast compared to the stationary mass of Δ , then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ ."

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ , if the chain mixes fast compared to the stationary mass of Δ , then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ ."

Lemma (Cooper, Frieze (2005) Manzo, Quattropani, Scoppola (2021))

Consider a sequence of irreducible Markov chains on N states with transition matrices \tilde{P}_N and invariant measures $\tilde{\pi}_N$. Assume that

1. There exists some sequence of times T = T(N) such that

$$\max_{x,y\in[N]} |\tilde{P}_N^T(x,y) - \tilde{\pi}_N(y)| \le N^{-3}.$$

$$\max_{x\in[N]}T\ \tilde{\pi}_N(x)=o(1).$$

2.
$$\min_{x\in[N]}N^2 \ \tilde{\pi}_N(x)\to\infty.$$

Then, for any fixed target $\Delta \in [N]$, its first hitting time H_{Δ} satisfies:

$$\sup_{t\geq 0} \left| \frac{\tilde{\mathbb{P}}_{\tilde{\pi}_{N}}(H_{\Delta} > t)}{(1-\lambda)^{t}} - 1 \right| \to 0, \qquad \frac{\lambda}{\tilde{\pi}_{N}(\Delta)/R_{\Delta}^{T}} \to 1,$$

with

$$R_{\Delta}^{T} = \sum_{t \leq T} \tilde{P}_{N}^{t}(\Delta, \Delta) = \text{ Green's function in } \Delta \text{ up to time } T.$$

Luca Avena (Mathematics, Florence)

First-Visit-Time-Lemma: "hitting times from stationarity"

"Given a chain \tilde{X} and a target state Δ , if the chain mixes fast compared to the stationary mass of Δ , then the hitting time of Δ is well approximated by a geometric whose parameter depends only on $\tilde{\pi}(\Delta)$ and on the local geometry around Δ ."

Lemma (Cooper, Frieze (2005) Manzo, Quattropani, Scoppola (2021))

Consider a sequence of irreducible Markov chains on N states with transition matrices \tilde{P}_N and invariant measures $\tilde{\pi}_N$. Assume that

1. There exists some sequence of times T = T(N) such that

$$\sum_{x,y\in[N]}\max_{k}|\tilde{P}_{N}^{T}(x,y)-\tilde{\pi}_{N}(y)|\leq N^{-3}.$$

$$\max_{x\in[N]}T\ \tilde{\pi}_N(x)=o(1).$$

2.
$$\min_{x\in[N]}N^2 \ \tilde{\pi}_N(x)\to\infty.$$

Then, for any fixed target $\Delta \in [N]$, its first hitting time H_{Δ} satisfies:

$$\sup_{t\geq 0} \left| \frac{\tilde{\mathrm{P}}_{\tilde{\pi}_{N}}(H_{\Delta}>t)}{(1-\lambda)^{t}} - 1 \right| \to 0, \qquad \frac{\lambda}{\tilde{\pi}_{N}(\Delta)/R_{\Delta}^{T}} \to 1,$$

with

$$R_{\Delta}^{T} = \sum_{t \leq T} \tilde{P}_{N}^{t}(\Delta, \Delta) =$$
 Green's function in Δ up to time T.

Luca Avena (Mathematics, Florence)

We want to compute local time at Δ up to $\mathcal{T} = \log^4 n \, (\geq \tilde{t}_{\mathrm{mix}})$:

$$\mathbb{E}\left[\mathsf{\textit{R}}_{\Delta}^{\mathsf{T}}
ight] = 1 + \sum_{t=1}^{\mathsf{T}} \mathbb{E}\left[ilde{\mathsf{\textit{P}}}_{\Delta} \left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{mix})$:

$$\mathbb{E}\left[\mathsf{R}_{\Delta}^{\mathsf{T}}
ight] = 1 + \sum_{t=1}^{\mathsf{T}} \mathbb{E}\left[ilde{\mathsf{P}}_{\Delta} \left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{P}_{\Delta}\left(ilde{X}_t\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{X}_t\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random μ).

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{mix})$:

$$\mathbb{E}\left[R_{\Delta}^{\mathcal{T}}
ight] = 1 + \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[ilde{P}_{\Delta}\left(ilde{X}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{\mathcal{P}}_{\Delta}\left(ilde{X}_t\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{X}_t\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random μ).

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{\min})$:

$$\mathbb{E}\left[\mathsf{R}_{\Delta}^{\mathcal{T}}
ight] = 1 + \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[ilde{\mathsf{P}}_{\Delta} \left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{\mathcal{P}}_{\Delta}\left(ilde{X}_t\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{X}_t\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random $\mu).$

▶ For short times X
_t trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{\min})$:

$$\mathbb{E}\left[\mathsf{R}_{\Delta}^{\mathcal{T}}
ight] = 1 + \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[ilde{\mathsf{P}}_{\Delta} \left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{\mathcal{P}}_{\Delta}\left(ilde{X}_t\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{X}_t\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random μ).

▶ For short times X̃_t trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{\min})$:

$$\mathbb{E}\left[\mathsf{R}_{\Delta}^{\mathcal{T}}
ight] = 1 + \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[ilde{\mathsf{P}}_{\Delta}\left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{ extsf{P}}_{\Delta}\left(ilde{ extsf{X}}_{t}\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{ extsf{X}}_{t}\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random μ).

▶ For short times X̃_t trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

Building blocks:

$$\mathbb{P}^{\mathrm{ann}}_{\mu}\left(\mathcal{H}_{\Delta}=2t
ight),\quad t\in\mathbb{N},$$

Luca Avena (Mathematics, Florence)

Number of Returns R_{Δ}^{T} up to mixing via Coupled Rooted Forest

We want to compute local time at Δ up to $T = \log^4 n (\geq \tilde{t}_{\min})$:

$$\mathbb{E}\left[\mathsf{R}_{\Delta}^{\mathcal{T}}
ight] = 1 + \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[ilde{\mathsf{P}}_{\Delta}\left(ilde{\mathsf{X}}_t \in \Delta
ight)
ight].$$

Via local exploration

$$\mathbb{E}\left[ilde{ extsf{P}}_{\Delta}\left(ilde{ extsf{X}}_{t}\in\Delta
ight)
ight]=\mathbb{P}_{\mu}^{\mathrm{ann}}\left(ilde{ extsf{X}}_{t}\in\Delta
ight)$$

"annealed non-Markov process " that generates locally graph and walk steps (for non-random μ).

For short times \tilde{X}_t trajectories (do not see cycles!) can be coupled to a Rooted Forest where sequentially only fresh nodes and edges are sampled

Building blocks:

$$\mathbb{P}_{\mu}^{\mathrm{ann}}\left(\mathcal{H}_{\Delta}=2t
ight) ,\quad t\in\mathbb{N},$$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

$$X_0 = Y_0 \underbrace{\bigvee_{l=1}^{l}}_{l=1}^{l} \sim \mu$$

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

$$X_0 = Y_0 \underbrace{\bigvee_{l=1}^{l}}_{l=1}^{l} \sim \mu$$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Start from the empty matching of the graph (Eulerian case) Ex. $\mathbb{P}_{\mu}^{ann}(H_{\Delta} = 4)$

Luca Avena (Mathematics, Florence)

Start from the empty matching of the graph (Eulerian case) Ex. \mathbb{P}^{ann}_{μ} ($H_{\Delta} = 4$)

Luca Avena (Mathematics, Florence)

Denoting by D_i the out-offspring distribution of v_i , $D_1 \sim \mu$ and $D_i \sim \mu_{\text{biased}}^+$, $i \neq 1$.

$$\mathbb{P}^{\mathrm{ann}}_{\mu}(H_{\Delta}=2t)=2^{-2t+1}rac{1}{t}inom{2t-2}{t-1}\,f(\{D_i\}_{i\leq t-1}).$$

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 38 / 39

Denoting by D_i the out-offspring distribution of v_i , $D_1 \sim \mu$ and $D_i \sim \mu_{\text{biased}}^+$, $i \neq 1$.

$$\mathbb{P}_{\mu}^{\mathrm{ann}}(H_{\Delta}=2t)=2^{-2t+1}rac{1}{t}inom{2t-2}{t-1}f(\{D_i\}_{i\leq t-1}).$$

Similar computations for the second moment $\mathbb{E}\left[\left(R_{\Delta}^{T}\right)^{2}\right]$ to show concentration.

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 38 / 39

Denoting by D_i the out-offspring distribution of v_i , $D_1 \sim \mu$ and $D_i \sim \mu_{\text{biased}}^+$, $i \neq 1$.

$$\mathbb{P}^{\mathrm{ann}}_{\mu}(H_{\Delta}=2t)=2^{-2t+1}rac{1}{t}inom{2t-2}{t-1}\,f(\{D_i\}_{i\leq t-1}).$$

Similar computations for the second moment $\mathbb{E}\left[\left(R_{\Delta}^{T}\right)^{2}\right]$ to show concentration.

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 38 / 39

Thanks !

Luca Avena (Mathematics, Florence)

RW Meetings on Directed Ensembles

Bengaluru, January 30, 2024 39 / 39