Looking
Ahead

Number Fields
Other Number Fields include

$$
\mathbb{Z}\left(e^{2 \pi i / 3}\right) \quad \mathbb{Z}(\sqrt{2})
$$

Should he a 'sector' result in any sack Field
e.g. a sector in $\mathbb{Z}\left[\left[_{2}^{2}\right]\right.$ could he

$$
\{a+b \sqrt{2}: 2 \leq a / b \leq 2+60\}
$$

A Density Version of the Vinogradov Three Primes Theorem
Xuancheng Shoo \qquad

In Ri]; there should a universal density for all sectors.

Exceptional zeros, sieve parity, Goldbach
John B. Friedlander and Henryk Iwaniec

Vol. 1 (2022), No. 1, 13-39 DOI: 10.2140/ent.2022.1.13

Abstract
We survey connections between the possible existence of exceptional real zeros of Dirichlet L-functions and the sieve parity barrier and then show how recent work tying them to the Goldbach problem can be viewed in a considerably generalized framework.

Connections between Binary Goldlad and exceptional zeros is unexplored (in sectors)
[Submitted on 31 Dec 2020 (v1), last revised 4 Apr 2022 (this version, v2)]
Constellations in prime elements of number fields
Wataru Kai, Masato Mimura, Akihiro Munemasa, Shin-ichiro Seki, Kiyoto Yoshino
Given any number field, we prove that there exist arbitrarily shaped constellations consisting of pairwise non-associate prime elements of the ring of integers. This result extends the celebrated Green-Tao theorem on arithmetic progressions of rational primes and Tao's theorem on constellations of Gaussian primes. Furthermore, we prove a constellation theorem on prime representations of binary quadratic forms with integer coefficients. More precisely, for a non-degenerate primitive binary quadratic form F which is not negative definite, there exist arbitrarily shaped constellations consisting of pairs of integers (x, y) for which $F(x, y)$ is a rational prime. The latter theorem is obtained by extending the framework from the ring of integers to the pair of an order and its invertible fractional ideal.

Comments: Minor revision (v2), explanations brushed up, 149 pages, 4 figures
Subjects: Number Theory (math.NT); Combinatorics (math.CO)
MSC classes: 11B30 (Primary) 11B25, 11H55, 11N05, 11R04, 05C55 (Secondary)
Cite as: arXiv:2012.15669 [math.NT]
(or arXiv:2012.15669v2 [math.NT] for this version)
https://doi.org/10.48550/arXiv.2012.15669 (i)
Submission history
From: Masato Mimura [view email]
[vi] Thu, 31 Dec 2020 15:47:39 UTC (151 KB)
[v2] Mon, 4 Apr 2022 08:30:17 UTC (156 KB)

Sarkozy: $A \subset\{1, \ldots, N\} w /$ no +wo differing by square integer satisfy $1 A L=O(N)$

Easy to prove from major arcs.
Task to get a 'good' estimates for a broad class of Number fields

Except for Conrellations, multilineas is not known in Numberfields, e.g. Deluse Theory

Very Vague Qnestion:
Weyl For a.e. x and polynamial n, $\{p(n) \times\}$ is uniformly direributed mod 1.

What is Numberfield vaviunt?

Improving or Sparse Bounds

- Triangle operator of Anderson Kumare Palsson?
- Many results are known for averanes (Locey, Han, Kang) Itugless,)
a For discrets singulan integuals

$$
H f(x)=\sum_{n \neq 0} \frac{f\left(x-n^{3}\right)}{n}
$$

there is an ε-improvent in sporse bounds. (Craculic-kessles - Lacey) Can you prare $(3 / 2-\varepsilon, 3 / 2-c)$ for

$$
\sum_{n \neq 0} \frac{f\left(x-\operatorname{sgn}(n) n^{2}\right)}{n} ?
$$

- Can you establish good results for a sparse bound for Oscillation or variation of disuete averages?

My advice: Attempt something new, arch as recent work of leges et all. Also Andesar Kumchev Palssen is sphere related

Question (Ben Krause)
Prove non-trivial estimates for the lis linear average

$$
\begin{aligned}
& \text { ur average } e(x(x-y)) \\
& \int_{S^{d-1}} f(x-y) g(x+y) d v
\end{aligned}
$$

(It has a modulation invariance)

Ben Krause has proved

$$
\begin{aligned}
& \text { Krause has proved } \\
& \left\|\sup _{\theta}\left|\sum_{n \neq 0} e^{i \theta n^{2}} \frac{f(x-n)}{n}\right| b^{2} \approx\right\| f \|_{e^{2}}
\end{aligned}
$$

Could it he extended to

$$
\left\|\sup _{\theta} \left\lvert\, \sum_{n \neq 0} e_{\text {two distinct powers }}^{e_{i \theta}^{i \theta} \frac{n^{2}\left(x-n^{3}\right)}{n}}\right.\right\|_{b^{2}} \approx\|f\|^{2}
$$

two distinct powers

This inequality is equivalent to Carleson's Theorem on Fourier Series

$$
\left\|\sup _{\theta}\left|\sum_{n \neq 0} e^{i n \theta} \frac{f(x-n)}{n}\right| \mathbb{W}_{b^{2}} \leqslant\right\| \|_{b^{2}}
$$

is there an banthmetic' version? e.g.

$$
\left\|\sup _{\theta} \left\lvert\, \sum_{n \neq 0} e^{i n^{3} \theta} \frac{f\left(x-n^{3}\right) \mid}{2}\right.\right\|_{b^{2}} \lesssim\|f\|_{b^{2}}
$$

Previous question is very hoed. Can you establish

$$
\left\|\sup _{\theta \in \Theta}\left|\sum_{n \neq 0} e^{i n^{2} \theta} f(x-n)\right|\right\|_{b^{2}} \lesssim \| f l_{b^{2}}
$$

for non-trivial H ?

Random Averages.
Let x_{n} be indep. Bernoulli riv. with $\mathbb{P}\left(X_{n}=1\right)=1 / n^{\alpha} \quad 0<\alpha<1$

$$
A_{n} f(x)=\frac{1}{N^{1-\alpha}} \sum_{n=1}^{N} x_{n} f(x-n)
$$

(Bourgain early authmetic paper) shows

$$
M C=\sup _{N} A_{N}: l^{p} \rightarrow l^{p} \quad 1<p<+\infty
$$

Q (Krause) For $\alpha=1 / 2$ peove or dispruve $M: l^{\prime} \rightarrow l^{\prime, \infty}$ a.s.
(For $\alpha>1 / 2$, this is tove)
(The probulity event is a tail event, hence occuse xi prof oor 1)

With same notation, define randan
$Y_{k} \operatorname{lig} \quad \sum_{1}^{Y_{k}} x_{n}=k$
Set $H f(x)=\sum_{1}^{\infty} \frac{f\left(x-y_{k}\right)-f\left(x+y_{k}\right)}{k}$
$F_{o n} \alpha=1 / 2$ does $H: l^{\prime} \rightarrow l^{1,0}$ as?

Same Notation $\quad \alpha=1 / 2$
(Bourgain, if I am remembering it correctly)

$$
B(f, g)=\frac{F}{k} \frac{f\left(x-y_{k}\right) g\left(x+y_{k}\right)}{k}
$$

Prove $l^{2} * l^{2} \rightarrow l^{\prime}$. Same for bilincurs maximal fin.

Q: What is the threshold density of set of $\Lambda \frac{\text { random }}{\text { differences }} D \subset\{1, \ldots, N\}$ so that ALL $A \subset\{1, \ldots, N\}$ of devinty $\geq \frac{1}{100}$ (say) contain 3 points

$$
x, x+d, x+2 d \in A \quad d \in D
$$

density of $D \geqslant N^{-1 / 2}$ is relatimly easy, using a variant of the randan bilinem averages. This papers breaks this square root barrier
\qquad

This question has many variants

Q:(Sarkocy Vainurt)
What is the threshold density for random $D \subset\{1, \ldots, \sqrt{N}\}$ so that all $A \subset\{1, \cdots, N\}$ of density $>\frac{1}{100}$ say contain

$$
x, \quad x+d^{2}, \in A \quad d t D
$$

Q (nan linear Roth variant) Same question for

$$
x, x+y, x+y^{2} \in A \quad, y \in D
$$

Critical cases for Peluse Theorem
Prove: $\exists c>0 \quad \forall A \subset\{z, \ldots N\}$ of density $(\log \log N)^{-C}$ contain

- $\quad x, x+y^{2}, x+2 y^{2}$
- $x, x+y, x+2 y, x+y^{2}$

