

Recent developments in Non-Eq. QFT

R. Loganayagam

ICTS-TIFR, Bengaluru.

ICTS Discussion Meeting
Extreme Non-Equilibrium QCD.
6th Oct, 2020.

- Non-equilibrium field theory is really a very old subject.
- Reminder : Fluid dynamics (arguably the oldest field theory) is a non-equilibrium theory
- Given this fact, we understand surprisingly little : especially Non-eq. QFTs
- One objective way to say this is to point out the relatively few textbooks that cover the subject.

In principle, textbooks give an exact definition of Non-equilibrium QFT via **Schwinger/Keldysh(SK) Path integrals** : Can write down a path integral for evolution of mixed states.

- Ket field ϕ_R and Bra field ϕ_L .
- For a unitary QFT, $S_{SK} = S[\phi_R] - S[\phi_L]$.
- solve with appropriate past/future conditions which set $\phi_R = \phi_L$ at far future .
- gives the following generating function

$$Z_{SK}[J_R, J_L] = \text{Tr}\{ U[J_R] \rho_{initial} (U[J_L])^\dagger \}$$

Two issues

- computes the (singly) out of time ordered correlators. So this definition is actually incomplete (more on this later).
- Is this a practical object to compute/characterise ?

- In this business, one quickly learns that SK path integral is rarely used.
- In perturbative QFTs, one often approximates it by Kinetic theory/classical statistical approximations and works with them instead.
- Most of the discussion is usually about linear response/two point correlations/spectral functions
- Much of our understanding is perturbative : no systematic formalism yet to incorporate instantons etc., in real time
- unlike Euclidean case where the situation is much better especially since Lattice QCD : existing approaches try to analytically continue from here
- Not many examples of non-equilibrium dualities (AdS/CFT being a notable exception relating non-equilibrium physics in certain gauge theories to non-equilibrium gravity)

- Even in AdS/CFT, we do not actually know how to compute SK path integrals !
- This is the reason why Non-equilibrium gravity in AdS/CFT almost always ignores Hawking radiation effects
- Especially interacting Hawking physics/ BH evaporation is ill-understood quantitatively despite its centrality to information paradox/finite N effects
- What I want to describe today : some modest progress towards addressing these challenges
- Organised into 3 themes :
 - Out of time ordered correlations (OTOCs)
 - Open EFTs
 - Schwinger Keldysh Holography
- New perspectives and puzzles rather than complete answers !

First theme : Out of time order correlations (OTOCs)

- Surprisingly, SK path integral does not answer every question one can ask of a QFT !
- For example, one can define a generating function

$$Z_{SK}^{(2)}[J_{Ri}, J_{Li}] = \text{Tr}\{ (U[J_{L2}])^\dagger U[J_{R1}] \rho_{initial} (U[J_{L1}])^\dagger U[J_{R2}] \}$$

- computes the correlators with a maximum of two time-ordering violations.
- Can string together $2k$ such alternating evolution/inverse evolution operators to define $Z_{SK}^{(k)}$.
- $Z_{SK}^{(k)}$ generates correlators with a maximum of k time-ordering violations.

Hierarchy of OTOCs

- Note that the sequence of generating functions $Z_{SK}^{(k)}$ have a natural and exact hierarchy among them.
- Taking $Z_{SK}^{(k)}$ and setting equal the sources in two adjacent U and U^\dagger , we get $Z_{SK}^{(k-1)}$.
- All information in $Z_{SK}^{(k-1)}$ is hence inside $Z_{SK}^{(k)}$
- Think of $Z_{SK}^{(k)}$ as giving a sequence of QFTs which incorporate more and more fine non-equilibrium correlations as we increase k .
- A product of n operators cannot have more than $(n+1)/2$ time-ordering violations
- so all n -pt correlations with any time ordering is captured by $Z_{SK}^{((n+1)/2)}$
- Thus, finer and finer OTO correlations are possible only for higher and higher point functions

Hierarchy of OTOCs II

- While this argument is elementary, the result calls for a completely new way of thinking about any non-equilibrium QFT :
 - Correlations in a general state of a QFT have a Russian doll like structure
 - finer correlations do not affect less finer correlations : an exact statement
 - finer correlations show up only in higher point functions with a lot of time ordering violations
- OTO KMS constraints appear in the thermal case

[arXiv:1706.08956](https://arxiv.org/abs/1706.08956) Felix M. Haehl, RL, Prithvi Narayan, Amin A. Nizami, Mukund Rangamani

[arXiv:1810.03118](https://arxiv.org/abs/1810.03118) Soumyadeep Chaudhuri, Chandramouli Chowdhury, RL

- Nothing in say kinetic theory suggests such a structure ! Systematic kinetic theory level understanding slowly emerging

[arXiv:1512.07687](https://arxiv.org/abs/1512.07687) Douglas Stanford , [arXiv:1609.01251](https://arxiv.org/abs/1609.01251) Igor L. Aleiner, Lara Faoro, Lev B. Ioffe

[arXiv:1703.07353](https://arxiv.org/abs/1703.07353) Aavishkar A. Patel, Debanjan Chowdhury, Subir Sachdev, Brian Swingle

[arXiv:1703.02545](https://arxiv.org/abs/1703.02545) Debanjan Chowdhury, Brian Swingle , [arXiv:1804.09182](https://arxiv.org/abs/1804.09182) Grozdanov-Schalm-Scopelliti

What does this mean ? Why should we care ?

- Seems we need an infinite sequence of distribution functions/quasi-particles describing the transport of finer and finer correlations...
- What does this mean ? What physics is being captured ? My opinion is we do not yet know...
- Compare Schroedinger/von Neumann/EPR's introduction of entanglement in QM or introduction of BHs/CC in GR.
- They are mathematically well-defined objects containing novel info and most probably have experimental consequences.
- What we do know ? OTOCs with 2 time violations can be used to
 - diagnose chaos, study scrambling,
 - to give one measure of how close a theory is to being holographic to classical gravity.

[arXiv:1306.0622](https://arxiv.org/abs/1306.0622) Stephen H. Shenker, Douglas Stanford

[arXiv:1503.01409](https://arxiv.org/abs/1503.01409) Juan Maldacena, Stephen H. Shenker, Douglas Stanford

- **Need for a systematic study and exploration**

Second theme : Open EFTs

- 'Open' as in open quantum systems : QFT with 'environmental' parts traced out.
- Environment could be a light but fast d.o.f. - think of brownian particle in water.
- Important for many reasons. some are
 - 1 Understand decoherence and dissipation in QFT.
 - 2 Cosmology: QFT in dS, fields falling out of dS horizon.
 - 3 Black Holes : via AdS/CFT, BHs dual to a dissipative subsector of CFT. (BHs \sim open CFT ?)
- Thus there are good reasons to set up a formalism for open QFTs/CFTs study their renormalisation etc.
- For example, necessary for a non-perturbative understanding of emergence of Hydro : can we think of it as a fixed point of RG flow ?

Toy model : Open ϕ^4 Theory

- To be precise, start with a simple model of an open ϕ^4 theory :

$$\begin{aligned} & - \int d^d x \left[\frac{1}{2} z (\partial \phi_R)^2 + \frac{1}{2} m^2 \phi_R^2 + \frac{\lambda_4}{4!} \phi_R^4 + \frac{\sigma_4}{3!} \phi_R^3 \phi_L \right] \\ & + \int d^d x \left[\frac{1}{2} z^* (\partial \phi_L)^2 + \frac{1}{2} m^{*2} \phi_L^2 + \frac{\lambda_4^*}{4!} \phi_L^4 + \frac{\sigma_4^*}{3!} \phi_L^3 \phi_R \right] \\ & + i \int d^d x \left[z_\Delta (\partial \phi_R) \cdot (\partial \phi_L) + m_\Delta^2 \phi_R \phi_L + \frac{\lambda_\Delta}{2!2!} \phi_R^2 \phi_L^2 \right] \end{aligned}$$

[arXiv:1704.08335](https://arxiv.org/abs/1704.08335) Avinash, Chandan Jana, R. Loganayagam, Arnab Rudra

- e^{iS} should be invariant under $R \leftrightarrow L$ along with complex conjugation
- Further, this action should vanish when $\phi_R = \phi_L$
- This implies

$$\text{Im } z - z_\Delta = 0, \quad \text{Im } m^2 - m_\Delta^2 = 0, \quad \text{Im } \lambda_4 + 4 \text{Im } \sigma_4 - 3\lambda_\Delta = 0.$$

- Is this preserved under renormalisation ? If yes, why ?

Beta fn. of Open ϕ^4

Standard methods applied to 1 loop perturbation theory gives

$$\frac{dm^2}{d \ln \mu} = \frac{m^2}{(4\pi)^2} \left[\lambda_4 + 2\sigma_4 - i\lambda_\Delta \right]$$

$$\frac{dm_\Delta^2}{d \ln \mu} = \frac{2}{(4\pi)^2} \operatorname{Re} \left[m^2 (\lambda_\Delta + i\sigma_4) \right]$$

and

$$\frac{d\lambda_4}{d \ln \mu} = \frac{3}{(4\pi)^2} (\lambda_4 + 2\sigma_4 - i\lambda_\Delta)(\lambda_4 + i\lambda_\Delta)$$

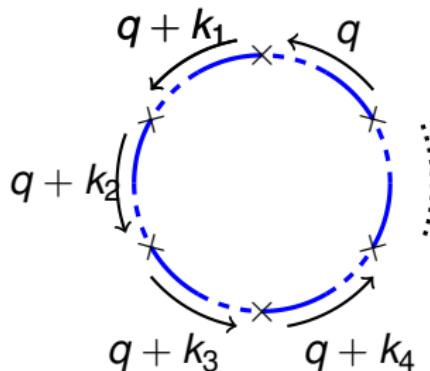
$$\frac{d\sigma_4}{d \ln \mu} = \frac{3}{(4\pi)^2} (\lambda_4 + \sigma_4 + \sigma_4^* + i\lambda_\Delta)(\sigma_4 - i\lambda_\Delta)$$

$$\frac{d\lambda_\Delta}{d \ln \mu} = \frac{1}{(4\pi)^2 i} \left[(\lambda_4 + 2\sigma_4^*)(\sigma_4^* + i\lambda_\Delta) + 3i\sigma_4\lambda_\Delta - c.c. \right]$$

Beta fn. preserves Lindblad !

This can be used to give

$$\begin{aligned} & \frac{d}{d \ln \mu} (\operatorname{Im} m^2 - m_\Delta^2) \\ = & \frac{2}{(4\pi)^2} (\operatorname{Im} \lambda_4 + 4 \operatorname{Im} \sigma_4 - 3 \lambda_\Delta) (\operatorname{Re} m^2) \end{aligned}$$


and

$$\begin{aligned} & \frac{d}{d \ln \mu} (\operatorname{Im} \lambda_4 + 4 \operatorname{Im} \sigma_4 - 3 \lambda_\Delta) \\ = & \frac{6}{(4\pi)^2} (\operatorname{Im} \lambda_4 + 4 \operatorname{Im} \sigma_4 - 3 \lambda_\Delta) (\operatorname{Re} \lambda_4 + 2 \operatorname{Re} \sigma_4) \end{aligned}$$

So Lindblad conditions once set, do not get corrected (actually to any order in perturbation theory)! So far, so good.

Non-Local divergences

- Not all things are well though
- Consider $D - 1$ -gon Wightman loop in D space-time dimensional open ϕ^4 :

- Thick and dashed lines denote R and L fields

Non-Local divergences in open EFT

$$\int \frac{d^D q}{(2\pi)^D} 2\pi \Theta(q^0) \delta[q^2 + m^2] \prod_{j=1}^{D-2} 2\pi \Theta(q^0 + k_j^0) \delta[(q + k_j)^2 + m_j^2].$$

- Naive degree of divergence: $D - 2(D - 1) = 2 - D$. Naive Expectation : finite for $D > 2$. Turns out to be incorrect !
- Correct counting done after linearising using Dirac delta :

$$\int \frac{d^D q}{(2\pi)^D} 2\pi \Theta(q^0) \delta[q^2 + m^2] \prod_{j=1}^{D-2} 2\pi \Theta(q^0 + k_j^0) \delta[2q \cdot k_j + k_j^2].$$

- The correct counting $D - 2 - (D - 2) = 0$

$$\approx \frac{1}{2^{D-2} (2\pi) \Sigma_c} \ln \Lambda.$$

- Σ_c : $\{k_i\}$ Parallelotope volume . $\Sigma_c \sim k^{D-2}$: non-local divergence .

- Open EFTs have worse divergences than even non-renormalisable theories
- This leads to the breakdown of the standard Wilsonian paradigm in this case.
- Why does this happen ? Underlying the standard paradigm of renormalisation is the operator product expansion (OPE)
- The problem here comes from the fact that OPEs are kind of sick for non-time ordered operator products

Work in Progress with Subhobrata Chatterjee, Chandan Jana, Arnab Rudra

- We conclude that unless this problem is somehow overcome, it is difficult to make rigorous say the idea of hydro as a RG fixed point.

Third theme : Holographic Open QFTs

- What can holography say about all these ?
- A simple example realisable in AdS/CFT is this : an external probe field Ψ coupled to strongly interacting, large N gauge theory environment (with fields A) via a single trace scalar operator O .

$$S = \int d^d x \mathcal{L}[\Psi] + \mathcal{L}_{CFT}[A] + \Psi \mathcal{O}.$$

- dual to open QFT of a bulk scalar field Φ heated by blackholes
- Recent development : a formalism to engineer Open QFTs in holography.
- This is good news ! holographic black hole baths are very good baths (compared to weakly coupled descriptions) leading to local open EFTs.
- A clear setting to address long-standing conceptual problems within open QFTs.

The gravitational setup

- Take a planar AdS_{d+1} black brane
- The scalar operator, O in CFT, maps to a scalar field Φ on this background with a contact self-interaction

$$-\int d^{d+1}x \sqrt{-g} \left\{ \frac{1}{2}g^{AB}\partial_A\Phi\partial_B\Phi + \frac{m^2}{2}\Phi^2 + \frac{\lambda_n}{n!}\Phi^n \right\}$$

[arXiv:2004.02888](https://arxiv.org/abs/2004.02888) Chandan Jana, RL, Mukund Rangamani

- Self interaction λ_n in bulk models the $1/N$ -suppressed non-linearities in the gauge theory.
- To do an SK path integral, bulk should be a doubled gravitational SK (grSK) geometry.

The gravitational SK(grSK) geometry

- To do an SK path integral, double this geometry and identify at future time-like boundary .
- Geometry along the time direction: AdS boundaries asymptote to CFT SK contour. Skenderis, van Rees (arXiv:0805.0150, 0812.2909, 0902.4010)
- What to we do at the horizon ?
- This is also a future boundary for the exterior of black brane : suggests that we should identify.
- A conjecture on how to do this was given by

[Crossley-Glorioso-Liu \(1812.08785\)](#)

- This conjecture reproduces KMS relations for any n point functions :

[arXiv:1906.07762 Bidisha Chakrabarty, Joydeep Chakravarty, Soumyadeep Chaudhuri, Chandan Jana, RL, Akhil Sivakumar](#)

Holographic open ϕ^n EFT

- The interacting bulk scalar theory can be solved in the afore-mentioned geometry and its effective action gives a open ϕ^n theory.
- The gravitational physics is here is of k Hawking fluctuations scattering against $(n - k)$ in-falling modes.
- Study of this kind of this kind of physics is new in non-equilibrium field theory as well as in gravity.
- On perturbative side, this is tantamount to an analysis of Schwinger-Dyson equations for n point functions keeping all fluctuations
- This is beyond current capabilities even using kinetic theory approximations !
- But, in gravity this can be done and leads to novel non-linear FDTs :

arXiv:2004.02888 Chandan Jana, RL, Mukund Rangamani

Fluctuating hydro from Holography

- Many generalisations beyond this toy model is possible : we can include Fermions for example

Work in progress with Krishnendu Ray,Akhil Sivakumar

- Can one go beyond this toy model and get a hydrodynamic theory with fluctuations ?
- Answer seems to be Yes ! with many more new ideas

Work in progress with

Jewel Kumar Ghosh,Siddharth G Prabhu, Mukund Rangamani,Akhil Sivakumar, Vishal Vijayan

- This and many other questions are now within our reach !

'Open' questions

- Talked about three new developments in non-eq QFT
 - Out of time ordered correlations (OTOCs)
 - Open EFTs
 - Schwinger Keldysh Holography
- It is also interesting to consider their intersection : OTOCs seem to admit their own open EFTs

[arXiv:1807.09731 Soumyadeep Chaudhuri, RL](#)

[arXiv:1811.01513 Bidisha Chakrabarty, Soumyadeep Chaudhuri, RL](#)

[arXiv:1905.08307 Bidisha Chakrabarty, Soumyadeep Chaudhuri](#)

- Barely scratched the surface of these new developments. Many unanswered questions/ challenges
- How to **derive** open EFTs : problem of initial state, IR divergences

Thank you !