An effective version of Ratner's equidistribution theorem for SL(3, \mathbb{R})

Lei Yang

Sichuan University
ETDS Conference in honor of Dani

December 8, 2022

Ratner's theorem

- G : Lie group, $\Gamma \subset G$ lattice, $X=G / \Gamma$;

Ratner's theorem

- G : Lie group, $\Gamma \subset G$ lattice, $X=G / \Gamma$;
- $U=\{u(r): r \in \mathbb{R}\} \subset G$: one-parameter unipotent subgroup

Ratner's theorem

- G : Lie group, $\Gamma \subset G$ lattice, $X=G / \Gamma$;
- $U=\{u(r): r \in \mathbb{R}\} \subset G$: one-parameter unipotent subgroup

Ratner's theorem (1991)

For any $x \in X$, the closure of $U x=\{u(r) x: r \in \mathbb{R}\}$ is a closed orbit $L x$ of some Lie subgroup $L \subset G$. Moreover, the orbit $U x$ is equidistributed in $L x$ in the following sense: For any $f \in C_{c}^{\infty}(X)$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r=\int_{L x} f(y) \mathrm{d} \mu_{L}(y)
$$

Here $[T]=[-T / 2, T / 2]$, and μ_{L} denotes the unique L-invariant probability measure on $L x$.

Ratner's theorem

- The topological rigidity part is a conjecture by Raghunathan;

Ratner's theorem

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;

Ratner's theorem

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;
- Ratner's equidistribution theorem is not effective.

Ratner's theorem

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;
- Ratner's equidistribution theorem is not effective.

Effective Version

Open Problem

Can we give an explicit upper bound on

$$
\left|\frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r-\int_{L x} f(y) \mathrm{d} \mu_{L}(y)\right| ?
$$

Effective Version

Open Problem

Can we give an explicit upper bound on

$$
\left|\frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r-\int_{L x} f(y) \mathrm{d} \mu_{L}(y)\right| ?
$$

In particular, if U_{x} is dense in X, we want to know how fast it approaches μ_{G}.

Effective Version

Open Problem

Can we give an explicit upper bound on

$$
\left|\frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r-\int_{L x} f(y) \mathrm{d} \mu_{L}(y)\right| ?
$$

In particular, if U_{x} is dense in X, we want to know how fast it approaches μ_{G}.

Dream Theorem

There exist $C, \eta>0$ and some Sobolev norm $\|\cdot\|_{S}$ such that for any $x \in X$ either

$$
\left|\frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{S} T^{-\eta}
$$

or $u([T]) x$ is close to some proper closed orbit $L x$.

Main Result

- $G=\operatorname{SL}(3, \mathbb{R}), \Gamma=\operatorname{SL}(3, \mathbb{Z})$;

Main Result

- $G=\operatorname{SL}(3, \mathbb{R}), \Gamma=\operatorname{SL}(3, \mathbb{Z})$;

$$
u(r)=\left[\begin{array}{lll}
1 & & \\
& 1 & r \\
& & 1
\end{array}\right]
$$

Theorem 1(Y. 2022)

There exist $C, \eta, T_{0}>0$ and some Sobolev norm $\|\cdot\|_{S}$ such that for any $T>T_{0}$ and $x \in X$, either

$$
\left|\frac{1}{T} \int_{[T]} f(u(r) x) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{S} T^{-\eta}
$$

or $b(\log T) x$ or $b^{\prime}(\log T) x$ is "far in the cusp".

Obstruction to Effective Equidistribution

$$
a(t)=\left[\begin{array}{lll}
1 & & \\
& e^{t / 2} & \\
& & e^{-t / 2}
\end{array}\right]
$$

Obstruction to Effective Equidistribution

-

$$
a(t)=\left[\begin{array}{lll}
1 & & \\
& e^{t / 2} & \\
& & e^{-t / 2}
\end{array}\right]
$$

$$
a_{0}(t)=\left[\begin{array}{lll}
e^{t / 3} & & \\
& e^{-t / 6} & \\
& & e^{-t / 6}
\end{array}\right]
$$

- $b(t)=a(-t) a_{0}(t), b^{\prime}(t)=a(-t) a_{0}(-t)$

Obstruction to Effective Equidistribution

- X can be identified with the space of unimodular lattices in \mathbb{R}^{3} by identifying $g\left\lceil\right.$ with $g \mathbb{Z}^{3}$;

Obstruction to Effective Equidistribution

- X can be identified with the space of unimodular lattices in \mathbb{R}^{3} by identifying $g \Gamma$ with $g \mathbb{Z}^{3}$;
- $X_{\epsilon}:=\left\{x \in X, \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in x \backslash\{\mathbf{0}\},\left\|\mathbf{v}_{1}\right\|,\left\|\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right\| \geq \epsilon\right\}$

Obstruction to Effective Equidistribution

- X can be identified with the space of unimodular lattices in \mathbb{R}^{3} by identifying $g \Gamma$ with $g \mathbb{Z}^{3}$;
- $X_{\epsilon}:=\left\{x \in X, \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in x \backslash\{\mathbf{0}\},\left\|\mathbf{v}_{1}\right\|,\left\|\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right\| \geq \epsilon\right\}$
- Obstruction: $b(\log T) x \notin X_{T^{-\kappa}}$ or $b^{\prime}(\log T) x \notin X_{T^{-\kappa}}$ where $\kappa=\frac{1}{3}-0.001$

Expanding Translates of Unipotent Orbits

Theorem 2(Y. 2022)

There exist $C, \eta, t_{0}>0$ and some Sobolev norm $\|\cdot\|_{S}$ such that for any $t>t_{0}$ and any $x \in X$, either

$$
\left|\int_{[1]} f(a(t) u(r) x) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{S} e^{-\eta t}
$$

or $a_{0}(t) x \notin X_{e^{-\kappa t}}$ or $a_{0}(-t) x \notin X_{e^{-\kappa t}}$.

Expanding Translates of Unipotent Orbits

$$
u\left(v_{1}, v_{2}\right)=\left[\begin{array}{llc}
1 & & v_{2} \\
& 1 & v_{1} \\
& & 1
\end{array}\right]
$$

Expanding Translates of Unipotent Orbits

$$
u\left(v_{1}, v_{2}\right)=\left[\begin{array}{lll}
1 & & v_{2} \\
& 1 & v_{1} \\
& & 1
\end{array}\right]
$$

Corollary 1(Y. 2022)

Let $\mathbf{f}:[1] \rightarrow \mathbb{R}^{2}$ be a non-degenerate C^{3} curve and $x \in X$. There exist $C, \eta, t_{0}>0$ and some Sobolev norm $\|\cdot\|_{s}$ such that for any $t>t_{0}$,

$$
\left|\int_{[1]} f\left(a_{1}(t) u(\mathbf{f}(r)) x\right) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{s} e^{-\eta t}
$$

where $a_{1}(t)=a_{0}(t) a(t)$.

Expanding Translates of Unipotent Orbits

$$
u\left(v_{1}, v_{2}\right)=\left[\begin{array}{ccc}
1 & & v_{2} \\
& 1 & v_{1} \\
& & 1
\end{array}\right]
$$

Corollary 1(Y. 2022)

Let $\mathbf{f}:[1] \rightarrow \mathbb{R}^{2}$ be a non-degenerate C^{3} curve and $x \in X$. There exist $C, \eta, t_{0}>0$ and some Sobolev norm $\|\cdot\|_{s}$ such that for any $t>t_{0}$,

$$
\left|\int_{[1]} f\left(a_{1}(t) u(\mathbf{f}(r)) x\right) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{s} e^{-\eta t}
$$

where $a_{1}(t)=a_{0}(t) a(t)$.
The ineffective version is proved by Shah (2009).

Expanding Translates of Unipotent Orbits

- $\varphi_{w_{1}, w_{2}}(r)=\left(r, w_{1} r+w_{2}\right)$

Expanding Translates of Unipotent Orbits

- $\varphi_{w_{1}, w_{2}}(r)=\left(r, w_{1} r+w_{2}\right)$
- We say that $\left(w_{1}, w_{2}\right)$ is ω-Diophantine if there exists $C^{\prime}>0$ such that for any positive integer n,

$$
\max \left\{\left\langle n w_{1}\right\rangle,\left\langle n w_{2}\right\rangle\right\} \geq C^{\prime} n^{-\omega} .
$$

Corollary 1(Y. 2022)

Let (w_{1}, w_{2}) be 0.6-Diophantine. There exist $C, \eta, t_{0}>0$ and some Sobolev norm $\|\cdot\|_{S}$ such that for any $t>t_{0}$,

$$
\left|\int_{[1]} f\left(a_{1}(t) u\left(\varphi_{w_{1}, w_{2}}(r)\right) \Gamma\right) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{s} e^{-\eta t} .
$$

Expanding Translates of Unipotent Orbits

- $\varphi_{w_{1}, w_{2}}(r)=\left(r, w_{1} r+w_{2}\right)$
- We say that $\left(w_{1}, w_{2}\right)$ is ω-Diophantine if there exists $C^{\prime}>0$ such that for any positive integer n,

$$
\max \left\{\left\langle n w_{1}\right\rangle,\left\langle n w_{2}\right\rangle\right\} \geq C^{\prime} n^{-\omega} .
$$

Corollary 1(Y. 2022)

Let (w_{1}, w_{2}) be 0.6-Diophantine. There exist $C, \eta, t_{0}>0$ and some Sobolev norm $\|\cdot\|_{S}$ such that for any $t>t_{0}$,

$$
\left|\int_{[1]} f\left(a_{1}(t) u\left(\varphi_{w_{1}, w_{2}}(r)\right) \Gamma\right) \mathrm{d} r-\int_{X} f(y) \mathrm{d} \mu_{G}(y)\right| \leq C\|f\|_{S} e^{-\eta t} .
$$

The ineffective version is proved by Kleinbock-Saxce-Shah-Yang (2022).

Previous Results on Effective Equidistribution

- Green-Tao (2012): G nilpotent;

Previous Results on Effective Equidistribution

- Green-Tao (2012): G nilpotent;
- $G=\mathrm{SL}(2, \mathbb{R}), U$ is horospherical, Margulis thickening+representation theory: Sarnak (1982), Burger (1990), Flaminio-Forni (2003), Strombergsson (2013), Sarnak-Ubis (2015)...
- For $G=\operatorname{SL}(2, \mathbb{R})$, the equidistribution was proved before Ratner's work: Furstenberg (1973, cocompact), Dani-Smillie (1984, general case);

Previous Results on Effective Equidistribution

- Green-Tao (2012): G nilpotent;
- $G=\mathrm{SL}(2, \mathbb{R}), U$ is horospherical, Margulis thickening+representation theory: Sarnak (1982), Burger (1990), Flaminio-Forni (2003), Strombergsson (2013), Sarnak-Ubis (2015)...
- For $G=\mathrm{SL}(2, \mathbb{R})$, the equidistribution was proved before Ratner's work: Furstenberg (1973, cocompact), Dani-Smillie (1984, general case);
- U horospherical, Margulis thickening+representation theory: Kleinbock-Margulis (2012)

Previous Results on Effective Equidistribution

- Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;

Previous Results on Effective Equidistribution

- Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;
- Lindenstrauss-Margulis (2012): logarithmic effective density of unipotent orbits in $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$

Previous Results on Effective Equidistribution

- Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;
- Lindenstrauss-Margulis (2012): logarithmic effective density of unipotent orbits in $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$
- Lindenstrauss-Margulis-Mohammadi-Shah (in progress): logarithmic effective density in general case

Previous Results on Effective Equidistribution

- Strombergsson (2015): $G=\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}, \Gamma=\mathrm{SL}(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}, U$ in semisimple part;

Previous Results on Effective Equidistribution

- Strombergsson (2015): $G=\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}, \Gamma=\mathrm{SL}(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}, U$ in semisimple part;
- Chow-Y. (2019+): special unipotent orbits in $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$

Previous Results on Effective Equidistribution

- Strombergsson (2015): $G=\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}, \Gamma=\mathrm{SL}(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}, U$ in semisimple part;
- Chow-Y. (2019+): special unipotent orbits in $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$
- $\operatorname{Kim}(2021+): G=\operatorname{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}, \Gamma=\operatorname{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}, U$ horospherical in semisimple part

Previous Results on Effective Equidistribution

- Lindenstrauss-Mohammadi (2022): polynomial effective density for $G=\operatorname{SL}(2, \mathbb{C}), \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$

Previous Results on Effective Equidistribution

- Lindenstrauss-Mohammadi (2022): polynomial effective density for $G=\operatorname{SL}(2, \mathbb{C}), \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$
- Lindenstrauss-Mohammadi-Wang (2022): polynomial effective equidistribution for $G=\operatorname{SL}(2, \mathbb{C}), \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$

Sketch of the proof

- The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;

Sketch of the proof

- The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;
- The critical part of the approach is quite different from previous works;

Sketch of the proof

- The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;
- The critical part of the approach is quite different from previous works;
- The framework can be applied to general cases.

Sketch of the proof

Venkatesh's argument

- Venkatesh (Van der Corput type argument): from large dimension to effective equidistribution

Sketch of the proof

Venkatesh's argument

- Venkatesh (Van der Corput type argument): from large dimension to effective equidistribution
- If we can prove that the normalized measure μ_{s} on $a(s) u([1]) x$ has large dimension in the following sense: for any ball $B_{s^{\prime}}(x)$ of radius $e^{-s^{\prime}}$,

$$
\mu_{s}(B(x)) \leq e^{-(d-\theta) s^{\prime}}
$$

where d is the dimension of the whole space and θ is a small constant, then we have that $a\left(s^{\prime}\right)_{*} \mu_{s}$ is effectively equidistributed.

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_{0} : the normalized measure on $a(s) u([1]) x$ for some $s=\left(1-\delta_{1}\right) t$

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_{0} : the normalized measure on $a(s) u([1]) x$ for some $s=\left(1-\delta_{1}\right) t$
- Prove μ_{0} has some dimension control (($\left.d_{0}, s_{0}\right)$-good)

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_{0} : the normalized measure on $a(s) u([1]) x$ for some $s=\left(1-\delta_{1}\right) t$
- Prove μ_{0} has some dimension control (($\left.d_{0}, s_{0}\right)$-good)
- $\mu_{i+1}=a\left(s_{i}\right)_{*} \mu_{i}$

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_{0} : the normalized measure on $a(s) u([1]) x$ for some $s=\left(1-\delta_{1}\right) t$
- Prove μ_{0} has some dimension control (($\left.d_{0}, s_{0}\right)$-good)
- $\mu_{i+1}=a\left(s_{i}\right)_{*} \mu_{i}$
- Suppose μ_{i} is $\left(d_{i}, s_{i}\right)$-good, we want to prove μ_{i+1} is $\left(d_{i+1}, s_{i+1}\right)$-good, where $d_{i+1}=d_{i}+\epsilon_{1}, s_{i+1}=s_{i} / 2$;

Sketch of the proof

Framework

- Let $H \subset G$ be the $\operatorname{SL}(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_{0} : the normalized measure on $a(s) u([1]) x$ for some $s=\left(1-\delta_{1}\right) t$
- Prove μ_{0} has some dimension control ($\left(d_{0}, s_{0}\right)$-good)
- $\mu_{i+1}=a\left(s_{i}\right)_{*} \mu_{i}$
- Suppose μ_{i} is $\left(d_{i}, s_{i}\right)$-good, we want to prove μ_{i+1} is $\left(d_{i+1}, s_{i+1}\right)$-good, where $d_{i+1}=d_{i}+\epsilon_{1}, s_{i+1}=s_{i} / 2$;
- When d_{i} is close to 4 , we can apply Venkatesh's argument to get effective equidistribution.

Sketch of the proof

Sketch of the proof

(d, s^{\prime})-good: For any $e^{-s^{\prime}}$-neiborhood of a small piece of H-orbit, say $B_{s^{\prime}}^{H}(x)$, we have $\mu\left(B_{s^{\prime}}^{H}(x)\right) \leq e^{-d s^{\prime}}$.

Sketch of the proof

(d, s^{\prime})-good: For any $e^{-s^{\prime}}$-neiborhood of a small piece of H-orbit, say $B_{s^{\prime}}^{H}(x)$, we have $\mu\left(B_{s^{\prime}}^{H}(x)\right) \leq e^{-d s^{\prime}}$.

Closing lemma(Einsiedler-Margulis-Venkatesh, 2009)

There exist $d_{0}, \xi>0$ such that if μ_{0} is not $\left(d_{0}, s^{\prime}\right)$-good, then the whole orbit $a(s) u([1]) x$ is $e^{-\xi s^{\prime}}$-close to a closed H-orbit

Sketch of the proof

Dimension Improvements

- Lindenstrauss-Mohammadi-Wang: Margulis function

$$
f_{i}(x):=\sum\|\mathbf{w}\|^{-\alpha}
$$

where \mathbf{w} runs over all small vectors in the Lie algebra of G which is transversal to $\operatorname{Lie}(H)$ such that $\exp (\mathbf{w}) x \in \operatorname{supp} \mu_{i}$. Then prove that $\int_{[1]} f_{i+1}(a(\ell) u(r) x) \mathrm{d} r \leq a f_{i}(x)+b$.

Sketch of the proof

Dimension Improvements

- Lindenstrauss-Mohammadi-Wang: Margulis function

$$
f_{i}(x):=\sum\|\mathbf{w}\|^{-\alpha}
$$

where \mathbf{w} runs over all small vectors in the Lie algebra of G which is transversal to $\operatorname{Lie}(H)$ such that $\exp (\mathbf{w}) x \in \operatorname{supp} \mu_{i}$. Then prove that $\int_{[1]} f_{i+1}(a(\ell) u(r) x) \mathrm{d} r \leq a f_{i}(x)+b$.

- α is fixed in the bootstrapping process, $\alpha=2-\epsilon$ for $G=\operatorname{SL}(3, \mathbb{R})$

Sketch of the proof

Dimension Improvements

- Lindenstrauss-Mohammadi-Wang: Margulis function

$$
f_{i}(x):=\sum\|\mathbf{w}\|^{-\alpha}
$$

where \mathbf{w} runs over all small vectors in the Lie algebra of G which is transversal to $\operatorname{Lie}(H)$ such that $\exp (\mathbf{w}) x \in \operatorname{supp} \mu_{i}$. Then prove that $\int_{[1]} f_{i+1}(a(\ell) u(r) x) \mathrm{d} r \leq a f_{i}(x)+b$.

- α is fixed in the bootstrapping process, $\alpha=2-\epsilon$ for $G=\operatorname{SL}(3, \mathbb{R})$

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.
- $\Theta(z): e^{-s^{\prime}}$ neighborhood of a small piece of H

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.
- $\Theta(z): e^{-s^{\prime}}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.
- $\Theta(z): e^{-s^{\prime}}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2 d_{i} s^{\prime}}$

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.
- $\Theta(z): e^{-s^{\prime}}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2 d_{i} s^{\prime}}$
- Goal: prove that every Θ contains at most $e^{\left(d_{i}-\epsilon_{1}\right) s^{\prime}}$ different Ω^{\prime} s.

Sketch of the proof

Dimension Improvements

- Assume that μ_{i} is $\left(d_{i}, s_{i}\right)$-good. Let us denote $s^{\prime}=s_{i+1}=s_{i} / 2$;
- Goal: To prove $\mu_{i+1}=a\left(2 s^{\prime}\right)_{*} \mu_{i}$ is $\left(d_{i}+\epsilon_{1}, s^{\prime}\right)$-good.
- $\Theta(z): e^{-s^{\prime}}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2 d_{i} s^{\prime}}$
- Goal: prove that every Θ contains at most $e^{\left(d_{i}-\epsilon_{1}\right) s^{\prime}}$ different Ω^{\prime} s.
- Key: a Kakeya type model

Sketch of the proof

The Kakeya model

- Playground: $\mathcal{P}=\left[e^{2 s^{\prime}}\right] \times\left[e^{s^{\prime}}\right] \in \mathbb{R}^{3}$

Sketch of the proof

The Kakeya model

- Playground: $\mathcal{P}=\left[e^{2 s^{\prime}}\right] \times\left[e^{s^{\prime}}\right] \in \mathbb{R}^{3}$
- Every $u\left(\left[e^{2 s^{\prime}}\right]\right) \Omega(y)$ corresponds to a tube $\mathcal{T}(y)$: a $e^{-s^{\prime}}$ neighborhood of a curve $\left\{\left(r, f_{1}(r), f_{2}(r)\right): r \in\left[e^{2 s^{\prime}}\right]\right\}$

Sketch of the proof

The Kakeya model

- Playground: $\mathcal{P}=\left[e^{2 s^{\prime}}\right] \times\left[e^{s^{\prime}}\right] \in \mathbb{R}^{3}$
- Every $u\left(\left[e^{2 s^{\prime}}\right]\right) \Omega(y)$ corresponds to a tube $\mathcal{T}(y)$: a $e^{-s^{\prime}}$ neighborhood of a curve $\left\{\left(r, f_{1}(r), f_{2}(r)\right): r \in\left[e^{2 s^{\prime}}\right]\right\}$
- $\Omega\left(y_{1}\right), \Omega\left(y_{2}\right)$ are in the same $\Theta(z)$ corresponds to

$$
\mathcal{T}\left(y_{1}\right) \cap \mathcal{T}\left(y_{2}\right) \neq \emptyset .
$$

The Kakeya model

Sketch of the proof

The Kakeya model

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;

Sketch of the proof

The Kakeya model

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers \mathcal{S};

Sketch of the proof

The Kakeya model

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers \mathcal{S};
- Many "bad" neighborhoods: \mathcal{S} is large

Sketch of the proof

The Kakeya model

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers \mathcal{S};
- Many "bad" neighborhoods: \mathcal{S} is large
- Large \mathcal{S} : there are a lot structures in the distribution of the U-orbit

Sketch of the proof

The Kakeya model

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers \mathcal{S};
- Many "bad" neighborhoods: \mathcal{S} is large
- Large \mathcal{S} : there are a lot structures in the distribution of the U-orbit
- Those structures imply that the orbit is close to a closed periodic orbit.

Randomness vs. Structure

- Randomness: entropy (or dimension) increase

Randomness vs. Structure

- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction

Randomness vs. Structure

- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction
- Additive Combinatorics (Balog-Szemeredi-Gowers): $|A+A| \gg|A|$ or A has some structure

Randomness vs. Structure

- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction
- Additive Combinatorics (Balog-Szemeredi-Gowers): $|A+A| \gg|A|$ or A has some structure
- Fractal Theory (Hochman): $H_{n}(\mu * \nu) \geq H_{n}(\mu)+\delta$ or μ has some structure

Thank You!

