An effective version of Ratner's equidistribution theorem for $SL(3, \mathbb{R})$

Lei Yang

Sichuan University

ETDS Conference in honor of Dani

December 8, 2022

Ratner's theorem

• G: Lie group, $\Gamma \subset G$ lattice, $X = G/\Gamma$;

Image: Image:

э

Ratner's theorem

- G: Lie group, $\Gamma \subset G$ lattice, $X = G/\Gamma$;
- $U = \{u(r) : r \in \mathbb{R}\} \subset G$: one-parameter unipotent subgroup

Ratner's theorem

• G: Lie group,
$$\Gamma \subset G$$
 lattice, $X = G/\Gamma$;

• $U = \{u(r) : r \in \mathbb{R}\} \subset G$: one-parameter unipotent subgroup

Ratner's theorem (1991)

For any $x \in X$, the closure of $Ux = \{u(r)x : r \in \mathbb{R}\}$ is a closed orbit Lx of some Lie subgroup $L \subset G$. Moreover, the orbit Ux is equidistributed in Lx in the following sense: For any $f \in C_c^{\infty}(X)$,

$$\lim_{T\to\infty}\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r=\int_{Lx}f(y)\mathrm{d}\mu_L(y).$$

Here [T] = [-T/2, T/2], and μ_L denotes the unique *L*-invariant probability measure on *Lx*.

• The topological rigidity part is a conjecture by Raghunathan;

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;
- Ratner's equidistribution theorem is not effective.

- The topological rigidity part is a conjecture by Raghunathan;
- Ratner's proof relies on her measure rigidity theorem, which is a conjecture by Dani;
- Ratner's equidistribution theorem is not effective.

Effective Version

Open Problem

Can we give an explicit upper bound on

$$\left|\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r-\int_{Lx}f(y)\mathrm{d}\mu_L(y)\right|$$
?

Effective Version

Open Problem

Can we give an explicit upper bound on

$$\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r - \int_{Lx}f(y)\mathrm{d}\mu_L(y)\bigg|?$$

In particular, if Ux is dense in X, we want to know how fast it approaches μ_G .

Effective Version

Open Problem

Can we give an explicit upper bound on

$$\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r - \int_{Lx}f(y)\mathrm{d}\mu_L(y)\bigg|?$$

In particular, if Ux is dense in X, we want to know how fast it approaches μ_G .

Dream Theorem

There exist $C, \eta > 0$ and some Sobolev norm $\|\cdot\|_S$ such that for any $x \in X$ either

$$\left|\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r-\int_Xf(y)\mathrm{d}\mu_G(y)\right|\leq C\|f\|_ST^{-\eta},$$

or u([T])x is close to some proper closed orbit Lx.

Main Result

• $G = SL(3, \mathbb{R})$, $\Gamma = SL(3, \mathbb{Z})$;

3

• • • • • • • • • • • •

э

Main Result

• $G = SL(3, \mathbb{R}), \Gamma = SL(3, \mathbb{Z});$ • $u(r) = \begin{bmatrix} 1 & & \\ & 1 & r \\ & & 1 \end{bmatrix}$

Theorem 1(Y. 2022)

There exist $C, \eta, T_0 > 0$ and some Sobolev norm $\|\cdot\|_S$ such that for any $T > T_0$ and $x \in X$, either

$$\left|\frac{1}{T}\int_{[T]}f(u(r)x)\mathrm{d}r-\int_Xf(y)\mathrm{d}\mu_G(y)\right|\leq C\|f\|_{\mathcal{S}}T^{-\eta},$$

or $b(\log T)x$ or $b'(\log T)x$ is "far in the cusp".

Obstruction to Effective Equidistribution

 $a(t) = egin{bmatrix} 1 & & \ & e^{t/2} & \ & & e^{-t/2} \end{bmatrix}$

۲

Obstruction to Effective Equidistribution

 $a(t) = \begin{bmatrix} 1 & e^{t/2} & \\ & e^{-t/2} \end{bmatrix}$ $a_0(t) = \begin{bmatrix} e^{t/3} & \\ & e^{-t/6} & \\ & e^{-t/6} \end{bmatrix}$ $b(t) = a(-t)a_0(t), \ b'(t) = a(-t)a_0(-t)$

۲

X can be identified with the space of unimodular lattices in ℝ³ by identifying gΓ with gZ³;

- X can be identified with the space of unimodular lattices in ℝ³ by identifying gΓ with gZ³;
- $X_{\epsilon} := \{x \in X, \forall \mathbf{v}_1, \mathbf{v}_2 \in x \setminus \{\mathbf{0}\}, \|\mathbf{v}_1\|, \|\mathbf{v}_1 \wedge \mathbf{v}_2\| \ge \epsilon\}$

- X can be identified with the space of unimodular lattices in ℝ³ by identifying gΓ with gZ³;
- $X_{\epsilon} := \{x \in X, \forall \mathbf{v}_1, \mathbf{v}_2 \in x \setminus \{\mathbf{0}\}, \|\mathbf{v}_1\|, \|\mathbf{v}_1 \wedge \mathbf{v}_2\| \ge \epsilon\}$
- Obstruction: $b(\log T)x \notin X_{T^{-\kappa}}$ or $b'(\log T)x \notin X_{T^{-\kappa}}$ where $\kappa = \frac{1}{3} 0.001$

Theorem 2(Y. 2022)

There exist $C, \eta, t_0 > 0$ and some Sobolev norm $\|\cdot\|_S$ such that for any $t > t_0$ and any $x \in X$, either

$$\left|\int_{[1]} f(a(t)u(r)x) \mathrm{d}r - \int_X f(y) \mathrm{d}\mu_G(y)\right| \leq C \|f\|_S e^{-\eta t}$$

or $a_0(t)x \notin X_{e^{-\kappa t}}$ or $a_0(-t)x \notin X_{e^{-\kappa t}}$.

$$u(v_1, v_2) = \begin{bmatrix} 1 & v_2 \\ & 1 & v_1 \\ & & 1 \end{bmatrix}$$

۲

Image: A matrix

э

$$u(v_1, v_2) = \begin{bmatrix} 1 & v_2 \\ & 1 & v_1 \\ & & 1 \end{bmatrix}$$

Corollary 1(Y. 2022)

۲

Let $\mathbf{f} : [1] \to \mathbb{R}^2$ be a non-degenerate C^3 curve and $x \in X$. There exist $C, \eta, t_0 > 0$ and some Sobolev norm $\| \cdot \|_S$ such that for any $t > t_0$,

$$\left|\int_{[1]} f(\mathbf{a}_1(t)u(\mathbf{f}(r))x) \mathrm{d}r - \int_X f(y) \mathrm{d}\mu_G(y)\right| \leq C \|f\|_S e^{-\eta t}$$

where $a_1(t) = a_0(t)a(t)$.

$$u(v_1, v_2) = \begin{bmatrix} 1 & v_2 \\ & 1 & v_1 \\ & & 1 \end{bmatrix}$$

Corollary 1(Y. 2022)

۲

Let $\mathbf{f} : [1] \to \mathbb{R}^2$ be a non-degenerate C^3 curve and $x \in X$. There exist $C, \eta, t_0 > 0$ and some Sobolev norm $\| \cdot \|_S$ such that for any $t > t_0$,

$$\left|\int_{[1]} f(a_1(t)u(\mathbf{f}(r))x) \mathrm{d}r - \int_X f(y) \mathrm{d}\mu_G(y)\right| \leq C \|f\|_S e^{-\eta t}$$

where $a_1(t) = a_0(t)a(t)$.

The ineffective version is proved by Shah (2009).

•
$$\varphi_{w_1,w_2}(r) = (r, w_1r + w_2)$$

Image: A matrix

э

•
$$\varphi_{w_1,w_2}(r) = (r, w_1r + w_2)$$

 We say that (w₁, w₂) is ω-Diophantine if there exists C' > 0 such that for any positive integer n,

$$\max\{\langle nw_1\rangle, \langle nw_2\rangle\} \geq C'n^{-\omega}.$$

Corollary 1(Y. 2022)

Let (w_1, w_2) be 0.6-Diophantine. There exist $C, \eta, t_0 > 0$ and some Sobolev norm $\|\cdot\|_S$ such that for any $t > t_0$,

$$\left|\int_{[1]} f(a_1(t)u(\varphi_{w_1,w_2}(r))\Gamma) \mathrm{d}r - \int_X f(y) \mathrm{d}\mu_G(y)\right| \leq C \|f\|_S e^{-\eta t}.$$

•
$$\varphi_{w_1,w_2}(r) = (r, w_1r + w_2)$$

 We say that (w₁, w₂) is ω-Diophantine if there exists C' > 0 such that for any positive integer n,

$$\max\{\langle nw_1\rangle, \langle nw_2\rangle\} \geq C'n^{-\omega}.$$

Corollary 1(Y. 2022)

Let (w_1, w_2) be 0.6-Diophantine. There exist $C, \eta, t_0 > 0$ and some Sobolev norm $\|\cdot\|_S$ such that for any $t > t_0$,

$$\left|\int_{[1]} f(a_1(t)u(\varphi_{w_1,w_2}(r))\Gamma) \mathrm{d}r - \int_X f(y) \mathrm{d}\mu_G(y)\right| \leq C \|f\|_S e^{-\eta t}.$$

The ineffective version is proved by Kleinbock-Saxce-Shah-Yang (2022).

• Green-Tao (2012): G nilpotent;

- Green-Tao (2012): G nilpotent;
- G = SL(2, ℝ), U is horospherical, Margulis thickening+representation theory: Sarnak (1982), Burger (1990), Flaminio-Forni (2003), Strombergsson (2013), Sarnak-Ubis (2015)...
- For G = SL(2, ℝ), the equidistribution was proved before Ratner's work: Furstenberg (1973, cocompact), Dani-Smillie (1984, general case);

- Green-Tao (2012): G nilpotent;
- G = SL(2, ℝ), U is horospherical, Margulis thickening+representation theory: Sarnak (1982), Burger (1990), Flaminio-Forni (2003), Strombergsson (2013), Sarnak-Ubis (2015)...
- For G = SL(2, ℝ), the equidistribution was proved before Ratner's work: Furstenberg (1973, cocompact), Dani-Smillie (1984, general case);
- *U* horospherical, Margulis thickening+representation theory: Kleinbock-Margulis (2012)

• Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;

- Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;
- Lindenstrauss-Margulis (2012): logarithmic effective density of unipotent orbits in SL(3, ℝ)/SL(3, ℤ)

- Einsiedler-Margulis-Venkatesh (2009): effective equidistribution of closed orbits of semisimple subgroups;
- Lindenstrauss-Margulis (2012): logarithmic effective density of unipotent orbits in SL(3, ℝ)/SL(3, ℤ)
- Lindenstrauss-Margulis-Mohammadi-Shah (in progress): logarithmic effective density in general case

Strombergsson (2015): G = SL(2, ℝ) κ ℝ², Γ = SL(2, ℤ) κ ℤ², U in semisimple part;

- Strombergsson (2015): G = SL(2, ℝ) κ ℝ², Γ = SL(2, ℤ) κ ℤ², U in semisimple part;
- Chow-Y. (2019+): special unipotent orbits in $\mathrm{SL}(3,\mathbb{R})/\mathrm{SL}(3,\mathbb{Z})$

- Strombergsson (2015): G = SL(2, ℝ) κ ℝ², Γ = SL(2, ℤ) κ ℤ², U in semisimple part;
- Chow-Y. (2019+): special unipotent orbits in $SL(3,\mathbb{R})/SL(3,\mathbb{Z})$
- Kim (2021+): G = SL(n, ℝ) κ ℝⁿ, Γ = SL(n, ℤ) κ ℤⁿ, U horospherical in semisimple part

• Lindenstrauss-Mohammadi (2022): polynomial effective density for $G = SL(2, \mathbb{C}), SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$

- Lindenstrauss-Mohammadi (2022): polynomial effective density for $G = SL(2, \mathbb{C}), SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$
- Lindenstrauss-Mohammadi-Wang (2022): polynomial effective equidistribution for G = SL(2, C), SL(2, ℝ) × SL(2, ℝ)
• The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;

- The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;
- The critical part of the approach is quite different from previous works;

- The proof is inspired by Ratner's original proof and Lindenstrauss-Mohammadi-Wang;
- The critical part of the approach is quite different from previous works;
- The framework can be applied to general cases.

Venkatesh's argument

• Venkatesh (Van der Corput type argument): from large dimension to effective equidistribution

Venkatesh's argument

- Venkatesh (Van der Corput type argument): from large dimension to effective equidistribution
- If we can prove that the normalized measure μ_s on a(s)u([1])x has large dimension in the following sense: for any ball $B_{s'}(x)$ of radius $e^{-s'}$,

$$\mu_s(B(x)) \leq e^{-(d-\theta)s'}$$

where d is the dimension of the whole space and θ is a small constant, then we have that $a(s')_*\mu_s$ is effectively equidistributed.

Framework

• Let $H \subset G$ be the $SL(2, \mathbb{R})$ copy containing U

< 17 > <

э

- Let $H \subset G$ be the $SL(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H

- Let $H \subset G$ be the $\mathrm{SL}(2,\mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_0 : the normalized measure on a(s)u([1])x for some $s=(1-\delta_1)t$

- Let $H \subset G$ be the $SL(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_0 : the normalized measure on a(s)u([1])x for some $s=(1-\delta_1)t$
- Prove μ_0 has some dimension control ((d_0, s_0)-good)

- Let $H \subset G$ be the $SL(2, \mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_0 : the normalized measure on a(s)u([1])x for some $s=(1-\delta_1)t$
- Prove μ_0 has some dimension control ((d_0, s_0)-good)
- $\mu_{i+1} = a(s_i)_*\mu_i$

- Let $H \subset G$ be the $\mathrm{SL}(2,\mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_0 : the normalized measure on a(s)u([1])x for some $s=(1-\delta_1)t$
- Prove μ_0 has some dimension control ((d_0, s_0)-good)
- $\mu_{i+1} = a(s_i)_*\mu_i$
- Suppose μ_i is (d_i, s_i) -good, we want to prove μ_{i+1} is (d_{i+1}, s_{i+1}) -good, where $d_{i+1} = d_i + \epsilon_1$, $s_{i+1} = s_i/2$;

- Let $H \subset G$ be the $\mathrm{SL}(2,\mathbb{R})$ copy containing U
- It is enough to control the dimension in directions transversal to H
- Starting from μ_0 : the normalized measure on a(s)u([1])x for some $s=(1-\delta_1)t$
- Prove μ_0 has some dimension control ((d_0, s_0)-good)
- $\mu_{i+1} = a(s_i)_*\mu_i$
- Suppose μ_i is (d_i, s_i) -good, we want to prove μ_{i+1} is (d_{i+1}, s_{i+1}) -good, where $d_{i+1} = d_i + \epsilon_1$, $s_{i+1} = s_i/2$;
- When *d_i* is close to 4, we can apply Venkatesh's argument to get effective equidistribution.

Lei Yang (Sichuan University)

э

(d, s')-good: For any $e^{-s'}$ -neiborhood of a small piece of *H*-orbit, say $B_{s'}^H(x)$, we have $\mu(B_{s'}^H(x)) \leq e^{-ds'}$.

(d, s')-good: For any $e^{-s'}$ -neiborhood of a small piece of *H*-orbit, say $B_{s'}^H(x)$, we have $\mu(B_{s'}^H(x)) \leq e^{-ds'}$.

Closing lemma(Einsiedler-Margulis-Venkatesh, 2009)

There exist $d_0, \xi > 0$ such that if μ_0 is not (d_0, s') -good, then the whole orbit a(s)u([1])x is $e^{-\xi s'}$ -close to a closed *H*-orbit

Lindenstrauss-Mohammadi-Wang: Margulis function

$$f_i(x) := \sum \|\mathbf{w}\|^{-lpha}$$

where **w** runs over all small vectors in the Lie algebra of *G* which is transversal to Lie(H) such that $exp(\mathbf{w})x \in exp(\mu_i)$. Then prove that $\int_{[1]} f_{i+1}(a(\ell)u(r)x) dr \leq af_i(x) + b$.

• Lindenstrauss-Mohammadi-Wang: Margulis function

$$f_i(x) := \sum \|\mathbf{w}\|^{-\alpha}$$

where **w** runs over all small vectors in the Lie algebra of *G* which is transversal to Lie(H) such that $\exp(\mathbf{w})x \in \operatorname{supp}\mu_i$. Then prove that $\int_{[1]} f_{i+1}(a(\ell)u(r)x) dr \leq af_i(x) + b$.

• α is fixed in the bootstrapping process, $\alpha = 2 - \epsilon$ for $G = SL(3, \mathbb{R})$

• Lindenstrauss-Mohammadi-Wang: Margulis function

$$f_i(x) := \sum \|\mathbf{w}\|^{-\alpha}$$

where **w** runs over all small vectors in the Lie algebra of *G* which is transversal to Lie(H) such that $\exp(\mathbf{w})x \in \operatorname{supp}\mu_i$. Then prove that $\int_{[1]} f_{i+1}(a(\ell)u(r)x) dr \leq af_i(x) + b$.

• α is fixed in the bootstrapping process, $\alpha = 2 - \epsilon$ for $G = SL(3, \mathbb{R})$

• Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.
- $\Theta(z)$: $e^{-s'}$ neighborhood of a small piece of H

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.
- $\Theta(z)$: $e^{-s'}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.
- $\Theta(z)$: $e^{-s'}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2d_i s'}$

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.
- $\Theta(z)$: $e^{-s'}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2d_i s'}$
- Goal: prove that every Θ contains at most $e^{(d_i \epsilon_1)s'}$ different Ω 's.

- Assume that μ_i is (d_i, s_i) -good. Let us denote $s' = s_{i+1} = s_i/2$;
- Goal: To prove $\mu_{i+1} = a(2s')_*\mu_i$ is $(d_i + \epsilon_1, s')$ -good.
- $\Theta(z)$: $e^{-s'}$ neighborhood of a small piece of H
- Divide $\Theta(z)$ into smaller pieces of the form $\Omega(y)$
- By inductive assumption, $\mu_{i+1}(\Omega) \leq e^{-2d_i s'}$
- Goal: prove that every Θ contains at most $e^{(d_i \epsilon_1)s'}$ different Ω 's.
- Key: a Kakeya type model

• Playground:
$$\mathcal{P} = [e^{2s'}] imes [e^{s'}] \in \mathbb{R}^3$$

э

Image: A matrix

- Playground: $\mathcal{P} = [e^{2s'}] \times [e^{s'}] \in \mathbb{R}^3$
- Every u([e^{2s'}])Ω(y) corresponds to a tube T(y): a e^{-s'} neighborhood of a curve {(r, f₁(r), f₂(r)) : r ∈ [e^{2s'}]}

- Playground: $\mathcal{P} = [e^{2s'}] \times [e^{s'}] \in \mathbb{R}^3$
- Every u([e^{2s'}])Ω(y) corresponds to a tube T(y): a e^{-s'} neighborhood of a curve {(r, f₁(r), f₂(r)) : r ∈ [e^{2s'}]}
- $\Omega(y_1), \Omega(y_2)$ are in the same $\Theta(z)$ corresponds to

 $\mathcal{T}(y_1) \cap \mathcal{T}(y_2) \neq \emptyset.$

2

• Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers S;

- Assume that there are many "bad" neighborhoods of the form $\Theta(z)$;
- Calculate the sum of weighted intersection numbers \mathcal{S} ;
- Many "bad" neighborhoods: \mathcal{S} is large

- Assume that there are many "bad" neighborhoods of the form Θ(z);
- Calculate the sum of weighted intersection numbers S;
- Many "bad" neighborhoods: S is large
- Large S: there are a lot structures in the distribution of the U-orbit

- Assume that there are many "bad" neighborhoods of the form Θ(z);
- Calculate the sum of weighted intersection numbers S;
- Many "bad" neighborhoods: S is large
- Large S: there are a lot structures in the distribution of the U-orbit
- Those structures imply that the orbit is close to a closed periodic orbit.

• Randomness: entropy (or dimension) increase

э

- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction
- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction
- Additive Combinatorics (Balog-Szemeredi-Gowers): $|A + A| \gg |A|$ or A has some structure

- Randomness: entropy (or dimension) increase
- Structure: algebraic obstruction
- Additive Combinatorics (Balog-Szemeredi-Gowers): $|A + A| \gg |A|$ or A has some structure
- Fractal Theory (Hochman): $H_n(\mu * \nu) \ge H_n(\mu) + \delta$ or μ has some structure

Thank You!

Image: A mathematical states and a mathem

æ