Lectures on Non-Abelian FQH states

Eduardo Fradkin
Department of Phyrics and Anthong J. Legsett
Inrtitute for Condeused Matter Theory
University of Illimos
International Centie for Theoretical Science Bengalurn, India, Septenbes 25-0 ctober 4, 2023
$L_{1} \quad 9129 \mid 23$
Outline

* Non-Abelian FQH states: why they are interesting, $T Q C$, etc.
* Chern- Simons Gouk theory and the bulk-boundary correspmank
* CFT representation of vare functins and the edge states
* Laughlin, Majorana, Ising, Parafermions and Fibonacci
* Physical mechanisus: pairimf and clestering
* Field Theory of Nm-Abehian FQH states: Moone-Read,

Read-Rezayi, Fibonacci, Parafermions

* Ontlook

Fractional Quantum Hall states

In the beginning... two-dimeusional electron gases in large magnetic field,

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}, \sigma_{x x} \rightarrow 0 \quad(T \rightarrow 0)
$$

no dissipation
Langhain: $\bar{\Psi}_{m}\left(z_{1}, \ldots, z_{N}\right) \sim \prod_{i<\dot{\gamma}}\left(z_{i}-z_{j}\right)^{m} \quad e^{-\frac{\bar{\lambda}}{\ell_{0}^{2}} \sum_{j=1} \sum_{j=1}^{N}\left|z_{j}\right|^{2}}$
filling $v=\frac{1}{m} ;\left\{z_{j}\right\}$: electron coordinates $(z=x+i y)$
$l_{0}:(\hbar c / e B)^{1 / 2}$ magnetic length
Jain: composite fermion: elector $+(m-1)$ fluxes (m odd) FQH state : IQH state of composite fermions

$$
\begin{aligned}
& \rightarrow \quad \nu_{ \pm}(p, s)=\frac{p}{2 s p+1} \quad \begin{array}{l}
p=1,2, \ldots \\
s=0,1,2 \ldots
\end{array} \text { (Laughlin: } p=1,+ \text {) } \\
& \text { odd denominators } \xrightarrow{\longrightarrow} 2 s p \pm 1 \\
& S=0,1,2 \ldots \\
& m=2 s+1
\end{aligned}
$$

* The excitations of FQH fluids are vortices ("quasihobs") that
(a) carry fractional charge $q=\frac{1}{2 s p \pm 1}$
(b) fractional braiding statistics
(c) m dequerate ground states on a torus (topological protection)
time

$$
\psi(A, B)=e^{i \varphi} \psi(B, A)
$$

|i)

space

Hydrodynamic Derivation of the Effective Action
The three crucial physical properties of $F Q H^{\prime}$ s are
(1) Incompressibility (ie. a gap for all bulk excitations)
(2) I magnetic finial \Rightarrow broken time reverscel (τR)
(3) \exists conserved (charge) current $\dot{j}^{\mu}=\left(\dot{j}_{0}, \vec{j}\right)$ (Minkowski metric)
(3) $\Rightarrow \partial_{\mu} j^{\mu}=0 \Longleftrightarrow j^{\mu}=\frac{e}{2 \pi} \varepsilon^{\mu \nu \lambda} \partial_{0} a_{\lambda}$
\checkmark smooth
j^{μ} is invariant under $a_{\mu} \rightarrow a_{\mu}+\partial_{\mu} \varphi \stackrel{y}{=}$ (gangeinvariona)
what is the effectore action for a_{2} ?
(1) \Rightarrow locality, (2) \Rightarrow odd under $T R$,

$$
\mathcal{L}=\frac{m}{4 \pi} \varepsilon_{\mu \nu \lambda} a^{\mu} \partial^{\nu} a^{\lambda}-\underbrace{\frac{e}{2 \pi} \varepsilon_{\mu \nu \lambda} \partial^{\nu} a^{\lambda} A^{\mu}-a_{\mu} \partial_{q p}^{\mu}} \begin{gathered}
\text { world ines }
\end{gathered}
$$ world ines of the Qp's

Quantization of Chern-Simoss Gauge Theory

$$
\begin{aligned}
& \mathcal{L}_{c s}=\frac{k}{4 \pi} \varepsilon_{\mu \nu \lambda} a^{\mu} \partial^{\nu} a^{\lambda}-j^{\mu} a_{\mu} \\
& j^{\mu} \text { is conserved } \Leftrightarrow \partial_{\mu} j^{\mu}=0 \\
& \text { In cartesian coords. }
\end{aligned}
$$

$$
\mathscr{\nu}=a_{0}\left(\frac{k}{2 \pi} \varepsilon_{i j} \partial_{i} a_{j j}-\dot{j}_{0}\right)+\frac{k}{4 \pi} \varepsilon_{i j} A^{i} \partial^{0} A^{j}+\vec{j} \cdot \vec{a}
$$

Lagrange multiplier $\Rightarrow j_{0}=\frac{k}{2 \pi} b ; \quad b=\varepsilon_{i j} \partial_{i} \cdot a_{j j}$
Gauss Law
(1) ε_{q}. of motion: $\frac{k}{4 \pi} \varepsilon_{\mu \nu \lambda} f^{\nu \lambda}=j_{\mu} \quad f_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\text {, }}$,

If $j_{\nu}=0 \Rightarrow f_{\mu \nu}=0 \quad$ ("flat connections")
(2) a_{1} and a_{2} are canonical pairs $\left[\hat{a}_{1}(\vec{x}), \hat{a}_{2}(\tilde{y})\right]=i \frac{2 \pi}{k} \delta^{2}(x-y)$

$$
\begin{equation*}
H=-\int d^{2} x \vec{\jmath} \cdot \vec{a} \tag{7}
\end{equation*}
$$

If $\vec{\gamma}=0 \Rightarrow H=0$ no every!
Suppose the space is a disk D with boundary $\partial D \cong S_{1}^{c}$ The manifild is $M=D \times \mathbb{R}$ time under gauge transf., $Q_{\mu} \rightarrow Q_{\mu}+\partial_{\mu} \varphi$, the C.S, actin changes

$$
\begin{aligned}
& \delta S=\int_{\mu} d^{3} \times \partial^{\mu}\left(\Phi f_{\mu}^{*}\right)=\int_{S_{\nu} \times \mathbb{R}} d \delta^{\mu} \varphi f_{\mu}^{*} \\
& \Rightarrow \delta S=\varphi \times f \operatorname{lux}(\Sigma) \quad, \Sigma=S, \times \mathbb{R}
\end{aligned}
$$

(bulk) (dist)

$$
E O M \Rightarrow f_{\mu v}=0 \Rightarrow a_{\mu}=\partial_{\mu} \varphi \quad \text { (gauge transf:!) }
$$

\Rightarrow the action integrates to the boundary $\Sigma=S_{1} \times \mathbb{R}$ (cylinder) $\begin{array}{ll}T & T \\ \text { rage time }\end{array}$

$$
\begin{aligned}
& \Rightarrow S=\int_{S_{1} \times R} d^{2} x \frac{k}{4 \pi} \partial_{0} \varphi \partial_{1} \varphi \\
& \varphi\left(x_{1}+L\right)=\varphi\left(x_{1}\right) \quad\left(P B C^{\prime} S\right)
\end{aligned}
$$

We need to fix the sange at the boulary $\mathcal{L}_{G F}=v a_{1}^{2}$

$$
\Rightarrow S_{e f f}(\varphi)=\int_{S_{1} \times \mathbb{R}} d^{2} x \frac{n}{4 \pi}\left(\partial_{0} \varphi \partial_{1} \varphi-v\left(\partial_{x} \varphi\right)^{2}\right) \quad \text { (real bine!) }
$$

* v here is arbitrary. In the context of the $F Q H$ states it is determined by the energetics at the edge. To lading order it is the drift velocity $\sim E / B$
* Il CS theory it appears because any gauge fixing at the boundary breaks the large ruparametrizatim invariance of the bulk theory

Observables of the edge theory
φ is not a physical ficid

$$
\frac{1}{2 \pi} \partial_{1} \varphi=j_{1} \text { (edge current) } \Rightarrow \int_{0}^{L} d x_{1} j_{1}=Q=\frac{(\Delta \varphi)_{L}}{2 \pi}
$$

$$
Q=0 \Leftrightarrow \Delta \varphi(L)=0 \Leftrightarrow P B C^{\prime} s
$$

$$
Q=r \Rightarrow \varphi\left(x_{1}+L\right)=\varphi\left(x_{1}\right)+2 \pi r
$$

$$
\Rightarrow e^{-} b u k \Rightarrow r=m
$$

$5^{\text {edge }}$

$$
\begin{aligned}
W_{\gamma} & =e^{i \int_{\gamma} d x_{\mu} a^{\mu}} \quad \text { Wilsm } \\
& \equiv e^{i \int_{\gamma} d x_{\mu} \partial^{\mu} \varphi} \quad \text { arc } \\
& \equiv e^{i \varphi(B)} e^{-i \varphi(A)}
\end{aligned}
$$

(pasth-ordered)
bulk
Observables at the edge are vertex operators: $V_{p}(x)=e^{i p \varphi(x)}$, $P \bmod m$ compactification $\varphi(x) \rightarrow \varphi(x)+2 \pi n R$ with $R=1$ radius
time-ondering
Propagators at the edge

$$
\langle T \varphi(x, t) \quad \varphi(0,0)\rangle=-\frac{1}{m} \ln \left(\frac{x-v t+i \varepsilon}{a_{0}}\right) \quad \begin{aligned}
& x_{0}=v t \\
& x_{1}=x
\end{aligned}
$$

electro operator

$$
v=1 / m
$$

$$
\psi_{e} \equiv e^{i m \varphi}
$$

$$
\begin{aligned}
& \psi_{e} \equiv e^{i m \varphi} \\
& G_{F}(x, t)=\left(T \psi_{e}^{+}(x, t) \psi_{e}(0,0)\right)=\frac{\text { const }}{(x-v t+i \varepsilon)^{m}} \text { mole! }
\end{aligned}
$$

$x \rightarrow-x$ and $t \rightarrow-t \Rightarrow G_{F}(x, t)=-G_{F}(-x,-t)$ if m is odd

$$
\begin{aligned}
& V_{1}(\varphi) \equiv \psi_{q p} \\
& G_{q p}(x, t)=\left\langle T \psi_{q p}^{t}(x, t) \psi_{q p}(0,0)\right\rangle=e^{\langle } \\
& =\frac{\operatorname{covit} .}{(x-v t+i \varepsilon)^{1 / m}} \\
& \Rightarrow G_{q p}(x, t)=G_{q p}(-x,-t) e^{ \pm i \frac{\pi}{m}} \\
& \text { fractional } \\
& \text { statistics! } \\
& \text { cut! }
\end{aligned}
$$

