$$
L 3 \quad 10 / 3 / 2023
$$

CFT representation of $F Q A$ wave functions

* All abelian states can be written as expectation values in a $2 D$ CF T
e.g. Laughlin $\Psi_{m} \sim\left\langle\prod_{i=1}^{N} e^{i \sqrt{m} \varphi\left(z_{i}\right)} e^{-\int d^{2} z^{\prime} \sqrt{m} \rho_{0} \varphi\left(z^{\prime}\right)}\right\rangle$ areal charge density
where $\varphi(z)$ is a compactifiad chiral bow in Enchichan space (imag. Tine)
$\varphi \sim \varphi+2 \pi V m$ (here I rescaled φ by \sqrt{m} and $R=\sqrt{m}$)
* electron operātor $V_{e} e^{i \sqrt{m} \varphi(z) \quad \text { scaling dimension } \Delta_{e}=\frac{m}{2}, ~}$
* quari-hole (vortex) $V_{\text {ah }} \sim e$
$i \varphi(r) / \sqrt{m}$ scaling dimension $\Delta_{Q p}=\frac{1}{2 m}$
* physical states mast be local w.r.t. the electron
\Rightarrow only $V_{q n}^{n} \quad(n \geq 1, \ldots ; m)$ are allowed
\Rightarrow The ideal bulk wave functions are correlators of an Euclidean $C F T$! This is the same CFT of the edge but in imaginary time,

Non-Abelian States: Moore-Read (1991)

$$
\Psi_{m R}\left(z_{i} 1\right) \sim \operatorname{Pf}\left(\frac{1}{z_{j}-z_{j}}\right) \prod_{i<j}^{\text {Pffffion }} \underbrace{\left(z_{i}-z_{j}\right)^{n}}_{i} e^{-\frac{1}{4 l_{0}^{2}} \sum_{i=1}^{N}\left|z_{i}\right|^{2}}
$$

Pfaffian: expectation value of chiral majorana fermions $\quad X(z)=X^{\dagger}(z)$
Propagator: $\langle x(z) X(w)\rangle=\frac{1}{z-w}$

$$
\begin{array}{r}
P f\left(\frac{1}{z_{i}-v_{j}}\right)=\left\langle x\left(z_{1}\right) \ldots x\left(z_{N}\right)\right\rangle \\
\varphi(z) \sim \varphi(z)
\end{array}
$$

$\varphi(z)$: chiral bosm $\varphi(z) \sim \varphi(z)+2 \pi \sqrt{n} ; \quad R=\sqrt{n}$

$$
\begin{aligned}
& \varphi(z) \text { : chiral bosm } \\
& \Psi_{M R} \sim\left\langle x\left(z_{1}\right) \ldots x\left(z_{N}\right)\right\rangle\left\langle\prod_{i=1}^{N} e^{i \sqrt{n} \varphi(z)} e^{-\int d^{2} z^{\prime} \sqrt{n} \rho_{0} \varphi\left(z^{\prime}\right)}\right\rangle
\end{aligned}
$$

Filling fraction: $v=\frac{1}{n}$
n even \rightarrow fermions; n odd \leftrightarrow bosins; e.g. $v=\frac{1}{2}$ fermions $v=1$ bosms

Zoo of FQH states

willets and Eisenstein ~1987
Most observed states are abelian (Jain) First observation of $\frac{5}{2}$ state (even denominator) $\left(\frac{5}{2}=2+\frac{1}{2}\right)$

even denominator!
Fibonacci?
Moore - Read state?
W. Pan et al 2008

Edge structure of the $M R$ states
The structure of the were function implies that the edge is a CFT with a charged mode and an edge mode.

Central
Charged mode: $\quad \mathcal{L}=\frac{1}{4 \pi}\left(\partial_{0} \varphi a_{1} \varphi-v_{c}(\partial, \varphi)^{2}\right)$

$$
c=1
$$

$$
V_{p}=e^{i p \varphi} / \sqrt{n} \text {; sailing dimensions: } A_{p}=\frac{p^{2}}{2 n}
$$

Neutered mode: chiral Majorana fermion x

$$
\mathscr{L}=x ; \partial_{0} x-v_{n} x ; \partial_{1} x,
$$

$$
\Delta_{x}=1 / 2 \quad c=\frac{1}{2}
$$

Comment: this edge theory is supersymmetric

$$
C_{T}=\frac{3}{2}
$$

* What are the allowed observable? measured by thermal conductivity

Obxrvables of the MR Edge states
Naively one wand expect to be the tenser product. No $\Delta_{e}=\frac{n+1}{2}, Q=e$ Electron Operator: $\psi_{e} \sim x e^{i \cdot \sqrt{n}}$

$$
\Delta=y_{2}, \Delta=\frac{n}{2}
$$

$$
n \text { even, } n+1 \text { is odd }
$$

$$
\begin{aligned}
& \text { Prop<gator } \\
& \left(z=x_{1}+i x_{2}\right)
\end{aligned}\left\langle\psi_{e}(z) \psi_{e}^{+}\left(z^{\prime}\right)\right\rangle \sim \frac{1}{\left(z-z^{\prime}\right)^{n}} \times \frac{1}{z-z^{\prime}} \equiv \frac{1}{\left(z-z^{\prime}\right)^{n+1}}
$$

* $V_{p}(z)=e^{i p \varphi(z) / \sqrt{n}}$ has dimension $\Delta=\frac{p^{2}}{2 n}, Q=\frac{p e}{n} ; p=0, \ldots, n-1$
$*$ Majorana $X(z),\left\langle x(z) x^{\prime}\left(z^{\prime}\right)\right\rangle=\frac{1}{z-z}, \quad \Delta=\frac{1}{2}$
* This is known as the Ising $x U(1)_{n}$ chiral $C f T$

Q: Are these all the anyons of then states? A: NO!

The Ising anym
The Inning CFT has another primary field, the Inning field σ

* σ has dimension $\frac{1}{16}$
* σ is a "twist field": changes x from $P B C$'s to $A P B C$'s
* The charge sector has a "half vortex" $V_{1 / 2}(z) \sim e^{i \varphi(z) / 2 \sqrt{n}}$ $V_{1 / 2}$ is doubly - valued and it is mem-local wir,t. Ye but $\psi_{q \rho}^{\sim} \sigma(z) e^{i \varphi(z) / 2 \sqrt{n}}$ is local w.r,t. ψ ! This is the Ising anym

$$
Q=\frac{e}{2 n}, \Delta=\frac{1}{16}+\frac{1}{8 n}
$$

The Ising Anym has non-abelian statistics

* Back to basics: the 2D Using Model
* At T_{c} the 2D Ising Model (and the 1D Quantum Inning made at λ_{c}) is at a critical point \Rightarrow scale invariana
* In 2D scale invariance \Rightarrow conformal in variance

$$
\begin{aligned}
& \text { In 2D scale invariance } \\
& \langle\sigma(z, \bar{z}) \quad \sigma(w, \bar{w})\rangle \sim \frac{\#}{(z-w)^{\Delta}(\bar{z}-\bar{w})^{\Delta}} \bar{\Delta} \quad \text { factorization } \\
& \Delta=\bar{\Delta}=\frac{1}{16}
\end{aligned}
$$

For us we will only need the chiral (analytic) part

$$
\langle\sigma(z) \sigma(w)\rangle \sim \frac{\neq}{(z-w)^{1 / 16}}
$$

Thus expression enters in the ware function of two fundamentical quasi hole

For two quariholes at v_{1} and v_{2}

$$
\tilde{\Psi}_{2-q h} \sim\left\langle\prod_{i=1}^{N} x\left(z_{i}\right) e^{i \sqrt{n} \varphi\left(z_{1}\right)} \prod_{i=1}^{2} \sigma\left(v_{i}\right) e^{\frac{i}{2 \sqrt{n}} \varphi\left(v_{i}\right)} \times \exp \text {. factor }\right\rangle \times \text { iffifian }
$$

This requires changing th Pfaffion factor (Nayak \& wilczek)

$$
P f\left(\frac{1}{z_{i}-z_{j}}\right) \rightarrow P f\left(\frac{\left(z_{i}-v_{1}\right)\left(z_{j}-v_{2}\right)+\left(z_{j}-v_{1}\right)\left(z_{i}-v_{2}\right)}{z_{i}-z_{j}}\right)
$$

* How about four quasiboles at $v_{1}, v_{2}, v_{3}, v_{4}$?
* There are two linearly
$v_{1} \quad v_{2}$ independent wave function s,
$|I\rangle$ and $|I|$.
* For Rr Th's there are 2^{r-1}
l.i. states with the same coords!
$|I\rangle$
* The pairings are branch cuts.
* Another way to understand this follows form the fusion rules of the Ising CFT
* Each pairing is the fusion of two spun fields σ
x (Chiral) Isnig Fusim rules:

$$
\sigma * \sigma=I+x, \quad \chi * x=I, \quad \sigma * x=x
$$

$*$ The firct fusion rule \Rightarrow two fusion channels: I, x
\Rightarrow The 4 gh ware function is not migwely determined by the locations of the oh's but can be written as l.c. of two pairings

* Under a braiding (mmodrong) these states transform meier a mitary transf. $u=\frac{1}{\sqrt{2}} e^{i \pi / 4}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) \Rightarrow \begin{aligned} & \text { mon-abelian fractional } \\ & \text { statistics! }\end{aligned}$

Non-Abelian Fractional Statistics and Chern - Simons Theory

* To understand non-abelian fractional statistics we need a Chirn-Gimons theory with a non-abelian gauge group
* The gauge group is sone nou-abelion group O, such as $\delta \cup(2)$
* The vector potentials a_{μ} are matrices that can be written as linear combinations of the generatos of $G=S U(N)$
For $S U(2)$ the matrias are the Pauli matrices $a_{\mu}(x)=a_{\mu}^{I}(x) \sigma_{I}$

$$
S=\frac{k}{8 \pi} \int_{D \times \mathbb{R}} d^{3} x\left[\operatorname{tr}\left(\varepsilon_{\mu \nu \lambda}\left(a^{\mu} \partial^{\nu} a^{\lambda}\right)+\frac{2}{3} a^{\mu} a^{\nu} a^{\lambda}\right)\right] \quad S \cup(2)_{k}
$$

* This is tu $S U(2)_{k}$ chern-Simons theory
* The observable are Wilsm loop with reps. $j=0, \frac{1}{2}, \ldots, \frac{k}{2} \quad\left(S \cup(2)_{k}\right)$
* Witter (1989) showed that the exp. value of a set of knotted wits loops is given by a topological invariant known as the Jones polynomial

If the geometry is a disk $D \times \mathbb{R}$
\Rightarrow the edge the org is a chiral CFT in 2D known as the chiral (level) Wess-Zumino-Witten theory

$$
\begin{aligned}
& S_{W z w}=\frac{1}{4 \lambda_{c}^{2}} \int_{S_{1} x \Omega} d^{2} x \operatorname{tr}\left(\partial_{\mu} g \partial^{\mu} g^{-1}\right)+\frac{k}{24 \pi} \int_{B} d^{3} x \varepsilon_{\mu \nu x} \operatorname{tr}\left(g^{-1} \partial^{\mu} g g^{-1} \partial^{v} g g^{-1} \partial^{\lambda} g\right) \\
& \lambda_{c}^{2}=\frac{4 \pi}{k}, g \varepsilon S U(N)
\end{aligned}
$$

This CFT was solved by Knizhnik \& Zamolodchikor (1985)
It hes a finite $\#$ of primaries ϕ_{k}. The fusion rules are:
For $S U(2)_{k} \quad \phi_{j_{1}} * \phi_{j_{2}}=\phi_{\left|j_{1}-j_{2}\right|}+\cdots+\phi_{n / 2}$

$$
\begin{array}{lll}
* S U(2)_{1} j=0, \frac{1}{2}(\mathrm{mly}) \\
* S U(2)_{2} j=0, \frac{1}{2}, 1 \text { and } \\
\text { et c. }
\end{array} \quad \underbrace{\left[\frac{1}{2}\right] *\left[\frac{1}{2}\right] *\left[\frac{1}{2}\right]=[0]}_{\text {2 -ing fusion rubs }} \quad \begin{aligned}
& {[0]+[1] ;[1] *[1]=[0]}
\end{aligned}
$$

To understand why this is the right theory we will look at two examples: booms at $v=\frac{1}{2}$ and 1
(1) Bo oms at $v=1 / 2$

* We saw that one description was in terms of $U(1)_{2}$ cher- Simons
* It has two an>ms: I, $V_{\frac{1}{2}}=e^{i \varphi / \sqrt{2}}$ and the $k_{0} \sin$ is $\psi_{3} \sim e^{i \sqrt{2} \varphi}$
* At the edge, the bo sm $e^{ \pm i \sqrt{2} \varphi}$ have scaling dineesion $\Delta_{1 / 2}=1$
* The currant $\sim \partial_{x} \varphi$ also has $\Delta=1$
* It can be shown that they form an algebra $J_{3} \sim \partial \varphi, J_{ \pm} \sim e^{ \pm n \sqrt{2} \varphi}$ and that $J_{3}, J_{ \pm}$satisfy the algebra of SU(2) with $k=1$ \Rightarrow This edge is that of $S U(2)_{1} W Z W$ theory
* $U(1)_{2}$ is dual to $S U(2)_{1}$
(2) The case of $M R$ for bosoms at $v=1$

$$
\tilde{\Psi}_{M R}^{v=1} \sim P_{f}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{1} \times \text { exp. factors }
$$

(Chiral) Majorana x y with $R=\sqrt{2}$

* Three currents $J^{3} \sim \partial_{x} \varphi$ and $J \pm \leadsto x e^{ \pm i \sqrt{2} \varphi}$ satisfy the algebra of $s \cup(2)_{2}$

	I	$\sigma e^{i \varphi / 2}$	$e^{ \pm i \varphi}$	x	$x e^{ \pm i \varphi}$
$(1, m)$	$(0,0)$	$\left(\frac{1}{2}, \pm \frac{1}{2}\right)$	$(1, \pm 1)$	$(1,0)$	current
Δ	0	$3 / 16$	$1 / 2$	$1 / 2$	1
Q	0	$1 / 2$	0	1	0
	$\sigma e^{i \frac{\varphi}{2}} * * \sigma e^{-i \frac{\varphi}{2}}$	$\sim \pm+\chi$	Nm-abelian!		

\Rightarrow bulk theory should be $c s S_{U}(2)_{2}$

F Q H Quantum Interferometers (Chamon et al, 1997)

$$
\left(F_{a b r y}-P_{e r o t}^{t}\right)
$$

$\nu=\frac{1}{m}$ Laugh lin state

$$
\begin{aligned}
& \Gamma_{1,2} \equiv \bar{\Gamma}_{1,2} e^{ \pm i \pi \nu \Phi / \phi_{0}} \quad \phi_{v}=\frac{h c}{e} \\
& \omega_{0}^{*}=e^{*} V / \hbar
\end{aligned}
$$

constrictor $\stackrel{\Gamma}{ }$
(point contacts)

$$
\alpha=\frac{1}{8 \pi}\left((\partial, \varphi)^{2}-v^{2}(\partial, \varphi)^{2}\right)-\sum_{j=1,2}
$$

$$
+h \cdot c
$$

Total tunneling current: $I=I_{1}+I_{2}=e^{*}\left|\Gamma_{e f f}\right|^{2} \frac{2 \pi}{\Gamma(2 v)}\left|\omega_{0}^{*}\right|^{2 v-1} \operatorname{sgn}\left(\omega_{0}^{*}\right)$

$$
\begin{aligned}
&\left|\Gamma_{e f f}\right|^{2}=\left|\Gamma_{1}\right|^{2}+\left|\Gamma_{2}\right|^{2}+\left(\Gamma_{1} \Gamma_{2}^{*}+\Gamma_{1}^{*} \Gamma_{2}\right) F_{v}\left(\frac{\omega_{0}^{*} a}{v}\right) \\
& \Gamma_{1}^{*} \Gamma_{2}=\bar{\Gamma}_{1}^{*} \bar{\Gamma}_{2} \exp \left(-i 2 \pi\left(v \frac{\Phi}{\phi_{0}}-N_{q h} v\right)\right) \\
& \text { fractimal }
\end{aligned}
$$

Aharomov-Bohm + fractional statistics

The non-abelian FQH Interferometer
(Fradkin, Nayak, Wilczek, Tsvelik, 1998)
(Bondessm, Kitaer, stengel, 0006 ; Stern, thalperin, 2006)
Same geometry but now wo consider tunneling of Ising anyous Ising anyon quasihole: $\quad \sigma \exp \left(\frac{i}{2 \sqrt{2}} \varphi\right) \quad(M R C v=1 / 2)$

* Inject a $q h$ at $A($ lower edge $) \rightarrow$ tunnels $C x_{1} \rightarrow$ arrives @ B as $|\psi\rangle$ * Inject a 2 nd $q h$ at $A \rightarrow$ tunnels $C x_{2} \rightarrow$ arrives at B as $e^{i \alpha} B_{N_{G} h}|\psi\rangle$ * d: $A B$ phase ; $B_{N_{q h}}$ is the braiding operator for the $2 n d q h$ to encircle the $N_{q h}$ trapped inside the inter ferometer

$$
\Rightarrow \sigma_{x x} \sim\left|\Gamma_{1}\right|^{2}+\left|\Gamma_{2}\right|^{2}+\operatorname{Re}\left(\Gamma_{1}^{*} \Gamma_{2} e^{i \alpha}\langle\psi| B_{N_{q h}}|\psi\rangle\right)
$$

$\langle\psi| B_{N_{q h}}|\psi\rangle$: exp. value of $N_{q h} w i l \mathrm{sm}$ loop operators $=V_{N_{q h}}\left(e^{i \pi / 4}\right)$: Jones Poly wonial (Witter, 1989)

The $v=\frac{1}{2} M R$ state involves a deformatim of $S \cup(2)_{2}$
Even-odd effect (Stern \& Halperin; Bondusin, kitaev \& shtengel)

$$
\begin{aligned}
& N_{q h} o d d \Rightarrow \sigma_{x x} \sim\left|\Gamma_{1}\right|^{2}+\left|\Gamma_{2}\right|^{2} \quad\left(\text { i.e. }\langle\psi| B_{N_{q h}}|\psi\rangle=0\right) \\
& N_{q h} \text { even } \Rightarrow \sigma_{x x} \sim\left|\Gamma_{1}\right|^{2}+\left|\Gamma_{2}\right|^{2}+2\left|\Gamma_{1}\right|\left|\Gamma_{2}\right|(-1)^{N_{\psi}} \cos \left(\alpha+\arg \left(\frac{\Gamma_{2}}{\Gamma_{1}}\right)+N_{q h} \frac{\pi}{4}\right)
\end{aligned}
$$

$N_{\psi}=7$ if $N_{\text {qh }}$ fuse into $|\psi\rangle$ follows frm the $N_{\psi}=0$ othurwise fusion ruhs.
Problen: the Laughhiap spoils the even-odd effect.
\Rightarrow The limarly indep. states are topolosical qubits
\Rightarrow Platform for TQFT (Freedman, Kitaer, Larsm, 2002 ; kitaer 1997)
\Rightarrow Not unversal: need $F i b$ onccci)

Pairing and non-abelian states
Q: what is the physical meaning of the Pfaffian factor?

* It means that electrons can be closer to each other than in a laughing state.
* This angegests that there is an effective attractive interaction
* Pf $\left(\frac{1}{z_{i}-z_{j}}\right)$ is the wave function of a $P_{x}+i P_{y}$ superconductor in the weak -pairing ($B(S$) regime (Ked and Green)
* This state arises in the $N=1$ Landau level due to the structure of the one-particle Landaen states
* Pairing of composite fermions
* But, this is NOT a superconductor!
* The $p_{x}+i p_{y} s C$ has a half-vortex \longleftrightarrow Ising anyon
* This is an example of a cluster state

Geveralization: Read-Rezayi statts (RR) (1998)
Based on \mathbb{Z}_{k} parafermions (and $\left.S \cup(2)_{k}\right)$

$$
\psi_{n}(z) * \psi_{m}\left(z^{\prime}\right) \sim \frac{1}{\left(z-z^{\prime}\right)^{\Delta_{n}}+\Delta_{m}-\Delta_{n+m}} \psi_{n, m}\left(z^{\prime}\right)+\cdots \quad \begin{aligned}
& \text { Fradkim \& Kadanoff } \\
& (1980)(!)
\end{aligned}
$$

$$
\Delta_{n}=\frac{n(k-n)}{k} \quad, n, m=1, \ldots, k-1
$$

RR Atates use the Parafermion CFT (Zamolodchicov \&Fateev, 1985)

$$
\Psi_{R R}\left(\left\{z_{i}\right) \sim\left\langle\psi_{1}\left(z_{1}\right) \ldots \psi_{1}\left(z_{N}\right)\right\rangle \prod_{i<j}\left(z_{i}-z_{j}\right)^{M+\frac{2}{k}} \times \text { gausticns } \left\lvert\, \begin{array}{l}
\text { Gepher } K Q(u, 1401 \\
\begin{array}{l}
\text { anishes when } \\
k+1 \text { particles } \\
\text { come together. } \\
\text { clustering }
\end{array}
\end{array}\right.\right.
$$

$M \in \mathbb{Z}$ divisith by $k ; M$ even: bosms, M odd: fermions; $V=\frac{k}{M k+2}$ The most interesting cacac is $k=3\left(\mathbb{Z}_{3}\right)\left(\nu=\frac{3}{2}(B), \frac{3}{5}(F)\right)$
In addution to the \mathbb{Z}_{3} parafermion, it has a Fibonaci angon τ
Fusion rule: $\tau * \tau=I+\tau \Rightarrow$ its unitary braiding matrices cover SU(2) (Fibonacci sequena)
\Rightarrow universal quantum computer

Effective Field Theory Approaches (Frudhin, Nayak, Schoutens, 1999
We will discuss bows for simplicity,$v=\frac{k}{2}$
Consider (k layers of bosons in a $v=\frac{1}{2}$ Langhlin ot ate

$$
\Psi_{1 / 2} \sim \prod_{i<j}\left(z_{i}-z_{j}\right)^{(2)} \times \text { ganssians }
$$

\qquad

$$
\begin{aligned}
a & =\frac{(2)}{4 \pi} \varepsilon_{\mu \nu \lambda} a^{\mu} \partial^{\nu} a^{\lambda}+\cdots \\
& \equiv \frac{2}{4 \pi} a d a+\frac{1}{2 \pi} A d a+\cdots
\end{aligned}
$$

Symmetry $\underbrace{U(1)_{2} \times \cdots \times \cup(1)_{2}}_{k \text { factors }}$
Chern-Simons $U(1)_{2} \longleftrightarrow$ SU(2) ${ }_{1}$ group is non-abelian $\begin{aligned} & \text { level -rank } \\ & \text { duality }\end{aligned} \quad I, e^{i \varphi / \sqrt{2}} \quad j=0, \frac{1}{2} \quad$ the braids are abelian

Q: how to get to a state with non-abelian statistics?
Hint: somehow we need a theory on SU(2) k
fou need $U(1)_{2} \times \ldots \times \cup(1)_{2} \rightarrow S U(2)_{k}$
(A)(1) Use the Chern-Simons level-rank duality

$$
\operatorname{SU}(2)_{1} \times \cdots \times \operatorname{sU}(2)_{1}
$$

(2) construct a condensate $\rightarrow S U(2)_{k}$

The 1999 paper did this by condensing pairs

$\left\langle\phi_{j} \phi_{j+1}\right\rangle \neq 0$ of exatations on two layers at a time
\Rightarrow Hiss (Meisrner) mechanism projects onto
a state with symustrg $S \cup(2)_{k}$ (clustering)
1999 was basically right (but not completely)
\Rightarrow Dualities Solve the problem
web of Dualities
(1) Particle-Vortex duality (Peskim, 1978; Dasgupta \& Aalperin, 1981) dynamical

$$
\xrightarrow{\rightarrow}\left|D_{A} \Phi\right|^{2}-m^{2}|\Phi|^{2}-u|\Phi|^{4} \leftrightarrow\left|D_{b} \varphi\right|^{2}+m^{2}|\varphi|^{2}-u|\varphi|^{4}+\frac{1}{2 \pi} A d b^{6}+M a x \text { well }
$$

$$
J_{\mu} \longleftrightarrow \frac{1}{2 \pi} \varepsilon_{\mu \nu} \lambda \partial^{\nu} b^{\lambda} \text {; vortoces } \longleftrightarrow \text { particles }
$$

(2) Bo sonization (Fradkin \& Schaposnik, 1994; Seiberg, Senthil, Wang \& Witten, 2016)

$$
\bar{\psi}\left(i \phi_{A}-M\right) \psi-\frac{1}{8 \pi} A d A \leftrightarrow\left|D_{a} \phi\right|^{2}-m^{2}|\phi|^{2}-u|\phi|^{4}+\frac{1}{4 \pi} a d a+\frac{1}{2 \pi} a d A
$$

Dirac formion \longleftrightarrow inonopole; $\bar{\psi} \gamma^{\mu} \psi \leftrightarrow \frac{1}{2 \pi} \varepsilon^{\mu \nu \lambda} \partial_{\nu} a_{\lambda}$
(3) Fermion Particle-Vortex duality (Son, 2015; MeTlitski\& VishwanaTh, 2016) $\bar{\psi}\left(\left[D_{A}-M\right) \psi-\frac{1}{8 \pi} A d A \Leftrightarrow \bar{X}\left(i D_{a}+M\right) x+\frac{1}{8 \pi} a d a-\frac{1}{2 \pi} a d b+\frac{2}{4 \pi} b d b-\frac{1}{2 \pi} b d A\right.$

Back to bosons at $v=\frac{1}{2}$
(1) Use the fermionization duality

$$
\mathscr{L}_{A} \leftrightarrow \mathcal{L}_{B}=\bar{\psi}_{i} D_{b} \psi-\left(\frac{3}{2}\right) \frac{1}{4 \pi} b d b-\frac{1}{2 \pi} b d A-\frac{1}{4 \pi} A d A
$$

(2) Aharony: v is an $S U(\imath)$ field

$$
\begin{aligned}
& \text { Aharony: } v \text { is an } s u(2) \text { field } \\
& \alpha_{B} \leftrightarrow \mathcal{L}_{C}=\left|D_{v-\frac{1}{2}} A \mathbb{I} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} \operatorname{Tr}\left(v d v-i \frac{2}{3} v^{3}\right)-\frac{1}{2} \frac{1}{4 \pi} A d A
\end{aligned}
$$

$\Rightarrow \mathcal{L}_{A} \leftrightarrow \mathcal{L}_{C}$ and $U(1)_{2} \leftrightarrow S U(2)_{1}$
but Φ represents particles ϕ represents monopoles

$$
\begin{aligned}
& \alpha_{A}^{\alpha}=\left|D_{a} \Phi\right|^{2}-\left(m^{2}|\Phi|^{2}-u|\Phi|^{4}+\frac{(2)}{4 \pi} a d a+\frac{1}{2 \pi} a d A\right. \\
& \langle\Phi\rangle=0 \Rightarrow L_{\text {eff }}=-\left(\frac{1}{2} \frac{1}{4 \pi} A d A \Rightarrow \sigma_{x y}=\frac{1}{2}\left(\frac{e^{2}}{n}\right) \int_{0} p\right. \text { lateen }
\end{aligned}
$$

Non-Abelian States fro Clustering
e.g. Moor-Read state
$k=2$ layers of $v=1 / 2$ (same for the other cases)

$$
\begin{aligned}
& k=2 \text { layers of } \mathcal{L}_{A}=\sum_{n=1,2}\left(\left|D a_{n} \Phi_{n}\right|^{2}-\left|\Phi_{n}\right|^{4}\right)+\frac{2}{4 \pi} a_{n} d a_{n}+\frac{1}{2 \pi} A d\left(a_{1}+a_{2}\right)\left(U(1)_{2} \times U(1)_{2}\right) \\
& \mathcal{L}_{B}=\sum_{n=1,2}\left(\left|D_{u_{n}}-A 111_{2} \phi_{n}\right|^{2}-\left|\phi_{n}\right|^{4}\right)+\frac{1}{4 \pi} \sum_{n} \operatorname{Tr}\left(u_{n} d u_{n}-\frac{2}{3} i u_{n}^{3}\right)-\frac{1}{4 \pi} A d A
\end{aligned}
$$

"Paining"

$$
\begin{array}{r}
\Gamma \\
\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=0 \text { but }\left\langle\phi_{1}^{+} \phi_{2}\right\rangle \neq 0 \Rightarrow S U(2)_{1} \times S U(2)_{1} \rightarrow S U(2)_{2} \\
Q=1 \text { and } j=1 / 2 \text { under } S U(2)_{2} \Rightarrow \text { non- }
\end{array}
$$

ϕ_{1} and ϕ_{2} have charge $Q=\frac{1}{2}$ and $j=1 / 2$ under $S U(2)_{2} \Rightarrow$ non-abelian statistics $x_{n}^{a}=\underbrace{\Phi_{n} t^{a} \phi_{n}} \leftrightarrow$ Majorana fermions

Construction of a Fibonacii FQH state (Goldman, sonal, EF, 2020)

* Want a FQH ritate with only Fibonacci anyous
$\tau * \tau=1+\tau$ (and no other anyons)
\Rightarrow Universal quantam computing ($3 \tau^{\prime}$ s form a qubit)
Topological QFT?

$$
\begin{aligned}
& \text { Topological Qri! } \\
& \left(G_{2}\right)_{1} \leftrightarrow 2_{3,1}=\frac{S U(2)_{3} \times U(1)_{2}}{\mathbb{Z}_{2}} \\
& \mathcal{L}_{\text {Fib }}=\frac{3}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{4 \pi} \operatorname{Tr}[a] d \operatorname{Tr}[a]+\frac{1}{4 \pi} \operatorname{Ar} d \operatorname{Tr}[a] \\
& \begin{array}{c}
\hat{i} \\
\delta U(2) \text { gange field }
\end{array}
\end{aligned}
$$

$$
\Rightarrow \quad v=2 \quad\left(\sigma_{x y}=2 \frac{e^{2}}{h}\right)
$$

* Start with 3 layers of Diracs at $v=2 \rightarrow 1$ transition (IQH)

$$
\mathcal{L}=\sum_{n=1}^{3}\left[\begin{array}{c}
\left.\bar{\psi}_{n}\left(i D_{A}-M\right) \psi_{n}-\frac{3}{2} \frac{1}{4 \pi} A d A\right] \\
D_{A}=\partial-i A
\end{array}\right.
$$

parity anomaly

Duality: Free Dirac $\psi \leftrightarrow$ Wilsm-Fisher bose $\phi+U(N)_{1}$ OK since $U(N)_{1} \leftrightarrow \mathcal{L}_{\text {eff }}=-\frac{N}{4 \pi} A d A$ (trivial)

* Set $N=2$

$$
\begin{aligned}
& \text { Set } N=2 \\
& \mathcal{L}=\sum_{n}\left[\left|D a_{n} \phi_{n}\right|^{2}-r\left|\phi_{n}\right|^{2}-|\phi|^{4}+\mathcal{L}_{c S}\left[a_{n}\right]\right]+\frac{1}{2 \pi} A d \operatorname{Tr}\left[a_{1}-a_{2}+a_{3}\right]
\end{aligned}
$$

* Clustering: $\left\langle\Gamma_{m n}\right\rangle=\left\langle\phi_{m}^{\dagger} \phi_{n}\right\rangle \neq 0 \quad(m \neq n),\left\langle\phi_{n}\right\rangle=0$
\Rightarrow pins $a_{1}=a_{2}=a_{3} \equiv a \Rightarrow \frac{1}{2 \pi} A d \operatorname{Tr}\left[a_{1}-a_{2}+a_{3}\right] \equiv \frac{1}{2 \pi} \operatorname{Ad} \operatorname{Tr}[a]$
* The physical densities are pinned $\rho_{1}=-\rho_{2}=\rho_{3}$
\Rightarrow layer exchange symmeting is broken

$$
\Rightarrow \mathscr{L}_{u(2)_{3}}=3 \mathscr{L}_{c s}[a]+\frac{1}{2 \pi} A d \operatorname{Tr}[a]
$$

* To get Fibonacci \Leftrightarrow attach a unit of flux to the fermions \Rightarrow fermions \rightarrow bosons

$$
\begin{aligned}
& \Rightarrow \text { fermions } \rightarrow \text { bosons } \\
& \text { flux attachment: } 3 \mathcal{L}_{c s}[a]+\frac{1}{2 \pi} \mathfrak{d} \operatorname{Tr}[a]+\frac{1}{4 \pi}(b+A) d(b+A)
\end{aligned}
$$ fluctuating $U(1)$ ganger field

* Integrating ont $b_{\mu} \Rightarrow$ obtain $\mathcal{L}_{\text {Fib }}$!
\Rightarrow interpret $\Phi^{+} t^{a} \phi$ as the Fibonacci any m τ

