L3 10/3/2023
CFT representation of FRH wave functions
(8)
All abelian status can be written as expectation values in a 2D CFT
e.g. Langhlin In ~
$$\langle \prod_{i=1}^{N} e^{i \sqrt{m} \varphi(z_i)} e^{-\int d^{2}i \sqrt{m} \beta \varphi(z_i)} a veal charge
density
cutere $\varphi(z)$ is a compactified chiral boun in Euclidean space (imag. time)
 $\varphi \sim \varphi \pm 2\pi \sqrt{m}$ (here I rescaled φ by \sqrt{m} and $R = \sqrt{m}$)
* electron operator $V_e \sim e^{i \sqrt{m} \varphi(z)}$ scaling dimension $A_{qp} = \frac{1}{2m}$
* quari-hole (vortex) $V_{qh} \sim e^{-i \varphi(z)} / \sqrt{m}$ scaling dimension $A_{qp} = \frac{1}{2m}$
* physical states must be local w.r.t. the electron
 \Rightarrow only V_{qh}^n ($n \ge 1, ..., m$) are allowed
 \Rightarrow The ideal bulk wave functions are correlators of an Euclidean CFT!
This is the same CFT of the edge but in imaginary time,$$

Non-Abelian States: Moore-Read (1991) (19)

$$\frac{Pfeffian}{P_{mn}(z_{i}(1) \sim Pf\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i \in i} (z_{i}-z_{j})^{n}} e^{-\frac{1}{4g_{v}} \sum_{i=1}^{N} |z_{i}|^{2}}$$
Pfaffian: expectation value of chiral Majorana fermions $\frac{X(z) = \lambda^{\dagger}(z)^{2}}{\sum_{i \in v} W}$
Pfaffian: $(X(z_{i}) \times (w)) = \frac{1}{\sum_{i \in v} W}$
Pf $\left(\frac{1}{z_{i}-z_{j}}\right) = \langle X(z_{1}) \dots X(z_{N})^{2} \rangle$
 $Q(z) \sim Q(z) + 2\pi \sqrt{n}$; $R = \sqrt{n}$
 $Q(z) \sim (X(z_{1}) \dots X(z_{N})) \langle \prod_{i=1}^{N} e^{i \sqrt{n}} Q(z) - e^{-\int d^{2}z^{i} \sqrt{n}} S_{0} Q(z^{i})} \rangle$
Filling fraction: $V = \frac{1}{n}$
 $even \rightarrow fermions; n odd $4 \Rightarrow bo forms; Eg. V = \frac{1}{2}$ fermions
 $V = 1$ bogons$

FQH states 200 of

= 6 mK

5.5

B (T)

= 36 mK

6.0

Fibonacci?

Edge structure of the MR states (2)
The structure of the wave function implies that the edge
is a CFT with a charged number and an edge mode.
Charged mode:
$$\chi = \frac{1}{4\pi} \left(\partial_0 \varphi \ \partial_1 \varphi - v_c \left(\partial_1 \varphi \right)^c \right)$$
 Cartral
compacts fication readins $R = \sqrt{n}$
 $V_p = e^{\frac{1}{2}p\varphi} / \sqrt{n}$; suching admennions: $\Delta_p = \frac{p^2}{2n}$
Nextral mode: chinal Majorana fermion χ
 $\chi = \chi : \partial_0 \chi - v_n \chi : \partial_1 \chi$, $\Delta_\chi = \frac{1}{2}$ ($z = \frac{1}{2}$
Comment: this edge theory is supersymmetric
 χ what are the allowed observable? neganed by
thered conductivity

Observables of the MR Edge state (22)
Naively on would expect to be the tensor product. NO
Electron Operator:
$$\Psi_e \sim \chi e^{\int_{a=y_2}^{b} \int_{a=\frac{n}{2}}^{c} \int_{a=\frac{n+1}{2}}^{n} Q = e^{\int_{a=\frac{n+1}{2}}^{c} Q = \frac{n+1}{2}} Q = \frac{1}{2} Q = \frac{$$

The I fing anym
The I fing anym
The I night CFT has another primary field, the I sing field
$$\sigma$$

* σ has dimension $\frac{1}{16}$
* σ is a "twist field": Changes χ from PBC's to APBC's
* σ is a "twist field": Changes χ from PBC's to APBC's
* σ is charge fector has a "helf portex" $V_{1/2}(t) \sim e^{c \frac{1}{2}(t)/2t}$
* $V_{\chi_{1}}$ is doubly - valued and it is non-local wirdt. We
but $\psi_{\chi_{2}} \sigma(t) e^{i\frac{1}{2}(t)/2t}$ is local wirdt. We
for $f_{\gamma} \sigma(t) e^{i\frac{1}{2}(t)/2t}$ is local wirdt. We
 $This is the I sing anym$
 $Q = \frac{e}{2\pi}$, $\Delta = \frac{1}{16} + \frac{1}{8\pi}$

The I sing Anym has non-abilian statistics (24)
* Back to basics: the 2D I mig Model
* At T_c the 2D Jsing Model (and the 1D Quantum Ing node at A_c)
* At T_c the 2D Jsing Model (and the 1D Quantum Ing node at A_c)
is at a critical point
$$\Rightarrow$$
 scale invariance
is at a critical point \Rightarrow scale invariance
 $\langle \sigma(z, \bar{z}) \sigma(w, \bar{w}) \rangle \sim \frac{H}{(z-w)^{\Delta}}$ factorization
 $\Delta = \bar{\Delta} = \frac{1}{16}$
For us we will only need the chiral (analytic) part
 $\langle \sigma(z) \sigma(w) \rangle \sim \frac{H}{(z-w)^{V_{16}}}$
Thus expression enters in the wave function of two fundamental
guasi holes

For two quaritations at v, and v.

$$\hat{Y}_{2-q_{h}} \sim \langle \prod_{i=1}^{N} \chi(z_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(z_{i}) \rangle} \chi_{i=1}^{2} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{i} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} a_{h} \sigma(\sigma_{i}) e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_{h} f_{h} e^{i \langle \prod_{i=1}^{N} \varphi(v_{i}) \rangle} \times \hat{f}_$$

* Another way to understand this follows from the
fusion rules of the I sing CFT
* Each pairing is the fusion of two spin Rields σ
* (Chirad) Earing Fusion rules:
σ * σ = I + X, X * X = I, σ * X = X
* The first fusion rule => two fusion channels : I, X
> The first fusion rule => two fusion channels : I, X
> The 4 gh wave function is not uniquely determined by the
locations of the ghis but can be written as l.c. of two pairings
* Under a braiding (monodromy) these states transform mean a
unitary transf.
$$U = \frac{1}{V_1}e^{iT/4}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} => mon - abelian fractional
statistics'.$$

If the geometry is a disk
$$D \times \mathbb{R}$$

$$\Rightarrow \text{ the edge theory is a chiral CFT in 2D known as}$$

$$\text{the chiral (develk) Wess-Zumino-Witten theory}$$

$$S_{WZW} = \frac{1}{4\lambda_c} \int_{a} J^2 \times \text{tr} \left(\partial_{\mu} g \partial^{\mu} \theta^{-1} \right) + \frac{k}{2\pi\pi} \int_{B} J^{dx} \mathcal{E}_{\mu\nu\chi} \text{tr} \left(\partial_{\mu} \sigma g \partial^{\mu} \partial_{\mu} \right)$$

$$\lambda_c^2 = \frac{4\pi}{K}, \quad g \in SU(N)$$

$$\text{This CFT was solved by Knighmik & Zamolodchikor (1985)}$$

$$\text{The function rules are:}$$

$$\text{It hell a finite H of primarics } \phi_k. \quad \text{The function rules are:}$$

$$\text{For } SU(2)_k \quad \phi_{d_1} \approx \phi_{d_2} = \phi_{1d_1-d_21} + \dots + \phi_{NA}$$

$$\text{esu(2)}_4 \quad J = 0, \frac{1}{2} (\text{ml}_d) \qquad \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \left[0\right] + \left[1\right]; \quad [1] \times [1] = \left[0\right]$$

$$\text{etc.}$$

$$28)$$

To understand why this is the right theory we will (29)
look at two examples: bosins at
$$v = \frac{1}{2}$$
 and 1
() Bosins at $v = \frac{1}{2}$
* We saw that an discription was in terms of U(1)₂ chern-Binnors
* We saw that an discription was in terms of U(1)₂ chern-Binnors
* It has two anjoins; I, $V_{12} = e^{\frac{1}{2}\frac{q}{\sqrt{2}}}$ and the both is $\frac{1}{2} - e^{\frac{1}{2}\frac{V_{2}q}{2}}$
* At the edge, the bosin $e^{\frac{1}{2}\frac{c}{\sqrt{2}}\frac{q}{2}}$ have scaling dimension $A_{12} = 1$
* The current $v \ge \sqrt{2}$ also has $\Delta = 1$
* It can be shown that they form an algebra $J_{2} \sim \frac{2}{2}q^{-1}\sqrt{2}p^{-1}$
and that J_{3} , J_{\pm} satisfy the algebra of $SU(2)$ with $k=1$
 \Rightarrow This edge is that of $SU(2)_{1}$ W $\geq W$ theory

 $(11)_2$ is dual to $SU(2)_1$

(30)

١

The non-abelian FQH Interfermeter (2)
(Fradkin, Nayak, Wilczek, Tsvelik, 199P)
(Bondusm, Kitaer, Shtongel, 2006; Stem, Halperin, 2006)
Same geometry but now WK consider tunneling of Ising anyons
Ising anyon quasihole:
$$\sigma \exp\left(\frac{i}{2\sqrt{2}}\varphi\right)$$
 (MR $\mathcal{C} = V = V_2$)
(Inject a gh at A (lower edge) -> tunnels $\mathcal{C} \times_2 \rightarrow$ arrives \mathcal{C} B on 14>
I nject a 2nd gh at A -> tunnels $\mathcal{C} \times_2 \rightarrow$ arrives at B as $e^{id} B_{Ngh}$
(4: AB phase; B_{Ngh} is the braiding operator for the 2nd gh
to encircle the Ngh trapped invide the interferometer
 $\mathcal{C} \times_2 \sim 1\Gamma_1^2 + 1\Gamma_2^2 + Re\left(\Gamma_1^*\Gamma_2 e^{i\alpha} < 41B_{Ngh} 14>\right)$
(4: B_{Ngh} 14>: exp. value of Ngh Wilson loop operators
 $\langle \Psi | B_{Ngh} 1\Psi \rangle$: exp. value of Ngh Wilson loop operators
 $\langle \Psi | B_{Ngh} (e^{c} \pi V_{4})$; Jones Polynomial (Witten, 1989)
 $= V_{Ngh} (e^{c} \pi V_{4})$; Jones Polynomial (Witten, 1989)

The
$$v = \frac{1}{2}$$
 MR state involves a deformation of $SU(2)_2$
Even-odd effect (Sturn & Hadpurin; Bondmann, Kitaerr & shtugel)
Nghodd $\Rightarrow \quad \nabla_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 \quad (r.e. \langle \Psi \rangle B_{N_{gh}} |\Psi \rangle = 0)$
Ngh even $\Rightarrow \quad \nabla_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
Ngh even $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
 $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + |\Gamma_2|^2 + 2|\Gamma_1||\Gamma_2| \quad (-1)^{N_{\Psi}} \cos(\alpha + \arg(\frac{\Gamma_2}{\Gamma_1}) + N_{gh}\frac{\pi}{\Psi})$
 $\Rightarrow \quad \mathcal{O}_{xx} \sim |\Gamma_1|^2 + |\Gamma_2|^2 + 2|\Gamma_1|\Gamma_2|^2 + 2|\Gamma_1|\Gamma_2|^2 + 2|\Gamma_2|\Gamma_1|^2 + 2|\Gamma_1|\Gamma_2|^2 + 2|\Gamma_1|\Gamma_2|^2 + 2|\Gamma_2|\Gamma_2|^2 + 2|\Gamma_1|\Gamma_2|^2 + 2|\Gamma_1|\Gamma_2|^2$

Q: what is the physical meaning of the Pfe Affian Pector?
It means that electrons can be closer to each other than in a
Laughlin state.
* This maggests that there is an effective attractive interaction
*
$$Pf\left(\frac{1}{2i^{-2}i}\right)$$
 is the wave function of a $P_x + i^{2}Py$ superconductor
in the weak - pairing (BCS) regime (kead and Green)
in the weak - pairing (BCS) regime (kead and Green)
* This state arises in the N=1 Landau level due to the
structure of the one-particle Landau states
* Pairing of composite fermions
* Pout, this is NOT a superconductor!
* The $P_x + if_y$ SC has a half-vortex $<>$ Joing any on
* This is an symple of a cluster state

Generalization: Read - Regayi states (RR) (1998)
Based on
$$\mathbb{Z}_{k}$$
 poraformions (and $SU^{(2)}k$)
 $\mathcal{W}_{n}(2) * \mathcal{W}_{n}(2') \sim \frac{1}{(2-2')} a_{n+} a_{n-} a_{n+m}$
 $\mathcal{W}_{n,m}(2') + \cdots$ Fradkin& Kadauoff
 $(1980)(!)$
 $\mathcal{A}_{n} = \frac{n(k-n)}{k}$, $n,m = 1,...,k-1$
R R status was the Paraformion CFT (Zamolodchikov & Fateer, 1985)
Geoper & Qia, 1987
 $\mathcal{W}_{pR}(\{z_{1}\}) \sim \langle \mathcal{V}_{1}(2_{1}) \cdots \mathcal{V}_{1}(2_{N}) \rangle \prod_{i < j} (2i-2j) \stackrel{m+2}{k} \times gaussisms \int_{come}^{n+2i} h_{i} + i particles
come together.
M & Z divisith by k; M even: bostons, M odd: fermions; $v = \frac{k}{Mk+2}$
The most intervating case is $k=3$ (\mathbb{Z}_{3}) ($v = \frac{3}{2}$ (E), $\frac{3}{5}$ (F))
In addition to the Zs paraformion, it has a Fiburaci angen T
usion vale: $T * T = I + T \Rightarrow$ its unitary braiding matrices cover SU(2)
 $= \frac{universal}{2}$ quantum computer$

Effective Field Theory approaches (Fredhin, Nayak, Schoutans, 1999
(Goldman, Sobal, EF, 2019)
We will discuss borns for simplicity
$$2^{V} = \frac{k}{2}$$

Compider (k) layers of bosons in a $V = \frac{1}{2}$ Longhlin state
 $V = \frac{1}{2}$
 $V = \frac{1}{2}$ and $V = \frac{1}{2}$
For each layer $d = \bigoplus_{V \neq V} \alpha^{M} \partial^{V} \alpha^{1} + \cdots$
 $= \bigoplus_{HT} \alpha^{M} \partial^{V} \alpha^{1} + \cdots$
Symmetry $\frac{U(2)_{2} \times \cdots \times U(2)_{2}}{k}$ factors
Chern - Simons $U(1)_{2} \leftrightarrow SU(2)_{4}$ group 15 non-abilian
Level - rank
 $dnality I, e^{-\sqrt{12}} j = 0, \frac{1}{2}$

Q: how to get to a state with non-abilian statistics? (37) Hint: somehow we need a theory on (SU(2))k) φ you need $U(1)_2 \times ... \times U(1)_2 \longrightarrow (SU(2))_k$ (A) Ouse the Chern-Simons level-rank duality ε φ, etc $SU(2)_1 \times \cdots \times SU(2)_1$ (2) contracta condusate -> SU(2) k $\langle \phi, \phi, \rangle \neq 0$ The 1999 paper did this by conducting pairs of excitations on two layers at a time => Higgs (Meissner) mechanism projects mto a state with symmetry SU(2)k (clustering) 1999 was basically right (but not completely) => Dualities solve the problem

Back to bosons at
$$(v = \frac{1}{2})$$
 $(U^{(1)})^{2}$
 $\int_{A}^{a} = [D_{a} \Phi]^{2} (M^{2}) [\Phi]^{1} - u[\Phi]^{1} + \frac{(2)}{4\pi} ada + \frac{1}{2\pi} adA$
 $\langle \Phi \rangle = 0 \Rightarrow \quad \mathcal{K}_{cff} = -\frac{(1)}{2} \stackrel{1}{\downarrow} AdA \Rightarrow \quad \sigma_{xy} = \frac{1}{2} \begin{pmatrix} e^{2} \\ h \end{pmatrix} \stackrel{1}{\not} \rho haten
 $\langle \Phi \rangle \neq 0 \Rightarrow \langle a \rangle = 0 \Rightarrow \quad \mathcal{K}_{eff} \sim \text{Maxwell} \iff \text{no Hall effect} \qquad \text{transition}$
 $\langle \Phi \rangle \neq 0 \Rightarrow \langle a \rangle = 0 \Rightarrow \quad \mathcal{K}_{eff} \sim haxwell \iff \text{no Hall effect} \qquad \text{transition}$
 $\langle \Phi \rangle \neq 0 \Rightarrow \langle a \rangle = 0 \Rightarrow \quad \mathcal{K}_{eff} \sim haxwell \iff \text{no Hall effect} \qquad \text{transition}$
 $\langle \Phi \rangle \neq 0 \Rightarrow \langle a \rangle = 0 \Rightarrow \quad \mathcal{K}_{eff} \sim haxwell \iff \text{no Hall effect} \qquad \mathcal{K}_{eff} = \frac{1}{2} \stackrel{1}{\langle \Phi \rangle} \stackrel{1}{\langle \Phi \rangle}$$

Non-Abelian States from Clustering

40

e.g Moore-Read state k=2 layers of v=1/2 (same for the other caser) $(U \cup (U \cup (U)))$ $\mathcal{J}_{A} = \sum_{n \geq 1, 2} \left(\left[Da_{n} \overline{\Psi}_{n} \right]^{2} - \left[\overline{\Psi}_{n} \right]^{4} \right) + \frac{2}{4\pi} a_{n} da_{n} + \frac{1}{2\pi} A d(a_{1} + a_{2})$ $\mathcal{L}_{B} = \sum_{n \ge 1,2} \left(\left[\mathcal{D}_{u_{n}} - A \mathcal{1}_{1} \right]_{2} \psi_{n} \right]_{-} \left[\phi_{n} \right]_{+}^{4} + \frac{1}{4\pi} \sum_{n} \operatorname{Tr} \left(u_{n} d u_{n} - \frac{2}{3} \partial u_{n}^{3} \right)_{-} + \frac{1}{4\pi} A d A$ $Z_{\Gamma} = \sum_{m,n} \left[9 \Gamma_{mn} - i u_{m} \Gamma_{mn} + i \Gamma_{mn} u_{n} \right]^{2} + V \left[\Gamma \right] - \sum_{m,n} \phi_{m}^{\dagger} \Gamma_{mn} \phi_{n}$ $\langle \phi_1 \rangle = \langle \phi_2 \rangle = 0$ but $\langle \phi_1^{\dagger} \phi_2 \rangle \neq 0 \implies SU(2)_1 \times SU(2)_1 \Rightarrow SU(2)_2$ ϕ_1 and ϕ_2 have charge $Q = \frac{1}{2}$ and $j = \frac{1}{2}$ under $5U(2)_2 \Rightarrow non-abelian statistics$ $X_n = \phi_n t^a \phi_n \leftrightarrow Majorana firmions$

$$\frac{(cnstruction of a Fibonacci FQH state (Goldman, Sold, EF, 2020)}{(4)}$$
(4)
(4)
(Want a FQH state with only Fibonacci anyons
 $\tau * \tau = 1 + \tau$ (and no other anyons)
=) universal quantum computing (3 t's form a qubit)
* Topological QFT?
 $(G_2)_1 \leftrightarrow U(2)_{3,1} = \frac{SU(2)_3 \times U(2)_2}{\mathbb{Z}_2}$
 $\chi_{Fib} = \frac{3}{4\pi} \operatorname{Tr} \left[a \, da - \frac{2}{3} i a^3 \right] - \frac{1}{4\pi} \operatorname{Tr} \left[a \right] d \operatorname{Tr} \left[a \right] + \frac{1}{4\pi} A d \operatorname{Tr} \left[a \right]$
 $\int v = 2 \left(\sigma_{x_1} = 2 - \frac{e^2}{h} \right)$