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Lecture 1
● Parametric estimation

● Introduction to deep 
neural networks

● The training algorithm

Lecture 2

● The PyTorch library

● Implementing Artificial 
Neural Nets in PyTorch

Lecture 3

● Implementing Convolutional Neural 
Networks in PyTorch

Lecture 4

● Applications of ML in climate 
science
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Data-driven Model Parameterizations
Equation Discovery using ML
ML in Weather Forecasting



  

Data-driven Model Parameterizations



  

Gravity Waves Significantly Influence Stratospheric Variability

● Tropical stratosphere dominated by oscillating wind patterns with a period of ~28 months,
called the Quasi-Biennial Oscillation (QBO). Can have influence over tropical convective systems
like ENSO, Madden-Julian Oscillation. 

● Driven mostly by convectively generated gravity waves, which are not completely resolved 
in most climate models
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WaveNet: an ML Emulator for Atmospheric Gravity Waves

● Trained on just one year of atmospheric data (features) and GW parameterization data (labels) from 
an intermediate complexity climate model.

● Generalizes well to identify longer period signals and out-of-sample data points for four test years 

Simulates the westerly phase of the QBO well
despite being trained upon the easterly QBO winds!

Equatorial gravity wave drag Northern polar region drag

Vanilla ANN, 9 layers, trained for 200 epochs, 
variable learning rate, logcosh error,
Adam optimizer, no regularization, 
minibatch size = 1024 



  

*Higher R2 means higher prediction score
 

Robustness to feature omission: only training on the winds 
sufficient to retain 96% of the prediction skill of the full model

Robustness to training data: training on 1/4th of the years retains 
98% of the prediction skill of the full NN 

Offline tests: comparable performance using less features and data 



  

Online tests: consistent results for QBO evolution under climate change

● WaveNet plugged into the Fortran climate model code. Model integrated for 50 years with 
original gravity wave parameterization and with WaveNet

● Both parameterizations and WaveNet predict a reduction in the QBO period and weakening of 
the maximum windspeeds



  

Towards Nonlocal GW Parameterizations

(Gupta et al. (2021); Gupta et al. in prep)

Properties desired:

1) Lateral propagation

2) Refraction

3) Transience



  

Towards Nonlocal GW Parameterizations

(Gupta et al. (2021); Gupta et al. in prep)

Properties desired:

1) Lateral propagation

2) Refraction

3) Transience

WaveNet
Trained on parameterizations

Limited training data
Incomplete wave

Nonlocal emulators
Trained on HighRes data
Extend training periods

Complete physics



  

Towards Nonlocal GW Parameterizations

(Gupta et al. (2021); Gupta et al. in prep)

  Lateral propagation

 Refraction

Nonlocal emulators based on Recurrent Neural Networks
Trained on global 1km simulations from ECMWF

Extended training periods
Complete physics

Training using non-local columns

Wang et al. (2022)



  

Towards Nonlocal GW Parameterizations

(Gupta et al. (2021); Gupta et al. in prep)

  Lateral propagation

 Refraction

Nonlocal emulators based on Recurrent Neural Networks
Trained on global 1km simulations from ECMWF

Extended training periods
Complete physics

 Transience

Training using non-local columns Implement transience using Recurrent Networks

Wang et al. (2022)



  

Towards Nonlocal GW Parameterizations

(Gupta et al. (2021); Gupta et al. in prep)
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Equation Discovery



  

Mesoscale Dynamics are Important, but are not Resolved in Ocean Models

● Subgrid-scale turbulent fluxes at scales 10-100 km
 important for global heat, oxygen, and tracer transport

● Interaction on small-scales with large-scales not well 
understood

● These scale not typically resolved in ocean models

● Parameterizations spuriously dissipate 
kinetic energy, affecting large-scale currents

● Use simple quadratic closures and 
hyperdiffusion to parameterize subgrid scales



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

u = (u,v): horizontal winds, T: temperature
overbar: 30 km Gaussian filtering

“Given some spatiotemporal data set of the 
subgrid eddy forcing, we uncover an equation 
that could have produced that dataset.”

(Zanna and Bolton (2020), GRL)



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

u = (u,v): horizontal winds, T: temperature
overbar: 30 km Gaussian filtering

“Given some spatiotemporal data set of the 
subgrid eddy forcing, we uncover an equation 
that could have produced that dataset.”

(a) Relevance Vector Machines (RVMs)
iterative regression

possible to physically interpret the results

(b) Convolutional Neural 
      Networks (CNNs)

(Zanna and Bolton (2020), GRL)



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

Barotropic Model: highly idealized, 3.75 km, 10 years of data Assume a library of basis functions:
- Start with u and v and their gradients

- Obtain vorticity and divergence as a more 
reasonable basis

- Use vorticity, divergence, shear terms as 
the improved basis, ϕis to create a library of 
funcitons (products and derivatives). 
Compute these quantities using the high 
resolution data 

- Compute the weights wis for functions, 
and prune to get the basis that best captures 
the subgrid scale fluxes

- Obtain subgrid scale closures:

(Zanna and Bolton (2020), GRL)



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

RVM reveals the expression:

Pruning the basis – 
Just one basis function captures ~20% of the variance
Three functions capture ~50% of the variance

(Zanna and Bolton (2020), GRL)



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

RVM reveals the expression:

Pruning the basis – 
Just one basis function captures ~20% of the variance
Three functions capture ~50% of the variance

approximate form

Approximate form for subgrid scale
momentum transport

(Zanna and Bolton (2020), GRL)



  

Using ML to find Equations that Govern Mesoscale Ocean Dynamics

RVM reveals the expression:

Pruning the basis – 
Just one basis function captures ~20% of the variance
Three functions capture ~50% of the variance

approximate form

Connect to the 
baroclinic form

Approximate form for subgrid scale
momentum transport

Similarly for temperature,

(Zanna and Bolton (2020), GRL)



  

RVMs match the true variability pretty well in offline tests* 

Mean
zonal 

momentum 
fluxes

Standard 
deviation of
momentum 

fluxes

Idealized simulation
Established

parameterization
RVMs CNNs

(Zanna and Bolton (2020), GRL)



  

ML in Weather Forecasting



  

FourCastNet: Data-driven Weather Forecasting

A complex semi-supervised ML model built using Fourier Neural Operators and Vision Transformer



  

FourCastNet: Data-driven Weather Forecasting

● Pre-training stage | Fine-tuning stage | Inference

● Trained on 6-hourly ERA5 reanalysis on pressure levels 
from 1979-2015. 0.25o resolution.  2016-17 validation data.
2018-2020 testing data.

● A separate AFNO model to forecast total precipitation: an 
additional convolutional layer and ReLU() activation to 
enforce non-negative outputs

● Model trained with cosine learning rates for a total of 130 epochs



  

FourCastNet’s Model Architecture

● Pretty complex model!

- create patches
- form patch embedding
- input to the attention layer
- optimize attention
- decode the image to 
   get forecast
- forecast precipitation as 
  a diagnostic

C x H x W →  (N x P2 x C)  →  N x D (using a linear projection)



  

FourCastNet provides impressive Hurricane and AR forecasts over short lead times

Small-scales captured better than by CNNs



  

FourCastNet outperforms Weyn et al.’s DLWP model

!!!

ACC: Anomaly correlation coefficient. Higher 
ACC means higher skill

On 0-48 lead times, FourCastNet provides better 
total precipitation forecasts than IFS
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Brief outline of Weyn et al.’s DLWP

● Weyn et al (2020)’s Deep Learning 
Weather Prediction model uses convolutions 
(FCNN) on a cubed-sphere grid to predict 
weather on short and even sub-seasonal 
timescales. It is based on the U-Net 
architecture

● Trained on 2o resolution ERA5 data and four 
prognostic variables: 500 hPa geopotential 
height, 1000 hPa geopotential height, 300-700 
hPa geopotential thickness, and 2m surface 
temperature.

● Improved to have 6 predicted variables and 
produce a 320-ensemble S2S forecast

Observed 
surface 
temperature 

Prediction



  

ACC: Anomaly correlation coefficient. Higher 
ACC means higher skill

On 0-48 lead times, FourCastNet provides better 
total precipitation forecasts than IFS

A factor 45,000 speedup and 12,000x lower energy 
footprint in generating forecasts using a larger 
ensemble size. 100 ensemble size vs traditional 50 
used by ECMWF’s IFS.

Scalable: model memory requirements ~10 GB 
for a batch size=1

Forecasts using the pre-trained model can be 
generated using a laptop

FourCastNet outperforms Weyn et al.’s DLWP model

!!!



  

Additional Resources for Learning ML



  

BO
O

KS



  

Yo
uT

ub
e



  

PA
PE

RS



  

Thank You! I hope this helped. :)
Feel free to reach out: ag4680@stanford.edu

Data-driven Model Parameterizations
Using ANNs to create global emulators for gravity waves using parameterizationd or nonlocal high 

resolution climate data, and testing on new climate scenarios

Equation Discovery using ML
Relevance Vector Machines to obtain closed-form solutions for subgrid scale momentum and temperature 

fluxes for barotropic and baroclinic models that capture a bulk of the subgrid scale variance

ML in Weather Forecasting
Novel architectures using vision transformer + adaptive Fourier neural operators, and UNet CNN 

architecture to forecast surface weather with commendable skill
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