Machine Learning Methods for Atmosphere, Ocean, and Climate Science Lecture 3: Implementing CNNs in PyTorch

Mathematical modeling of Climate, Ocean, and Atmosphere processes International Centre for Theoretical Sciences, TIFR, Bengaluru, India

Aman Gupta

Lecture 1

- Parametric estimation
- Introduction to deep neural networks
- The training algorithm

Lecture 2

- The PyTorch library
- Implementing artificial neural nets in PyTorch

Lecture 3

 Implementing Convolutional Neural Networks in PyTorch

• Applications of ML in climate science

Lecture 4

Convolutional Neural Networks (CNNs)

- Vanilla ANNs transformed the image to vectors. Not shape invariant.
- Makes it challenging, especially when identifying small-scale features in an image

Convolutional Neural Networks (CNNs)

- Vanilla ANNs transformed the image to vectors. Not shape invariant.
- Makes it challenging, especially when identifying small-scale features in an image

CNNs are a special class of NNs, that allow working with images in a geometry-preserving way through the use of convolutions.

- Convolve the input image with a kernel/filter by striding, to create a feature map
- Can add padding to the image for shape preservation
- Downsample the image using **pooling** (helps with invariance): max pooling, min pooling, average pooling etc.
- Input downsamples maps into a fully connected ANN
- Train to get the optimal weights and optimal filters

Image by @RetroArtist18

Creates a pixelated/blurred version of Mario

Input

Different filters identify different features

Sobel filter

-1/2	-1	-1/2
0	0	0
1/2	1	1/2

original

(Cat figures: www.paperspace.com)

Different filters identify different features

(Cat figures: www.paperspace.com)

Different filters identify different features

11		Iter
-1/2	0	1/2
-1/2	0	1/2
-1/2	0	1/2

.: LI LIL

D

Sobel filter

-1/2	-1	-1/2
0	0	0
1/2	1	1/2

-1/9	-1/9	-1/9
-1/9	8/9	-1/9
-1/9	-1/9	-1/9

1	0	0
0	1	0
0	0	1

Laplacian filter

?

Convolutional Neural Networks (CNNs) learn the optimal filters through training. They do not use these pre-defined filters

Feature Maps can be Complex

Feature maps for clouds (Phung and Rhee 2019)

Let's Code our First Convolutional Neural Network!

Jupyter Notebook URL: tiny.cc/coaps_lec3 tiny.cc/coaps_html

Let's Code our First Convolutional Neural Network!

We know this part already!