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Convolutional Neural Networks (CNNs)

Vanilla ANNs transformed the image to vectors.
Not shape invariant.
Makes it challenging, especially when identifying

small-scale features in an image

. 24x1 vector



Convolutional Neural Networks (CNNs)

* Vanilla ANNSs transformed the image to vectors.
Not shape invariant.

* Makes it challenging, especially when identifying
small-scale features in an image
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24x1 vector

CNNss are a special class of NNs, that allow working with
images in a geometry-preserving way through the use of
convolutions.
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* Convolve the input image with a kernel/filter by striding, to create a feature

map

* Can add padding to the image for shape preservation

* Downsample the image using pooling (helps with invariance):
max pooling, min pooling, average pooling etc.

* Input downsamples maps into a fully connected ANN

* Train to get the optimal weights and optimal filters
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Different filters identify
different features
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Different filters identify
different features
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Different filters identify
different features
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Convolutional Neural Networks (CNNs) learn the optimal filters
through training. They do not use these pre-defined filters



Feature Maps can be Complex

Feature Map in Convolutional Neural Networks (CNN)
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Let’s Code our First Convolutional Neural Network!

Jupyter Notebook URL: tiny.cc/coaps_lec3
tiny.cc/coaps_html
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Let’s Code our First Convolutional Neural Network!

Jupyter Notebook URL: tiny.cc/coaps_lec3
tiny.cc/coaps_html
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We know this part already!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

