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Lecture 3

● Implementing Convolutional Neural 
Networks in PyTorch

Lecture 4

● Applications of ML in climate 
science

Lecture 1
● Parametric estimation

● Introduction to deep 
neural networks

● The training algorithm

Lecture 2

● The PyTorch library

● Implementing Artificial 
Neural Nets in PyTorch



  

PyTorch has various modules to aid coding



  

https://pytorch.org/docs/stable/nn.html

PyTorch has various modules to aid coding

https://pytorch.org/docs/stable/nn.html


  

Choice of Activation Function is Problem-Dependent

Rectified Linear 
Unit (ReLU)
torch.nn.ReLU()

Softmax: Probability, LLMs
torch.nn.Softmax()

Tanh function: Classification
torch.nn.Tanh()

Sigmoid function: Classification
torch.nn.Sigmoid()



  

Choice of Loss Function is Problem-Dependent

Cross Entropy Loss (Softmax loss): 
torch.nn.CrossEntropyLoss() 
multi-class classification

KL Divergence Loss: 
torch.nn.KLDivLoss() 
VAEs, classification, PDFs

Mean Squared Error Loss:
torch.nn.MSELoss()
Regression

L1 Loss: 
torch.nn.L1Loss()
Outliers



  

Choice of Optimizers

Adagrad (2011): 
torch.optim.Adagrad() 
1st to have adaptive LRs

RMSProp (2012): 
torch.optim.RMSProp() 

ADAM (2014):
torch.optim.Adam()
combines Adagrad, RMSProp, 
and momentum

Stochastic Gradient Descent (1847): 
torch.optim.SGD()
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PyTorch Autograd

PyTorch’s Autograd module 
maintains a graph of 
connections between different 
variables

This helps compute gradients 
of the loss function very 
efficiently, speeding up the 
optimization process



  

Why PyTorch? Why not TensorFlow?

● Released in 2016, PyTorch is easier to learn for researchers compared to 
Tensorflow. Ex: ChatGPT-3, DALL-E was written in PyTorch.

● Since newer, performs better than TensorFlow on most benchmarks. 
TensorFlow still preferred for ML code deployment in large systems.

● Problem with model translation. 
Does not have TensorBoard :-(



  

Using Minibatch Gradient Descent for Better Training
full dataset 
per update

one sample
per update

one random 
subset per update

(Figure: analyticsvidhya.com)
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Tracking Progress using Training and Validation Loss

● Keeping track of validation loss, 
and using regularization techniques help 
prevent overfitting, enhance generalizability,
and determine how long to train the model

● Early stopping, Dropout 
L2/L1 regularization etc.



  

Let’s Code!

Jupyter Notebook URL: tiny.cc/coaps_lec2



  

● Train the ANN on MNIST data with Adam optimizer for learning rates: 10-1, 10-2, 10-3

● Does SGD learn efficiently at the learning rate of 10-3?
● Does adding momentum (say ~0.9) to SGD help?
● Perhaps the learning rate is too small for SGD. What if the leaning rate is increased?
● We have achieved an impressive recognition skill with Adam and a small learning rate. 

Does training the model indefinitely produce better and better skill?
● What if we use a large batch size, say 10000, with these best parameters and fast converging

optimizers?
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