

Machine Learning Methods for
Atmosphere, Ocean, and Climate Science

Lecture 2: Implementing ANNs in PyTorch

Mathematical modeling of Climate, Ocean, and Atmosphere processes
International Centre for Theoretical Sciences, TIFR, Bengaluru, India

Aman Gupta

Lecture 3

● Implementing Convolutional Neural
Networks in PyTorch

Lecture 4

● Applications of ML in climate
science

Lecture 1
● Parametric estimation

● Introduction to deep
neural networks

● The training algorithm

Lecture 2

● The PyTorch library

● Implementing Artificial
Neural Nets in PyTorch

PyTorch has various modules to aid coding

https://pytorch.org/docs/stable/nn.html

PyTorch has various modules to aid coding

https://pytorch.org/docs/stable/nn.html

Choice of Activation Function is Problem-Dependent

Rectified Linear
Unit (ReLU)
torch.nn.ReLU()

Softmax: Probability, LLMs
torch.nn.Softmax()

Tanh function: Classification
torch.nn.Tanh()

Sigmoid function: Classification
torch.nn.Sigmoid()

Choice of Loss Function is Problem-Dependent

Cross Entropy Loss (Softmax loss):
torch.nn.CrossEntropyLoss()
multi-class classification

KL Divergence Loss:
torch.nn.KLDivLoss()
VAEs, classification, PDFs

Mean Squared Error Loss:
torch.nn.MSELoss()
Regression

L1 Loss:
torch.nn.L1Loss()
Outliers

Choice of Optimizers

Adagrad (2011):
torch.optim.Adagrad()
1st to have adaptive LRs

RMSProp (2012):
torch.optim.RMSProp()

ADAM (2014):
torch.optim.Adam()
combines Adagrad, RMSProp,
and momentum

Stochastic Gradient Descent (1847):
torch.optim.SGD()

Choice of Optimizers

Adagrad (2011):
torch.optim.Adagrad()
1st to have adaptive LRs

RMSProp (2012):
torch.optim.RMSProp()

ADAM (2014):
torch.optim.Adam()
combines Adagrad, RMSProp,
and momentum

Stochastic Gradient Descent (1847):
torch.optim.SGD()

(Figures: www.datasciencecentral.com)

PyTorch Autograd

PyTorch’s Autograd module
maintains a graph of
connections between different
variables

This helps compute gradients
of the loss function very
efficiently, speeding up the
optimization process

Why PyTorch? Why not TensorFlow?

● Released in 2016, PyTorch is easier to learn for researchers compared to
Tensorflow. Ex: ChatGPT-3, DALL-E was written in PyTorch.

● Since newer, performs better than TensorFlow on most benchmarks.
TensorFlow still preferred for ML code deployment in large systems.

● Problem with model translation.
Does not have TensorBoard :-(

Using Minibatch Gradient Descent for Better Training
full dataset
per update

one sample
per update

one random
subset per update

(Figure: analyticsvidhya.com)

Using Minibatch Gradient Descent for Better Training
full dataset
per update

one sample
per update

one random
subset per update

(Figure: analyticsvidhya.com)

Using Minibatch Gradient Descent for Better Training
full dataset
per update

one sample
per update

one random
subset per update

(Figure: analyticsvidhya.com
Table: Wilson and Martinez (2003))

Using Minibatch Gradient Descent for Better Training
full dataset
per update

one sample
per update

one random
subset per update

(Figure: analyticsvidhya.com
Table: Wilson and Martinez (2003))

Tracking Progress using Training and Validation Loss

● Keeping track of validation loss,
and using regularization techniques help
prevent overfitting, enhance generalizability,
and determine how long to train the model

● Early stopping, Dropout
L2/L1 regularization etc.

Let’s Code!

Jupyter Notebook URL: tiny.cc/coaps_lec2

● Train the ANN on MNIST data with Adam optimizer for learning rates: 10-1, 10-2, 10-3

● Does SGD learn efficiently at the learning rate of 10-3?
● Does adding momentum (say ~0.9) to SGD help?
● Perhaps the learning rate is too small for SGD. What if the leaning rate is increased?
● We have achieved an impressive recognition skill with Adam and a small learning rate.

Does training the model indefinitely produce better and better skill?
● What if we use a large batch size, say 10000, with these best parameters and fast converging

optimizers?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

