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Choice of Activation Function is Problem-Dependent

Sigmoid function: Classification

torch.nn.Sigmoid()
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torch.nn.ReL.U()
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Tanh function: Classification

torch.nn.Tanh() —
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Softmax: Probability, LLMs
torch.nn.Softmax()
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Choice of Loss Function is Problem-Dependent

L1 Loss: Mean Squared Error Loss:
torch.nn.L1Loss() torch.nn.MSELoss()
Outliers Regression
2
loss(z,y) = | — Y| loss(z,y) = (z— y)
Cross Entropy Loss (Softmax loss): KL Divergence Loss:
torch.nn.CrossEntropyLoss() torch.nn. KLDivLoss()
multi-class classification VAEs, classification, PDFs
e(f;c, y) — L = {l]_, —— ,ZN}T L[:ypred-. ytrue} = UYtrue * (IDE Ytrue — 105 yprerl)
exp(z
l, = —wy, log P(Zns) - 1.

cC:1 exp(Zn,c)



Choice of Optimizers

Stochastic Gradient Descent (1847):  Adagrad (2011):

torch.optim.SGD() torch.optim.Adagrad()
1*t to have adaptive LRs
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RMSProp (2012): ADAM (2014):

torch.optim.RMSProp() torch.optim.Adam()
combines Adagrad, RMSProp,
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Stochastic Gradient Descent (1847):  Adagrad (2011):

Choice of Optimizers

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

torch.optim.SGD()
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RMSProp (2012):
torch.optim.RMSProp()
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(Figures: www.datasciencecentral.com)



PyTorch Autograd

a = torch.tensor(2.0,
requires_grad=True)

b = torch.tensor(3.0)

c=a*b
c.backward()

a

data = tensor(2.0)

grad =3.0 < | grad=

| AccumulateGrad
grad_fn = | grad_fn =

|
is_leaf = | is_leaf =1

|

requires_grad = Tr

w 7

data = tensor(3.0)

requires_grad = False

MulBackward

[ ctx.save_for_backward(...)

Mul ctx.saved_tensors
nexl_funclic;ns = i
(AccumulateGrad, 0), —4-3.0~

@

r
5

(None, 0)
b

¥

1.0

C
data = tensor(6.0)

grad = |

grad_fn = MulBackward =

is_leaf = False

requires_grad = [r

PyTorch’s Autograd module
maintains a graph of
connections between different
variables

This helps compute gradients
of the loss function very
efficiently, speeding up the

optimization process

loss.backward()
optimizer.step()




Why PyTorch? Why not TensorFlow?

* Released in 2016, PyTorch is easier to learn for researchers compared to
Tensorflow. Ex: ChatGPT-3, DALL-E was written in PyTorch.

* Since newer, performs better than TensorFlow on most benchmarks.
TensorFlow still preferred for ML code deployment in large systems.

* Problem with model translation.
Does not have TensorBoard :-(
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Using Minibatch Gradient Descent for Better Training

full dataset one random
per update subset per update
Batch Gradient Descent Mini-Batch Gradient Descent

Learning rate  Batch size  Max word accuracy (%) Training epochs
q, 0.1 1 96.49 21
0.1 10 96.13 41
0.1 100 95.39 43
0.1 1000 84.13 + 4747 +

0.01 1 96.49 27
0.01 10 96.49 27
one sample 0.01 100 95.76 46
per update 0.01 1000 95.20 1612
0.01 20,000 23.25 4+ 4865 +
—— 0.001 I 96.49 402
g @ylecun 0001 100 9668 468
Training with large minibatches is bad for your health. 0.001 1000 96.13 405
More importantly, it's bad for your test error. 0.001 20,000 90.77 1966
Friends dont let friends use minibatches larger than 32. 0.0001 1 06.68 4589
0.0001 100 96.49 5340
" o 0.0001 1000 96.49 5520
Revisiting Small Batch Training for Deep Neural Networks
a IX].V Modern feep neural network ﬁ'ainir‘.g isptyp\'cally based on 00001 20,000 9631 8343
mini-batch stochastic gradient optimization. While the us...
2:00 PM - Apr 26,2018 (Figure: analyticsvidhya.com

Table: Wilson and Martinez (2003))
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Tracking Progress using Training and Validation Loss
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Keeping track of validation loss,

and using regularization techniques help
prevent overfitting, enhance generalizability,
and determine how long to train the model

Early stopping, Dropout
L2/L1 regularization etc.



Let’s Code!

Jupyter Notebook URL: tiny.cc/coaps_lec2




Train the ANN on MNIST data with Adam optimizer for learning rates: 10, 10, 107

Does SGD learn efficiently at the learning rate of 107?

Does adding momentum (say ~0.9) to SGD help?

Perhaps the learning rate is too small for SGD. What if the leaning rate is increased?

We have achieved an impressive recognition skill with Adam and a small learning rate.
Does training the model indefinitely produce better and better skill?

What if we use a large batch size, say 10000, with these best parameters and fast converging
optimizers?
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