Machine Learning Methods fo
Atmosphere, Ocean, and Climate Science

= 2 1: Machine Learning Fundamentals

Ly

2 processes

—Ariterrfatis

% Stanford

University



What this lecture series is ...

¢/ An introductory treatise to implementing
Deep Learning (DL) algorithms

— Develop an intuitive understanding of
DL fundamentals

— Code simple and functional neural nets
— Stroll through ongoing ML research in
climate science

Focus on practical implementation more so
than on theoretical derivations




What this lecture series is ...

¢/ An introductory treatise to implementing
Deep Learning (DL) algorithms

v/ — Develop an intuitive understanding of :
DL fundamentals :
— Code simple and functional neural nets i
— Stroll through ongoing ML research in :
climate science :

¢/ Focus on practical implementation more so
than on theoretical derivations

What this lecture series is not ...

X A comprehensive set of lectures with
theoretical derivations of the machine
learning algorithms and their components

X Deploying complex ML models into existing
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X We will not be creating a new ChatGPT like
bot or a Dall-E like image generator :-)






Machine Learning & Artificial Intelligence

Machine learning: is a branch of artificial
intelligence (Al) and computer science which
focuses on the use of data and algorithms to
imitate the way that humans learn, gradually
improving its accuracy.

Focus on training the model rather than
programming using explicit code.

— Paint a picture of a ship

— Differentiating between a dog and a house
—> Create a song

— Write a novel

— Forecast the weather for tomorrow

Let’s hear from someone you might know!

DEEP LEARNING

A subset of ML that uses neural networks '
to learn patterns from data J}‘

MACHINE LEARNING

A subset of Al that learns patterns from
analyzing a large amount of data

ARTIFICIAL INTELLIGENCE

A type of advanced technology that
mimics human intelligence
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generated characters from Ramayana
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Advances in Al driven by Advances in Deep Learning | Timeline

2006
??? 1980 1986 1997 Deep Belief
1969 Self 1982 Multilayer Bidirectional ~Networks -
1958 XOR Organizing Hopfield Perceptron 1986 RNN pretraining 2012 2017
1940 Perceptron problem Map Network Rumelhart, Hinton ~ RNNS Schuster & Paliwal ' 1tON Dropout Transformers
Dark Era Rosenblatt Minsky & Papert Kohonen John Hopfield & Williams Jordan Hinton Google Brain
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1943 1960 1974 1980 1985 1986 1990 1997 2006 2014
Neural Adaline Backpropagation Neocognitron  Boltzmann Restricted LeNet LSTMs Deep GANs
Nets Widrow & Hoff ~ Werbos (and more) Fukushima Machine Boltzmann LeCun Hochreiter & Boltzmann Goodfellow
McCulloch & Pitt Hinton & Sejnowski Machine Schmidhuber VY EIRES

Smolensky Salakhutdinov &

Hinton



ML can be broadly classified into two types

PCA Analysis

k-means clustering
\

\
\
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Gaussian mixing models
\

Unsupervised Learning |
SVD decomposition

\\
Bayesian inference

GANSs
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Let’s build up a theoretical model for Deep Learning



Consider the Linear Regression Problem

Assume a linear fit captures the relationship/function
. Y =m-X+4c
’. ’;u
bl Choose the type of error to minimize
o o ; 2
. ".‘-0- o argminmg, . (Y — (mX + c))
[ [ ]
L 4 :' C °
(]
. Estimate the parameters
e ~___ Cov(X,Y) v %
m = yorxy ©¢= Y —mX
0.5 1



Consider the Linear Regression Problem

Assume a linear fit captures the relationship/function
. Y =m-X+4c
[ ]
" "~ .. .
//" Choose the type of error to minimize
° oo o ; 2
e ‘:; (3 argming, . (Y — (mX + ¢))
[
L :%' ¢ °
.’ Y
— P e o Estimate the parameters
_ o 2% c _ _
51 6 A% ~_ Cov(X,Y) _ .
SR m= Goxy © Y —mX
S%a "2 ¥=1.23X +0.12
. . | ~ Similarly, for higher-order polynomials. Number of parameters
0 0.5 1 scales with the degree of the approximating polynomial.

Require more advanced matrix algorithms to obtain the parameters
(Normal equations, Vandermonde matrix, etc.)
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Similarly, Maximum Likelihood Estimation

Given data, find a parametric probability distribution
that models the data with minimum error.

N
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Oy = argmax log P(X|0)
0
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Similarly, Maximum Likelihood Estimation

N
Ml

\

Bl
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Oy = argmax log P(X|0)
0

Given data, find a parametric probability distribution
that models the data with minimum error.

First, choose a log-normal distribution to model the data,
reducing it to a parametric estimation problem

Then, choose the optimal parameters that minimize error
(using grid-search, likelihood equations gradient descent,
Newton’s method etc.)

Residual determined by:
(1) Distribution used to model the data
(2) Algorithm used to solve for the parameters

Effectively, either the parameters can be obtained
analytically, or they can be solved for iteratively.




Perceptrons: “Atoms” of Deep Neural Networks

Perceptrons (Rosenblatt 1957) are a mathematical model of neurons. They are binary classifiers. They are
the fundamental units of more complex deep learning models. Key components:

Attribute weights

Dendrites %=1 15i85;>0

e =1

\ 0si§; <0

Si = WoXig# WXy # WoXpp o+ WaXyy
N

Synapses
= Values of the attributes in example i Sum of product of attributes by weights

NEURON PERCEPTRON

(Animation: https://towardsdatascience.com/what-the-hell-is-perceptron,
Image: https://inteligenciafutura.mx/english-version-blog/blog-06-english-version)
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Perceptrons: “Atoms” of Deep Neural Networks

Perceptrons (Rosenblatt 1957) are a mathematical model of neurons. They are binary classifiers. They are
the fundamental units of more complex deep learning models. Key components:

Attribute weights
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Neural activity — Parametric Estimation!

Key components: Input, weights, heaviside function, and output.

(Animation: https://towardsdatascience.com/what-the-hell-is-perceptron,
Image: https://inteligenciafutura.mx/english-version-blog/blog-06-english-version)
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Neural Network as a Collection of Perceptrons

Brain is a network of interconnected neurons. For any input/actions, only selected neurons fire at a given
time. A multi-layer perceptron (MLP) is a collection of neurons with equisized, fully-connected hidden
layers. Similarly, a size-varying MLP without loops is called a feedforward neural network.

Consider a feedforward neural network arranged as an input layer, 2 hidden layers, and an output layer:

) e R: z® ¢ R* Forward Propagation

(1) Each layer maps to the next using a set of
weights

(2) The linear transformation is followed by a
non-linear activation o(.)

D) = o (WZ-T:E(i))

Hidden Layer 2 W, € RFixkit1 o, . Rki+1 _y RFi+1
Output Layer

Input Layer

Feedforward Neural Network




Universal Approximation Theorem

Number of neurons and number of hidden layers influence the learning capacity of a neural network.
* Result 1: Single-layer perceptrons are only capable of learning linearly separable patterns (1969)
* Result 2: Multi-layer perceptrons (MLPs) are capable of producing any possible boolean function.

Removing the constraint of fully-connectedness and single activation function yields a
Feedforward Neural Network

* Universal Approximation Theorem: any continuous function f : [0, 1]* — [0, 1] can be approximated
arbitrarily well by a neural network with at least 1 hidden layer with a finite number of weights.
It does not provide a construction for the weights, but surmises their existence.



Examples of Deep Neural Networks

ificial NNs

a

V.




Examples of Deep Neural Networks

Convolutional NNs: for image/pattern recognition
e.g. image classifiers, facial recognition etc.

Vanilla Artificial NNs

Recurrent NNs: for sequence modeling

e.g. Long Short-Term Memory networks, Gated Recurrent Units for
language modeling,
music generation,
timeseries forecasting etc.
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Credits: - youtube.com/@3blue1brown
- towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



How to Train Your Model

* In supervised learning, NNs learn the parameters by training on the data, i.e., a set o
inputs and outputs, to obtain the optimal parameters that define the mapping

* Algorithm to train the model and update the weights: i‘ oy _ ¥ ;

Step 1: Start with (careful) random initialization of weights (parameters)

//VStep 2: Forward Pass: Propagate the input (features) through model layers to get an‘\\
approximate output

Step 3: Compare the output with the truth (label). Compute the error using a loss
function (objective) of choice

Step 4: Backpropagation: propagate the computed error backward through all the layers

\\\»Step 5: Update the weights using optimizer of choice <4//

Continue for a number of steps (epochs) or until the output error reduces beyond a
threshold

Once trained, use the model for evaluation/testing (Inference)



How to Train Your Model: Forward Pass
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Step 3:

Loss/Error: L(y,yp; T, w1, wp) = ﬁ(yp)




How to Train Your Model: Forward Pass

Step 1:
[teratively update parameters as
. oL
w i —a= . 11
Step 2: Lem T agy,, — compute gradient for millions
. and billions of parameters.
T NI wix) =h . : wo(wiz)) = v, L
z — wx — o(wiz) — wao(wx) = o(weo(wix)) =y, Ty B il - A/ Good luck!
Step 3: of 5 7
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How to Train Your Model: Backward Pass

Backpropagation: a dynamic programming algorithm to compute the gradients efficiently. Start from the error
in the output layer and propagate it backwards through iterative multiplication

L ., do - d(wyo(wi7)) -
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How to Train Your Model: Backward Pass

Backpropagation: a dynamic programming algorithm to compute the gradients efficiently. Start from the error
in the output layer and propagate it backwards through iterative multiplication

()f, = = do - d(wyo(wi)) = i
Owsy =5 'E—L i "= e = L'(yp) - o' (w2h) - h
L =, d = d(w Nz z do(wnx N
(;)wl =L Kjl =L W et g Jé:_:IT) = L' (yp) - o' (w2h) - wy - o' (wr) - =
O_’
= — - = e — . More generally, in higher dimensions,
T = T Backpropagate the error from the output layer to the input layer:
s G— —aay, Pon———
et T, — SNy
Step 4: o) — ((_)(E))Té(Hl} _ Jr(zt)
S ey ———— W S e

— - Ne the derivative of the loss w.r.t. the layer parameters:
e G— -
T T oL oL
o) . 61 o) el -a : Step 5

Al 9 % ~(0)
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We are now ready to create our own neural networks in Python!



To Summarize

1) Machine Learning is increasingly used in all spheres of digital life.
It can be broadly categorized into two categories: Supervised Learning and
Unsupervised Learning.
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approximate any function through a set of linear transformations and non-linear
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To Summarize

Machine Learning is increasingly used in all spheres of digital life.
It can be broadly categorized into two categories: Supervised Learning and
Unsupervised Learning.

The widely popular tools from supervised learning, neural networks, claim to
approximate any function through a set of linear transformations and non-linear
activations.

The parameters of the neural network architecture can be estimated, i.e., the
neural network can be trained using a iterative training method which relies on
backpropagation and stochastic optimization for parameter update.
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Setting up PyTorch

1) Install conda (or pip):

https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

2) Install Jupyter notebook:

conda install —-c anaconda Jjupyter

3) Install numpy and mathplotlib:
conda install —-c anaconda numpy
conda install —-c conda-forge matplotlib

PyTorch Build Stable (2.0.1) Preview (Nightly)
4) Il’lStall PYTOI'Ch Your OS Linux Windows
Go to: https://pytorch.org/get-started/locally/ o " : — —

Language Python C++[ Java

ROCm 5.4.2 CPU

CUDA11.7 CUDA 118

conda install pytorch torchvision torchaudio Eerle e far
pytorch-cuda=11.7 —-c pytorch —-c nvidia

conda install pytorch torchvision torchaudic pytorch-cuda=11.7 -c¢ pytorch

Run this Command: -c nvidia



https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
https://pytorch.org/get-started/locally/

Supplementary Slides
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Figure 6.6 Composing multiple linear units and tanh activation functions to produce nonlinear

outputs
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