

Machine Learning Methods for
Atmosphere, Ocean, and Climate Science

Lecture 1: Machine Learning Fundamentals

Mathematical modeling of Climate, Ocean, and Atmosphere processes
International Centre for Theoretical Sciences, TIFR, Bengaluru, India

Aman Gupta

What this lecture series is ...

✔ An introductory treatise to implementing
Deep Learning (DL) algorithms

✔ → Develop an intuitive understanding of
DL fundamentals
→ Code simple and functional neural nets
→ Stroll through ongoing ML research in
climate science

✔ Focus on practical implementation more so
than on theoretical derivations

What this lecture series is ...

✔ An introductory treatise to implementing
Deep Learning (DL) algorithms

✔ → Develop an intuitive understanding of
DL fundamentals
→ Code simple and functional neural nets
→ Stroll through ongoing ML research in
climate science

✔ Focus on practical implementation more so
than on theoretical derivations

✘ A comprehensive set of lectures with
theoretical derivations of the machine
learning algorithms and their components

✘ Deploying complex ML models into existing
software architectures

✘ We will not be creating a new ChatGPT like
bot or a Dall-E like image generator :-)

What this lecture series is not ...

Lecture 1
● Parametric estimation

● Introduction to deep
neural networks

● The training algorithm

Lecture 2

● The PyTorch library

● Implementing Artificial
Neural Nets in PyTorch

Lecture 3
● Implementing Convolutional Neural

Networks in PyTorch

Lecture 4

● Applications of ML in climate
science

Machine Learning & Artificial Intelligence

Machine learning: is a branch of artificial
intelligence (AI) and computer science which
focuses on the use of data and algorithms to
imitate the way that humans learn, gradually
improving its accuracy.

Let’s hear from someone you might know!

Focus on training the model rather than
programming using explicit code.
→ Paint a picture of a ship
→ Differentiating between a dog and a house
→ Create a song
→ Write a novel
→ Forecast the weather for tomorrow

Let’s play a little game

Which of these images is real?

Let’s play a little game

Which of these images is real?

Let’s play a little game

Which of these images is real?

Let’s play a little game

Which of these images is real?

AI generated characters from Ramayana

AI generated snowy winters in Delhi

Let’s play a little game

 Credits: digitalwellbeing.com

Advances in AI driven by Advances in Deep Learning | Timeline

Your Name
Digital project manager1940

Dark Era

1958

Perceptron
Rosenblatt

1969

XOR
problem
Minsky & Papert

1980

Self
Organizing
Map
Kohonen

1982

Hopfield
Network
John Hopfield

1986

Multilayer
Perceptron
Rumelhart, Hinton
& Williams

1986

RNNs
Jordan

1997

Bidirectional
RNN
Schuster & Paliwal

2006

Deep Belief
Networks -
pretraining
Hinton

2012

Dropout
Hinton

2017

Transformers
Google Brain

1943

Neural
Nets
McCulloch & Pitt

1960

Adaline
Widrow & Hoff

1974

Backpropagation
Werbos (and more)

1980

Neocognitron
Fukushima

1985

Boltzmann
Machine
Hinton & Sejnowski

1986

Restricted
Boltzmann
Machine
Smolensky

1990

LeNet
LeCun

1997

LSTMs
Hochreiter &
Schmidhuber

2006

Deep
Boltzmann
Machines
Salakhutdinov &
Hinton

2014

GANs
Goodfellow

ML can be broadly classified into two types

Unsupervised Learning

PCA Analysis

k-means clustering

Gaussian mixing models

SVD decomposition

Bayesian inference

GANs

ML can be broadly classified into two types

Unsupervised Learning Supervised Learning

PCA Analysis

k-means clustering

Gaussian mixing models

SVD decomposition

Bayesian inference

GANs

Logistic Regression

ANNs | CNNs | RNNs

Support Vector Machines

Convolutional RNNs

LSTMs, GRUs

Reservoir Computing

ML can be broadly classified into two types

Unsupervised Learning Supervised LearningSemi-Supervised
Learning

e.g. Transformers
ChatGPT | BERT | FourCastNet

PCA Analysis

k-means clustering

Gaussian mixing models

SVD decomposition

Bayesian inference

GANs

Logistic Regression

ANNs | CNNs | RNNs

Support Vector Machines

Convolutional RNNs

LSTMs, GRUs

Reservoir Computing

Reinforcement
Learning

Let’s build up a theoretical model for Deep Learning

Consider the Linear Regression Problem

0 0.5 1
X

0.5

1

Y

Assume a linear fit captures the relationship/function

Choose the type of error to minimize

Estimate the parameters

Consider the Linear Regression Problem

0 0.5 1
X

0.5

1

Y

Assume a linear fit captures the relationship/function

Choose the type of error to minimize

Estimate the parameters

Similarly, for higher-order polynomials. Number of parameters
scales with the degree of the approximating polynomial.

Require more advanced matrix algorithms to obtain the parameters
(Normal equations, Vandermonde matrix, etc.)

0 0.5 1
X

0.5

1

Y

Y=1.23X +0.12

Similarly, Maximum Likelihood Estimation

Given data, find a parametric probability distribution
that models the data with minimum error.

Similarly, Maximum Likelihood Estimation

Given data, find a parametric probability distribution
that models the data with minimum error.

First, choose a log-normal distribution to model the data,
reducing it to a parametric estimation problem

Then, choose the optimal parameters that minimize error
(using grid-search, likelihood equations gradient descent,
Newton’s method etc.)

Residual determined by:
(1) Distribution used to model the data
(2) Algorithm used to solve for the parameters

Effectively, either the parameters can be obtained
analytically, or they can be solved for iteratively.

Perceptrons: “Atoms” of Deep Neural Networks

Perceptrons (Rosenblatt 1957) are a mathematical model of neurons. They are binary classifiers. They are
the fundamental units of more complex deep learning models. Key components:

(Animation: https://towardsdatascience.com/what-the-hell-is-perceptron,
Image: https://inteligenciafutura.mx/english-version-blog/blog-06-english-version)

https://towardsdatascience.com/what-the-hell-is-perceptron

Perceptrons: “Atoms” of Deep Neural Networks

Perceptrons (Rosenblatt 1957) are a mathematical model of neurons. They are binary classifiers. They are
the fundamental units of more complex deep learning models. Key components:

(Animation: https://towardsdatascience.com/what-the-hell-is-perceptron,
Image: https://inteligenciafutura.mx/english-version-blog/blog-06-english-version)

https://towardsdatascience.com/what-the-hell-is-perceptron

Perceptrons: “Atoms” of Deep Neural Networks

Perceptrons (Rosenblatt 1957) are a mathematical model of neurons. They are binary classifiers. They are
the fundamental units of more complex deep learning models. Key components:

(Animation: https://towardsdatascience.com/what-the-hell-is-perceptron,
Image: https://inteligenciafutura.mx/english-version-blog/blog-06-english-version)

Neural activity → Parametric Estimation!

Key components: Input, weights, heaviside function, and output.

https://towardsdatascience.com/what-the-hell-is-perceptron

Neural Network as a Collection of Perceptrons
Brain is a network of interconnected neurons. For any input/actions, only selected neurons fire at a given
time. A multi-layer perceptron (MLP) is a collection of neurons with equisized, fully-connected hidden
layers. Similarly, a size-varying MLP without loops is called a feedforward neural network.

Consider a feedforward neural network arranged as an input layer, 2 hidden layers, and an output layer:

Forward Propagation

(1) Each layer maps to the next using a set of
weights

(2) The linear transformation is followed by a
non-linear activation σ(.)

Feedforward Neural Network

Universal Approximation Theorem

Number of neurons and number of hidden layers influence the learning capacity of a neural network.

● Result 1: Single-layer perceptrons are only capable of learning linearly separable patterns (1969)

● Result 2: Multi-layer perceptrons (MLPs) are capable of producing any possible boolean function.

Removing the constraint of fully-connectedness and single activation function yields a
Feedforward Neural Network

● Universal Approximation Theorem: any continuous function f : [0, 1]n → [0, 1] can be approximated
arbitrarily well by a neural network with at least 1 hidden layer with a finite number of weights.
It does not provide a construction for the weights, but surmises their existence.

Examples of Deep Neural Networks

Vanilla Artificial NNs

Examples of Deep Neural Networks

Vanilla Artificial NNs

Recurrent NNs: for sequence modeling
e.g. Long Short-Term Memory networks, Gated Recurrent Units for
language modeling,
music generation,
timeseries forecasting etc.

Convolutional NNs: for image/pattern recognition
e.g. image classifiers, facial recognition etc.

Credits: - youtube.com/@3blue1brown
 - towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

How to Train Your Model
● In supervised learning, NNs learn the parameters by training on the data, i.e., a set of

inputs and outputs, to obtain the optimal parameters that define the mapping

● Algorithm to train the model and update the weights:

Step 1: Start with (careful) random initialization of weights (parameters)

Step 2: Forward Pass: Propagate the input (features) through model layers to get an
approximate output

Step 3: Compare the output with the truth (label). Compute the error using a loss
function (objective) of choice

Step 4: Backpropagation: propagate the computed error backward through all the layers

Step 5: Update the weights using optimizer of choice

Continue for a number of steps (epochs) or until the output error reduces beyond a
threshold

Once trained, use the model for evaluation/testing (Inference)

How to Train Your Model: Forward Pass

Step 1:

Step 2:

Step 3:

How to Train Your Model: Forward Pass

Iteratively update parameters as

compute gradient for millions
and billions of parameters.
Good luck!

Step 1:

Step 2:

Step 3:

How to Train Your Model: Backward Pass

Backpropagation: a dynamic programming algorithm to compute the gradients efficiently. Start from the error
in the output layer and propagate it backwards through iterative multiplication

How to Train Your Model: Backward Pass

Backpropagation: a dynamic programming algorithm to compute the gradients efficiently. Start from the error
in the output layer and propagate it backwards through iterative multiplication

More generally, in higher dimensions,
Backpropagate the error from the output layer to the input layer:

Compute the derivative of the loss w.r.t. the layer parameters:

Step 4:

: Step 5

σ’

We are now ready to create our own neural networks in Python!

To Summarize

1) Machine Learning is increasingly used in all spheres of digital life.
It can be broadly categorized into two categories: Supervised Learning and
Unsupervised Learning.

To Summarize

1) Machine Learning is increasingly used in all spheres of digital life.
It can be broadly categorized into two categories: Supervised Learning and
Unsupervised Learning.

2) The widely popular tools from supervised learning, neural networks, claim to
approximate any function through a set of linear transformations and non-linear
activations.

To Summarize

1) Machine Learning is increasingly used in all spheres of digital life.
It can be broadly categorized into two categories: Supervised Learning and
Unsupervised Learning.

2) The widely popular tools from supervised learning, neural networks, claim to
approximate any function through a set of linear transformations and non-linear
activations.

3) The parameters of the neural network architecture can be estimated, i.e., the
neural network can be trained using a iterative training method which relies on
backpropagation and stochastic optimization for parameter update.

Setting up PyTorch
1) Install conda (or pip):

https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

2) Install Jupyter notebook:
conda install -c anaconda jupyter

3) Install numpy and mathplotlib:
 conda install -c anaconda numpy
conda install -c conda-forge matplotlib

4) Install PyTorch
Go to: https://pytorch.org/get-started/locally/

conda install pytorch torchvision torchaudio
pytorch-cuda=11.7 -c pytorch -c nvidia

https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
https://pytorch.org/get-started/locally/

Supplementary Slides

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

