A Mathematical Introduction to 3d $\mathcal{N}=4$ Gauge Theory II

Mathew Bullimore

Last Time

We consider a 3d $\mathcal{N}=4$ supersymmetric gauge theory:

- 1. A compact Lie group G
- 2. A unitary representation $\rho:G\to \mathrm{U}(n)$ acting on $R=\mathbb{C}^n.$

Global symmetries:

- ▶ R-symmetry $SU(2)_H \times SU(2)_C$
- ▶ Flavour symmetry $G_H \times G_C$

$$G_H = N_{\mathsf{U}(n)}(\rho(G))/\rho(G)$$

$$G_C \supset T_C = \mathsf{Hom}(\pi_1(G), U(1))$$

Central Extensions

The super-Poincaré algebra admits central extensions.

Additional generators that commuting with P_{μ} , $J^{\mu}{}_{\nu}$, $Q^{A\dot{A}}_{\alpha}$.

The supersymmetry algebra is deformed to

$$\begin{split} \{Q_{\alpha}^{A\dot{A}},Q_{\beta}^{B\dot{B}}\} &= \epsilon^{AB}\epsilon^{\dot{A}\dot{B}}(\sigma^{\mu})_{\alpha\beta}P_{\mu} \\ &+ \epsilon_{\alpha\beta}\epsilon^{AB}Z^{\dot{A}\dot{B}} + \epsilon_{\alpha\beta}\epsilon^{\dot{A}\dot{B}}Z^{AB} \\ &+ (\sigma^{\mu})_{\alpha\beta}Z_{\mu}^{AB,\dot{A}\dot{B}} \,. \end{split}$$

- $ightharpoonup Z^{AB}$, $Z^{\dot{A}\dot{B}}$ are scalar central charges associated to flavour symmetries.
- $ightharpoonup Z_{\mu}^{AB,\dot{A}\dot{B}}$ is a 1-form central charge associated to domain walls.

Scalar Central Charges

Let us first consider the scalar central charges.

The R-symmetry indices AB, $\dot{A}\dot{B}$ must be symmetric:

- ▶ Z^{AB} transforms in the adjoint representation 3 of $SU(2)_H$.
- $ightharpoonup Z^{\dot{A}\dot{B}}$ transforms in the adjoint representation 3 of $SU(2)_C$.

Natural candidates are the generators J_H , J_C of the flavour symmetries, which by definition commute with all P_μ , $J^\mu{}_\nu$, $Q^{A\dot{A}}_\alpha$.

Let us assume they are proportional...

Mass and FI Parameters

The scalar central charges are

$$Z^{AB} = \zeta^{AB} \cdot J_C \qquad Z^{\dot{A}\dot{B}} = m^{\dot{A}\dot{B}} \cdot J_H \,.$$

The constants of proportionality are called mass and FI parameters:

- ▶ FI parameters ζ^{AB}
 - Valued in $\mathfrak{t}_C := \mathsf{Lie}(T_C)$
 - ▶ Adjoint representation **3** of $SU(2)_H$.
- ▶ Mass parameters $m^{\dot{A}\dot{B}}$:
 - ▶ Valued in $\mathfrak{t}_H := \mathsf{Lie}(T_H)$
 - ▶ Adjoint representation 3 of $SU(2)_C$.

Mass and FI Parameters

These parameters correspond to deformations of the Lagrangian:

- ▶ The mass parameters $m^{\dot{A}\dot{B}}$ are vacuum expectation values for scalars $\sigma^{\dot{A}\dot{B}}$ in a vectormultiplet for G_H .
- ▶ The FI parameters t^{AB} are vacuum expectation values for scalars σ^{AB} in a twisted vectormultiplet for G_C .

A twisted vectormultiplet is a vectormultiplet with

$$SU(2)_H \leftrightarrow SU(2)_C$$
.

Many physical and mathematical quantities vary in an interesting way with $m^{\dot{A}\dot{B}}$, t^{AB} ...

A Simplification

In what follows, I set

$$\zeta^{11} = 0 \qquad m^{\dot{1}\dot{1}} = 0$$

and define

$$\zeta:=\zeta^{12} \qquad m:=m^{\dot{1}\dot{2}}\,.$$

- ▶ This selects a maximal torus $U(1)_H \times U(1)_C$ of the R-symmetry commuting with m, ζ .
- ▶ If m, ζ are generic, they will break the flavour symmetry $G_H \times G_C$ to a maximal torus $T_H \times T_C$.

A Simplification

Having broken the R-symmetry to $U(1)_H \times U(1)_C$, we decompose the vectormultiplet and hypermultiplet fields accordingly.

 The vectormultiplet scalars decompose into real and complex components

$$\sigma := \sigma^{\dot{1}\dot{2}} \qquad \varphi := \sigma^{\dot{1}\dot{1}}$$

lacktriangle The hypermultiplet decompose into complex scalars (X,Y)

	G	$U(1)_H$	$U(1)_C$
σ	Adj	0	0
φ	Adj	0	1
\overline{X}	R	$\frac{1}{2}$	0
Y	R^*	$\frac{1}{2}$	0

Supersymmetric Vacua

A fundamental question is to determine the set or moduli space of supersymmetric vacuum states on \mathbb{R}^3 and how they depend on the parameters m, ζ .

- ▶ Classically, these are configurations of the vectormultiplet fields (A, σ, φ) and hypermultiplet fields (X, Y) preserving all supersymmetries.
- ▶ They can be determined by minimizing the classical potential energy or euclidean action.
- ightharpoonup Depending on the parameters m, ζ , there may be perturbative and non-perturbative quantum corrections.

Supersymmetric Vacua

The result is that classical supersymmetric vacua are solutions of

$$\mu_{\mathbb{R}} - \zeta = 0 \qquad \mu_{\mathbb{C}} = 0$$

$$(\sigma \cdot J + m \cdot J_H) \cdot X = 0 \qquad (\varphi \cdot J) \cdot X = 0$$

$$(\sigma \cdot J + m \cdot J_H) \cdot Y = 0 \qquad (\varphi \cdot J) \cdot Y = 0$$

$$[\varphi, \varphi^{\dagger}] = 0 \qquad [\sigma, \varphi] = 0$$

The top line introduces real and complex moment maps

$$\mu_{\mathbb{R}}: T^*R \to \mathfrak{g}^* \qquad \mu_{\mathbb{C}}: T^*R \to \mathfrak{g}^* \otimes \mathbb{C}.$$

- ▶ J, J_H denote the generators of G, G_H .
- $\zeta \in \mathfrak{t}_C$ is identified an element of \mathfrak{g}^* through $\mathfrak{t}_C \cong Z(\mathfrak{g}^*) \subset \mathfrak{g}^*$.

Moment Maps

Recall that (X,Y) parametrise a complex vector space $T^*R=R\oplus R^*$.

It has Kähler and holomorphic symplectic forms

$$\omega = dX \wedge d\bar{X} + dY \wedge d\bar{Y} \qquad \Omega = dX \wedge dY,$$

where the natural pairing $R \times R^* \to \mathbb{C}$ is understood.

- $\mu_{\mathbb{R}}: T^*R \to \mathfrak{g}^*$ is the *G*-moment map associated to ω .
- $\mu_{\mathbb{C}}: T^*R \to \mathfrak{g}^* \otimes \mathbb{C}$ is the G-moment map associated to Ω .

Schematically,

$$\mu_{\mathbb{R}} = \bar{X}JX - YJ\bar{Y} \qquad \mu_{\mathbb{C}} = YJX$$

Superpotentials

The vacuum equations are the critical points of real and complex superpotentials

$$h = \sigma \cdot (\mu_{\mathbb{R}} - \zeta) + m \cdot \mu_{H,\mathbb{R}} \qquad W = \varphi \cdot \mu_{\mathbb{C}},$$

with respect to variations of σ , φ , X, Y.

- $\blacktriangleright \mu_{H,\mathbb{R}}: T^*R \to \mathfrak{g}_H^*$ denotes the real moment map for the G_H action on T^*R .
- ▶ For simplicity, I assumed σ , φ have been simultaneously diagonalised to a common Cartan subalgebra $\mathfrak{t} \subset \mathfrak{g}$
- W is the 3d $\mathcal{N}=2$ superpotential.

Example

Let us consider the example of supersymmetric QED with \boldsymbol{w} hypermultiplets of unit charge.

$$U(1)$$
 \longrightarrow w

- ▶ This corresponds to G = U(1) with the unitary representation $R = \mathbb{C}^n$ of weight $\rho = (1, 1, \dots, 1)$.
- ▶ There are neutral vectormultiplet fields σ, φ and hypermultiplet fields (X_i, Y_i) with j = 1, ..., w of charge (+1, -1).
- ▶ The flavour symmetries are $G_C = U(1)$ and $G_H = PSU(w)$.
- ▶ Correspondingly there is an FI parameter $\zeta \in \mathbb{R}$ and mass parameters $(m_1, \ldots, m_w) \in \mathbb{R}^{w-1}$ with $\sum_j m_j = 0$.

Example

The real and complex superpotentials are

$$h = \sum_{j=1}^{w} (\sigma - m_j)|X_j|^2 + \sum_{j=1}^{w} (-\sigma + m_j)|Y_j|^2 - \zeta \sigma$$
$$W = \varphi \sum_{j=1}^{w} X_j Y_j$$

and classic supersymmetric vacua are solutions to

$$\sum_{j=1}^{w} (|X_j|^2 - |Y_j|^2) - \zeta = 0 \qquad \sum_{j=1}^{w} X_j Y_j = 0$$
$$(\sigma - m_j) X_j = 0 \qquad \varphi \cdot X_j = 0$$
$$(-\sigma + m_j) Y_j = 0 \qquad \varphi \cdot Y_j = 0$$

Key Assumption

We make the following assumptions:

- 1. In the absence of m, ζ the theory flows to an interacting SCFT.
- 2. For generic m,ζ there are only isolated massive vacua v_α with G is completely broken.

Note that

- ▶ This is a constraint on the data (G, R).
- ▶ Intuitively, the representation R should be "large enough".
- ▶ This is the class of theories that appear most frequently in connection with geometric representation theory.

Example: Supersymmetric QED

Supersymmetric QED with w>1 satisfied the assumption.

- ► There are a finite number of solutions with G = U(1) completely broken provided $\zeta \neq 0$ and $m_i \neq m_j$ for $i \neq j$.
- ▶ Then there are w supersymmetric vacua v_i , i = 1, ..., w.
- ▶ If $\zeta > 0$, then

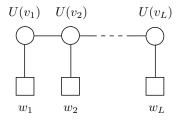
$$v_i$$
 : $\sigma = m_i$ $\varphi = 0$ $|X_j|^2 = \delta_{ij}\zeta$ $Y_j = 0$

▶ If ζ < 0, then

$$v_i$$
 : $\sigma = m_i$ $\varphi = 0$ $X_j = 0$ $|Y_j|^2 = -\delta_{ij}\zeta$

Example: quiver

Consider an A_L -type linear quiver.



- ▶ Let ω_j and e_j be the fundamental weights and simple roots of \mathfrak{sl}_{L+1} .
- $\lambda = \sum_{j} w_{j} \omega_{j}$ is a dominant weight of \mathfrak{sl}_{L+1} .
- $\mu = \lambda \sum_{j} v_{j} e_{j}$ is a weight in the irrep. of highest weight λ .
- ▶ Theory satisfies our assumptions if μ is also a dominant weight.

Genericity

What does it mean precisely for m, ζ to be "generic"?

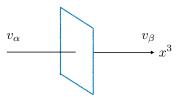
- ▶ Consider the parameter space $\mathfrak{t}_H \times \mathfrak{t}_C$ of m, ζ .
- ▶ There should be isolated massive vacua on the complement of co-dimension 1 loci in $\mathfrak{t}_H \times \mathfrak{t}_C$.
- ▶ On these loci, an extended moduli space of vacua may open up.

We want to determine these loci!

- One approach is to carefully analyse the vacuum equations.
- We'll follow a physical approach using domain walls tunnelling between between vacua.

Domain Walls

Consider a domain wall interpolating between vacua v_{α} and v_{β} .



- ▶ Domain walls can preserve a 2d $\mathcal{N}=(2,2)$ supersymmetry with vector R-symmetry $U(1)_H$ and axial R-symmetry $U(1)_C$.
- ▶ They are solutions of the gradient flow equations

$$\frac{\partial \Phi}{\partial x^3} = g^{\Phi \bar{\Phi}} \frac{\partial h}{\partial \bar{\Phi}}$$

on $\mathfrak{t} \times T^*R$ parametrised by $\Phi = (\sigma, X, Y)$.

▶ Interpolate between critical points v_{α} at $x^3 \to -\infty$ and v_{β} at $x^3 \to +\infty$

Domain Wall Tension

The tension $T_{\alpha,\beta}$ of a domain wall is the energy per unit area in the $x^{1,2}$ -plane.

It is proportional to the difference between the value of the superpotential \boldsymbol{h} at the two vacua,

$$T_{\alpha,\beta} = |h(\alpha) - h(\beta)|.$$

▶ This is nothing but the vector central charge $Z_3^{12,\dot1\dot2}$ in the presence of a domain wall interpolating between vacua α and β in the x^3 -direction.

Supersymmetric CS Coupling

In a supersymmetric gauge theory, the values of the superpotential in a vacuum v_{α} take the form

$$h(\alpha) = \kappa_{\alpha}(t, m)$$

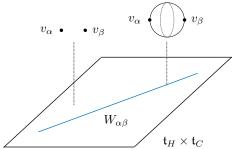
- ▶ Bi-linear pairing $\kappa_{\alpha} : \mathfrak{t}_H \times \mathfrak{t}_C \to \mathbb{R}$.
- ▶ Lifts to bi-linear pairing $\kappa_{\alpha}: \Gamma_{H} \times \Gamma_{C} \to \mathbb{Z}$ where Γ_{H} , Γ_{C} are the co-character lattices of T_{H} , T_{C} .
- ▶ This is the effective $\mathcal{N}=4$ supersymmetric mixed Chern-Simons term between T_H and T_C in the vacuum α .

Walls

Here is the key argument:

- ▶ If there is a domain wall between supersymmetric vacua α and β with zero tension, then we can tunnel between them at no cost.
- ▶ This indicates a moduli space opening up connecting them.
- ▶ This happens along loci in $\mathfrak{t}_H \times \mathfrak{t}_C$,

$$W_{\alpha,\beta} = \{h(\alpha) = h(\beta)\} = \{\kappa_{\alpha}(m,\zeta) - \kappa_{\beta}(m,\zeta)\}\$$



Walls

Recall that $\kappa_{\alpha}: \mathfrak{t}_H \times \mathfrak{t}_C \to \mathbb{R}$ is a bi-linear pairing.

- ▶ The loci $W_{\alpha,\beta}$ project onto linear hyperplanes through the origin in the vector spaces \mathfrak{t}_H , \mathfrak{t}_C .
- ▶ The connected components of the complement

$$\mathfrak{t}_H \times \mathfrak{t}_C - \bigcup_{\alpha,\beta} W_{\alpha,\beta}$$

are called chambers.

▶ This forms a pair of "root systems" associated to each theory satisfying our assumption - first hint of geometric representation theory.

Example

Let us consider the example of supersymmetric QCD with G=U(1) and w hypermultiplets in the fundamental representation.

- ▶ For generic parameters there are discrte vacua v_{α} , $\alpha = 1, ..., w$.
- The central charge function is given by

$$h(\alpha) = -\zeta m_{\alpha}$$

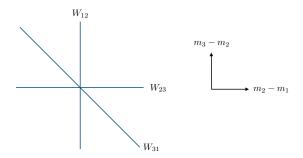
Domain walls become tensionless when

$$W_{\alpha\beta} = \{ \zeta(m_{\alpha} - m_{\beta}) = 0 \}$$

▶ This reproduces the conditions $\zeta \neq 0$ and $m_i \neq m_j$ for $i \neq j$ for generic parameters.

Example

The projection of the loci $W_{\alpha,\beta}$ onto hyperplanes in the space of mass parameters $\mathfrak{t}_H \cong \mathbb{R}^{w-1}$ are shown below for N=3.



- ▶ There are w(w-1)/2 independent hyperplanes with, say, $\alpha < \beta$.
- ▶ This is the root system of $\mathfrak{sl}(w)$, where $W_{\alpha\beta}$ corresponds to the root hyperplane associated to the positive root $e_{\alpha} e_{\beta}$.

Next Time

Next time we examine supersymmetric vacua for non-generic mass and FI parameters.

- ▶ Higgs X and Coulomb branch X!
- Geometric structures.
- ▶ How to recover flavour symmetries T_H , T_C from X, $X^!$.
- ▶ How to recover the hyperplane arrangements from X, $X^!$.