A Mathematical Introduction to 3d $\mathcal{N}=4$ Gauge Theory I

Mathew Bullimore

Motivation

There are many connections between supersymmetric quantum field theory, representation theory and enumerative geometry.

Some underlying themes:

- Supersymmetry ensures exact moduli spaces of vacua with mathematical structures: Kähler, hyper-Kähler.
- Symmetries are reflected in isometries and topology.
- Natural appearance of cohomology, K-theory, derived categories of coherent sheaves.

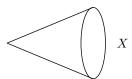
These lectures focus on 3d $\mathcal{N}=4$ supersymmetry - why?

Why supersymmetry?

Supersymmetric gauge theories with eight supercharges:

$$5d \ \mathcal{N}=1 \qquad 4d \ \mathcal{N}=2 \qquad 3d \ \mathcal{N}=4$$

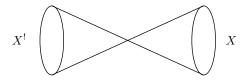
- ► They have intricate moduli spaces of vacua whose geometric structure depends on dimension.
- ▶ They all have one branch the Higgs branch *X* which is a conical hyper-Kähler or holomorphic symplectic space.
- Examples: Nakajima quiver varieties, affine grassmannian slices, nilpotent orbit closures, hyper-toric varieties.



Why three dimensions?

3d $\mathcal{N}=4$ theories are distinguished by the existence of two branches that are hyper-Kähler cones.

- ▶ Higgs branch X and Coulomb branch X!.
- ▶ There is an infrared duality called 3d mirror symmetry that interchanges *X* and *X*!.



Surprising connections between representation theory and enumerative geometry problems associated to X and $X^!$.

Setup and Notation

I will work in three-dimensional euclidean space \mathbb{R}^3 .

▶ Coordinates $x^{\mu} = (x^1, x^2, x^3)$.

The spin group is Spin(3) = SU(2).

- ▶ Two-component spinors ψ^{α} transform in the fundamental 2.
- ▶ Raise and lower indices with invariant tensors $\epsilon_{\alpha\beta}$, $\epsilon^{\alpha\beta}$.
- ▶ Pauli matrices $(\sigma^{\mu})^{\alpha}{}_{\beta}$.

Momentum and angular momentum generators $P_{\mu}\text{, }J^{\mu}{}_{\nu}\text{.}$

\mathcal{N} -extended Supersymmetry

A supersymmetric theory has additional odd generators $Q_{\alpha}^{\mathcal{I}},$

 $\mathcal{I} = 1, \dots, \mathcal{N}$, that satisfy

$$\{Q_{\alpha}^{\mathcal{I}}, Q_{\beta}^{\mathcal{J}}\} = \delta^{\mathcal{I}\mathcal{J}}(\sigma^{\mu})_{\alpha\beta}P_{\mu}$$

- ▶ The supercharges $Q^{\mathcal{I}}_{\alpha}$ transform as spinors on \mathbb{R}^3 .
- $ightharpoonup P_{\mu},\ J^{\mu}{}_{\nu},\ Q^{\mathcal{I}}_{\alpha}$ generate the \mathcal{N} -extended super-Poincaré algebra.
- ▶ The group of outer automorphisms is O(N).
- ▶ The connected component SO(N) is known as the R-symmetry.

$$Q^I_\alpha \to R^I{}_J Q^J_\alpha$$

$\mathcal{N}=4$ Supersymmetry

We are interested in $\mathcal{N}=4$ supersymmetry.

- ▶ The R-symmetry is $Spin(4) \cong SU(2)_H \times SU(2)_C$.
- ▶ Introduce spinor indices A, B, ... for $SU(2)_H$.
- ▶ Introduce spinor indices \dot{A} , \dot{B} , ... for $SU(2)_C$.

$$Q^{\mathcal{I}}_{\alpha} \longrightarrow Q^{A\dot{A}}_{\alpha}$$

The supersymmetry algebra becomes

$$\{Q^{A\dot{A}}_{\alpha},Q^{A\dot{A}}_{\beta}\}=\epsilon^{AB}\epsilon^{\dot{A}\dot{B}}(\sigma^{\mu})_{\alpha\beta}P_{\mu}\,.$$

Supersymmetric Gauge Theories

There are a number of ways to construct quantum field theories with 3d $\mathcal{N}=4$ supersymmetry.

- ► Sigma models
- Gauge Theories
- ► Non-Lagrangian Theories

Different types of theories can be connected by renormalisation group flow and infrared dualities.

Here we will consider supersymmetric gauge theories.

Supersymmetric Gauge Theories

A supersymmetric gauge theory is specified by the following data:

- 1. A compact Lie group G
- 2. A linear quaternionic representation $\rho:G\to \operatorname{Sp}(n)$ acting on the vector space $Q=\mathbb{H}^n.$

This data determines the spectrum of supermultiplets and Lagrangian:

- 1. Vectormultiplet: "Gauge"
- 2. Hypermultiplet: "Matter"

A Simplification

It is common to use complex numbers rather than quaternions:

▶ Use the isomorphism

$$\mathsf{Sp}(n) \cong \mathsf{USp}(2n,\mathbb{C}) := \mathsf{Sp}(2m,\mathbb{C}) \cap U(n,n)$$
.

▶ A quaternionic representation acts by symplectic-unitary transformations on $Q \cong \mathbb{C}^{2n}$.

Furthermore, we restrict attention to quaternionic representations of "cotangent type".

- ▶ Specify a unitary representation $\rho: G \to U(n)$ on $R \cong \mathbb{C}^n$.
- ▶ Then $Q = R \oplus R^*$

Vectormultiplet

The vectormultiplet depends only on G.

It contains the following bosonic fields:

- 1. A connection A_{μ} on a principle G-bundle P on \mathbb{R}^3 .
- 2. Scalar fields $\sigma^{\dot{A}\dot{B}}=\sigma^{\dot{B}\dot{A}}$ transforming in the adjoint representation 3 of $SU(2)_C$ and as sections of Ad(P).

There are also fermion gauginos that I will omit.

Hypermultiplet

The hypermultiplet depends on the quaternionic representation Q.

It contains scalar fields Φ :

- ▶ In the fundamental representation **2** of $SU(2)_H$
- ▶ Sections of the associated vector bundle $P \times_G Q$.
- Components Φ^{AI} with $I=1,\ldots,2n$,

$$(\Phi^{AI})^{\dagger} = \epsilon_{AB} \Omega_{IJ} \Phi^{BJ} \,,$$

where Ω_{IJ} is the invariant symplectic form of USp(2n).

Hypermultiplets

Specialise to a cotangent type representation $Q \cong R \oplus R^*$.

We can decompose the $2 \times 2n$ matrix Φ^{AI} into $n \ 2 \times 2$ blocks:

$$\Phi^{AI} = (\Phi^1, \dots, \Phi^n)$$
 $\Phi^i = \begin{pmatrix} X_i & Y_i \\ \bar{Y}_i & -\bar{X}_i \end{pmatrix}$

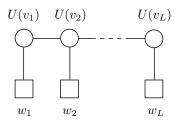
where X, Y transform in unitary representations R, R^{\ast} .

In summary, the pair (X, \bar{Y}) transform:

- ▶ in the fundamental **2** of $SU(2)_H$
- ▶ in the associated vector bundle $P \times_G R$.

Example

Consider A_L -type unitary quiver gauge theory:



- $ightharpoonup G = \mathsf{U}(v_1) \times \cdots \times \mathsf{U}(v_L)$
- Let V_1, \ldots, V_L denote the fundamental representations and W_1, \ldots, W_L denote complex vector spaces of dimensions w_1, \ldots, w_L in the trivial representation.
- $\qquad \qquad \textbf{Then } R = \bigoplus_{a=1}^{L-1} \mathrm{Hom}(V_a, V_{a+1}) \oplus \bigoplus_{a=1}^{L} \mathrm{Hom}(W_a, V_a)$

Flavour Symmetry

R-symmetries transform the supercharges.

Flavour symmetries commute with the supercharges.

In a 3d $\mathcal{N}=4$ supersymmetric gauge theory,

- ▶ R-symmetry $SU(2)_H \times SU(2)_C$
- ▶ Flavour symmetry $G_H \times G_C$.

The two factors G_H , G_C are distinguished by

how the generators contribute to central extensions of the super-Poincaré algebra - see next lecture!

Higgs Symmetry

The local operators charged under G_H are built from the hypermultiplet fields Φ or X, Y.

It is loosely the symmetries of the hypermultiplet once ${\cal G}$ is removed.

▶ For a general quaternionic representation $\rho: G \to \mathsf{Sp}(n)$,

$$G_H = N_{\mathsf{Sp}(n)}(\rho(G))/\rho(G)$$
.

For theories of cotangent type specified by a unitary representation $\rho: T \to \mathsf{U}(n)$, there is a simpler formula

$$G_H = N_{\mathsf{U}(n)}(\rho(G))/\rho(G)$$

Higgs Symmetry Example

For a unitary A_L -type unitary quiver the flavour symmetry is

$$G_H = (U(w_1) \times \cdots \times U(w_L))/U(1)$$

A simple example is supersymmetric QED:

$$U(1)$$
 \longrightarrow w

- ▶ This corresponds to G = U(1) acting on $R = \mathbb{C}^w$ with weight $\rho = (1, \dots, 1)$.
- ▶ $\rho(U(1)) \subset U(w)$ is the diagonal U(1) whose normaliser is U(w).
- ▶ Therefore $G_H = U(w)/U(1) = PSU(w)$.

Coulomb Flavour Symmetry

The Coulomb symmetry is not so straightforward.

- ▶ An abelian subgroup $T_C \subset G_C$ is manifest in the UV.
- It is the centre of the Langlands dual of G,

$$T_C = Z(^L G) = \text{Hom}(\pi_1(G), U(1)),$$

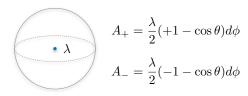
and is independent of the hypermultiplet representation.

▶ This may be enhanced to a non-abelian group G_C in the IR in way that depends strongly on the hypermultiplet representation.

I will explain how to understand the "topological symmetry" T_C .

Monopole Operators I

A monopole operators at p is defined by excising a small 2-sphere S_p^2 and imposing boundary conditions of a Dirac monopole:



where A_{\pm} denote the connection on patches $U_{\pm} \subset S_p^2$.

- lacksquare $\lambda:S^1 o G$ is a 1-valued transition function.
- \blacktriangleright This is element of the co-character lattice $\operatorname{Hom}(\operatorname{U}(1),T)$ modulo Weyl transformations.
- ▶ Monopole operators labelled by dominant co-characters.

Monopole Operators II

The monopole operator indices a G-bundle on S_p^2 with connection A.

- ▶ Its topological degree $d \in \pi_1(G)$ is the homotopy class of the transition function $\lambda : U(1) \to G$.
- lacktriangle The topological symmetry T_C counts the topological degree.
- ▶ This means the character lattice of the topological symmetry is

$$\mathsf{Hom}(T_C,U(1)) \cong \pi_1(G)\,,$$

which implies $T_C \cong \text{Hom}(\pi_1(G), \text{U}(1))$.

Coulomb Symmetry Example

Here are some examples:

- ▶ The topological symmetry for G = U(v) is $T_C = U(1)$.
- In a unitary quiver gauge theory with $G=\mathsf{U}(N_1)\times\cdots\times\mathsf{U}(N_L)$, $T_C=\mathsf{U}(1)^L$, which may be enhanced to a non-abelian subgroup $G_H\subset SU(L+1)$.
- ▶ For G = SU(v) there is no topological symmetry.
- ▶ The topological symmetry can also be discrete, for example, when G = SO(3), $T_C = \mathbb{Z}_2$.

Summary

A 3d $\mathcal{N}=4$ supersymmetric gauge theory is labelled by

- 1. A compact Lie group G
- 2. A linear quaternionic representation $\rho:G\to \operatorname{Sp}(n)$ acting on the vector space $Q=\mathbb{H}^n.$

It has the following global symmetries:

- ▶ R-symmetry $SU(2)_H \times SU(2)_C$
- ▶ Flavour symmetry $G_H \times G_C$ depending on the data (G, ρ) .

Next Lecture

In the next lecture:

- 1. Central extensions of the super-Poincaré algebra.
- 2. Mass and FI parameters.
- 3. Supersymmetric vacua.
- 4. Domain walls.
- 5. Walls and chambers.