
Polygenic local adaptation in subdivided populations: effects of LD and drift

Himani Sachdeva

Department of Mathematics, University of Vienna

Model

- infinite island model: subdivision but no space.
- fixed population size (N haploids) on each island: "soft selection"
- fraction **m** replaced by migrants drawn *uniformly* from metapopulation.
- Two habitats: fractions ho, 1ho of islands in rare/common habitat. ho
 ightarrow 0: mainland-island model.
- Habitat-dependent fitness; influenced by L unlinked bi-allelic loci.
- $VV(\lambda) = \exp[-s\lambda]$ where $\lambda \to \#$ locally deleterious alleles
- Neglect mutation except for mainland-island model.

- $ho
 ightarrow ext{fraction of islands with rare habitat } (
 ho < 1/2)$
- $L \rightarrow$ number of divergently selected loci
- s, m, 1/N: per generation change due to selection, migration, drift.
- ${f r}$: rate of recombination between selected loci; r=1/2 for unlinked loci $\Delta D=-rD$

- $oldsymbol{
 ho}
 ightarrow {
 m fraction}$ of islands with rare habitat (
 ho < 1/2)
- ${f L}
 ightarrow {f number}$ of divergently selected loci
- s, m, 1/N: per generation change due to selection, migration, drift.
- ${f r}$: rate of recombination between selected loci; r=1/2 for unlinked loci $\Delta D=-rD$

Theory challenging because:

- multiple loci under divergent selection

 LD
- ullet individual sub-populations often small \Longrightarrow genetic **drift**

Typically neglect LD ("linkage equilibrium") or drift (deterministic analyses).

LD and drift in subdivided populations

• Reproductive isolation and speciation require "coupling" (associations) between different genetic incompatibilities.

```
Kulmuni et al, 2020; Butlin & Smadja, 2018; Barton & De Cara 2009.
```

■ LD between large numbers of incompatibilities ⇒ "Tipping points"
 Nosil et al, 2017

LD and drift in subdivided populations

• Reproductive isolation and speciation require "coupling" (associations) between different genetic incompatibilities.

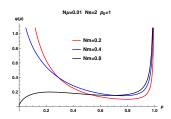
```
Kulmuni et al, 2020; Butlin & Smadja, 2018; Barton & De Cara 2009.
```

- LD between large numbers of incompatibilities ⇒ "Tipping points"
 Nosil et al, 2017
- Many small local populations + polygenic architectures ⇒
 - Direct selection less effective (Ns \sim 1).
 - Negative LD due to Hill-Robertson interference? Collective elimination of sets of alleles less effective?

Multi-locus local adaptation in subdivided "patchy" populations?

Outline

- Approximations
- Mainland-island model
- Infinite island model with two habitats.


Ref: H Sachdeva, bioRxiv 2021.11.05.467433, 2021.

- Approximations
- Mainland-island mode
- 3 Infinite island model with two habitats.

Linkage equilibrium analysis (neglecting LD)

- recombination faster than all processes: $1/N \sim m \sim s \ll Ls \ll r \sim 1$ \implies independently evolving loci ("LE").
- Single locus allele frequency distribution under migration-mutation-selectiondrift balance:

$$\psi_{\it island}[p] \propto p^{2Nm+2N\mu-1} (1-p)^{2N\mu-1} e^{-2\,N\,s\,p}$$
 (Wright, 1937)

Deterministic analysis (neglecting drift)

- drift weaker than all other processes: $1/N \ll m \sim s \ll Ls \sim r \sim 1$ \implies deterministic coupled equations for genotype frequencies $\{P_1, P_2, \dots P_{L-1}, P_L\}$ under migration-selection-recombination balance.
- deleterious alleles rare \implies linear equations avg. allele freq $p_{det} = m \, \frac{e^{-sL}}{(2-e^{-s})^{L-1}} \sum_{k=0}^{\infty} e^{-s \, k} \, \left(1 + \frac{e^{-sk}}{2^k} \frac{e^{-s(k+1)}}{2^k}\right)^{L-1} \\ \approx (m/s) \, e^{-2Ls} \qquad \text{for large L, small s}$
- LD between deleterious alleles \implies reduced 'effective' rate of migration $m_e \approx m \, e^{-2Ls}$ for individual alleles.
- Analogous definition of m_e for neutral alleles (Barton & Bengtsson 1986).

What if $\frac{1}{N} \sim m \sim s \ll Ls \sim r \sim 1$?

What if $\frac{1}{N} \sim m \sim s \ll Ls \sim r \sim 1$?

Drift affects single deleterious alleles but not genotypes with many alleles.

What if
$$\frac{1}{N} \sim m \sim s \ll Ls \sim r \sim 1$$
?

Drift affects single deleterious alleles but not genotypes with many alleles.

Allele frequency distribution under mainland-island model:

$$\psi_{island}[p] \approx p^{2Nm_e + 2N\mu - 1}(1-p)^{2N\mu - 1}e^{-2Nsp}$$

Diffusion approximation with effective migration rates

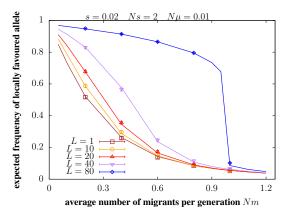
What if $\frac{1}{N} \sim m \sim s \ll Ls \sim r \sim 1$?

Drift affects single deleterious alleles but not genotypes with many alleles.

Allele frequency distribution under mainland-island model:

$$\psi_{island}[p] \approx p^{2Nm_e + 2N\mu - 1}(1-p)^{2N\mu - 1}e^{-2Nsp}$$

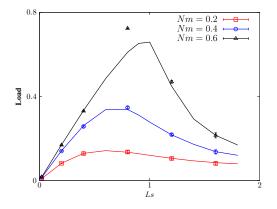
Diffusion approximation with effective migration rates

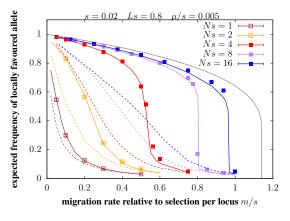

$$m_{\rm e} \approx m \, {\rm e}^{-2sX}$$

X o number of nearly fixed selective differences between populations. $pprox L(1-\mathbf{E}[p])$

Need to find $\mathbf{E}[p]$ numerically.

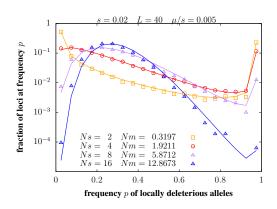
- Approximations
- Mainland-island model
- 3 Infinite island model with two habitats.


Frequency of locally favoured alleles increases with *Ls*


 $\begin{array}{c} \mathsf{symbols} \to \mathsf{simulations} \\ \mathsf{lines} \to \mathsf{theory} \end{array}$

higher Ls \implies higher frequencies of locally adaptive alleles AND sharper thresholds ("tipping points") for loss of adaptation.

But maladaptation load maximum for intermediate *Ls*.


LD, drift and migration thresholds.

 $\begin{array}{l} {\sf symbols} \to {\sf simulations} \\ {\sf solid lines} \to {\sf theory} \; ({\sf LD+drift}) \\ {\sf dashed lines} \to {\sf theory} \; ({\sf no} \; {\sf LD}) \\ {\sf dotted line} \to {\sf theory} \; ({\sf no} \; {\sf drift}) \end{array}$

- Drift can strongly reduce migration thresholds for local adaptation.
- LD more significant in larger populations.

Predicting allele frequency distributions

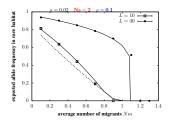
• Predictions fairly accurate even when heterozygosity high.

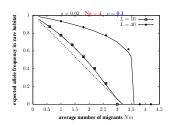
- Approximations
- Mainland-island model
- 3 Infinite island model with two habitats.

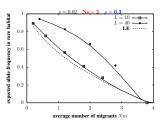
When is the rare habitat locally adapted?

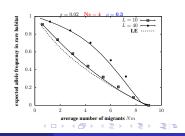
 $m_{
m e} pprox \, m \, {
m e}^{-2 {
m s} L(\mathbb{E}[p_1] - \mathbb{E}[p_2])} \,$ for migration between different habitats

 $m_e \approx m$

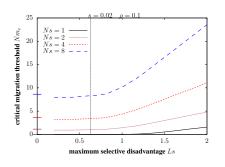

for migration within same habitat

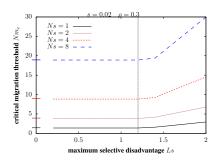

When is the rare habitat locally adapted?


 $m_{\rm e} pprox m\,{
m e}^{-2sL(\mathbb{E}[p_1]-\mathbb{E}[p_2])}$ for migration between different habitats

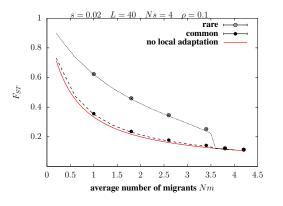

 $m_e \approx m$

for migration within same habitat



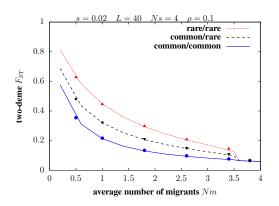


Sharper vs. shifted thresholds for loss of adaptation



- m_c only increases above a threshold $(Ls)_*$
- More significant effect of LD on m_c when one habitat much rarer.

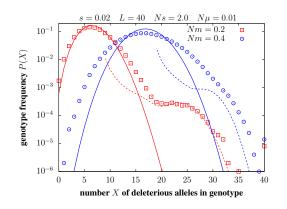
Barrier to neutral gene flow: F_{ST} in rare vs. common habitat


$$F_{ST}^{(rare)} = 1 - rac{\mathbb{E}_{rare}[pq]}{\overline{p}_T \overline{q}_T} \qquad F_{ST}^{(com)} = 1 - rac{\mathbb{E}_{com}[pq]}{\overline{p}_T \overline{q}_T}$$

No local adaptation: $F_{ST} = \frac{1}{1+2Nm}$ (red line)

most immigrants into rare habitat originate from dissimilar habitat \implies lower net effective immigration into rare habitat \implies lower heterozygosity \implies higher F_{ST} .

F_{ST} between pairs of islands


Summary

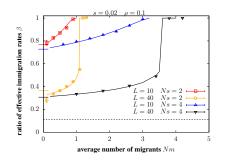
- Allele frequencies predicted very accurately by introducing **effective migration** rates: $m_e \approx me^{-2sL(\mathbb{E}[p_1]-\mathbb{E}[p_2])}$ into the single-locus diffusion approximation.
- LD between divergently selected alleles
 - \implies sharp thresholds for loss of adaptation for $Ns \gtrsim 4$ and $\rho \ll 1$.
 - \implies shifted thresholds for $Ls \gtrsim \frac{1}{2(1-\rho)}$
- Neutral F_{ST} higher in rare habitat due to lower effective immigration. Pairwise F_{ST} not correlated with extent of adaptive divergence.
- Temporal dynamics: buildup of divergence?

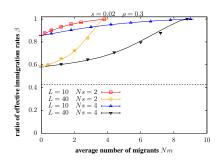
Outlook

- Does separation of timescales extend to linked loci, assortative mating?
- Effective migration rates when loci have a **distribution of fitness** effects? When fitness has both **'local'** and **'global'** components?
 - Exchange of weakly beneficial alleles between habitats?
 - 2 Interplay between local adaptation and inbreeding depression / heterosis?
 - Associative overdominance
- Hard selection: effect of LD on extinction thresholds?
- How does this connect to effective size of metapopulation?

Predicting genotype frequencies

 $\begin{array}{l} \mathsf{symbols} \to \mathsf{simulations} \\ \mathsf{solid} \ \mathsf{lines} \to \mathsf{LE} \\ \mathsf{dashed} \ \mathsf{lines} \to \mathsf{deterministic} \end{array}$


Barriers to genetic exchange at neutral loci: expected F_{ST}


	simulations	coalescent	based on migration rates
F _{ST} (no LA)	$1 - rac{\mathbb{E}[pq]}{\overline{p}_T \overline{q}_T}$	$1 - rac{\mathbb{E}[T_w]}{\mathbb{E}[T_{tot}]}$	$\frac{1}{1+2Nm}$
$F_{ST}^{(rare)}$	$1 - rac{\mathbb{E}_{rare}[pq]}{\overline{p}_T \overline{q}_T}$	$1 - rac{\mathbb{E}[T_{w(rare)}]}{\mathbb{E}[T_{tot}]}$	$\frac{1}{1+2N[\boldsymbol{m_{r,c}^{(e)}}+\boldsymbol{m_{r,r}^{(e)}}]}$
$F_{ST}^{(com)}$	$1 - rac{\mathbb{E}_{com}[pq]}{\overline{p}_T \overline{q}_T}$	$1 - \frac{\mathbb{E}[T_{w(com)}]}{\mathbb{E}[T_{tot}]}$	$\frac{1}{1+2N[m_{cc}^{(e)}+m_{cf}^{(e)}]}$

$$m_{c\,c}^{(e)} pprox (1-
ho)\,m \qquad m_{r\,r}^{(e)} pprox
ho\,m \ m_{r\,r}^{(e)} pprox
ho\,m \ e^{-2sL(\mathbb{E}[p_1]-\mathbb{E}[p_2])} \qquad m_{c\,r}^{(e)} pprox
ho\,m\,e^{-2sL(\mathbb{E}[p_1]-\mathbb{E}[p_2])}$$

Different (effective) rates of immigration for rare vs. common habitats

$$\frac{1/F_{\rm SI}^{(care)}-1}{1/F_{\rm SI}^{(com)}-1} = \frac{\rm eff.\ number\ of\ migrants\ into\ deme\ within\ rare\ habitat}{\rm eff.\ number\ of\ migrants\ into\ deme\ within\ common\ habitat}$$

