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OUTLINE

o structure of QCD jets

* matching vacuum and medium evolution
equations

* guenching in the improved opacity expansion

* ohenomenological application: cone-size
dependent jet spectrum
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VACUUM SPLITTING

Z Generic 12 (on-shell) splitting in QCD:
; S dé C S
_< dHa—)bc — - Pb(a) (Z)dZ > 2 OR do dz
-7 T 0 T 0 =z

Diverges for soft & collinear radiation!
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VACUUM SPLITTING

Generic 122 (on-shell) splitting in QCD:

: 200, Cr df dz
dll,—pe = - 0 Pb(a)<2)d2% - & 0 -

Diverges for soft & collinear radiation!

/ Large phase space for radiation compensates «,/!
OéSCR 2 pTR

—1 Prob = log

{\ i T Aoen >

Need for resummation of collinear logarithms tor

/

final-state radiation.

K. Tywoniuk (UiB) 4



VACUUM SPLITTING

Observed as “jets”: collimated sprays of particles/energy.
Sterman, Weinberg (1977)
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JET SPECTRUM AT HIGH-PT oo

Dasgupta, Magnea, Salam 0712.3014

CMS 200505159 <3597 (13 TeV)
. . 2 gllyl<0s5 o B-tapan
* Jets approximate partons created in hard & Symbol  Dat RIS -
. § - —— PH+P8(CUETP8M1) E 28'9 Io 725) -
scatterings S o s08ten) -
: L Exp-sys. T RI03(025) -
: : : > L2 _*_R=O-2§-O.5 _
* Result in collimated sprays of particles O g ——R=0it07
© 2 R
Out-of-cone radiation: =
.9 —t >t >t D e R L e e S e e e ) o 5 ) e an o A e o S S
"('6 Of‘_kﬁg_q_ﬁ_'%—é—&—é—h—ﬁr*—*w#vmwmwp
C _?_TW T v

O 1 3
(0pr), = —CF "L log 5 (2 log 2 8)

T 100 Jet pT (GGV) 1000
QP 1 [ 43 7
0 = log — |C4 | 2lo0g2 Trne—
(0p=), e n | A( 08 96> + RIEIS
Non-perturbative effects (underlying event):  (0pr)yp = %AUER2
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LOGARITHMIC RESUMMATION o e e

Dokshitzer, Khoze, Mueller, Troyan “Basics of Perturbative QCD" (1991)

Resummation of leading logarithmic contributions.

Jets-inside-jets: microjet spectrum.

R-dependent corrections to the inclusive-jet spectrum
1.1

1

09

0 -xample: small-R resummation in t = log 1/R:

0.7
o o 0 b dY ag 2
0 b (ert) = P s (1)
L 08 o7 Jiet/i(%:1) /O o Ljil2) fjer {

03 I solid: Ry=1.0
0.2 | dashed: Ryg=1.5

—volution from hard scale to jet scale via DGLAP.

Dasgupta, Dreyer, Salam, Soyez 1411.5182, 1602.01110
Kang, Ringer, Vitev 1606.06732
Dal, Kim, Leibovitch 1606.0741 |

01 Fpp. 7 TeV, lyl<0.5, CT10
0

p; [GeV]
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OUTLINE

* matching vacuum and medium evolution
equations
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NUCLEAR MODIFICATION FACTOR

dN 4 pp
dpr

Pt

Workhorse of the field: measuring & parameterizing the shift of
spectrum to access information about medium interactions.
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dN ¢ PP

NUCLEAR MODIFICATION FACTOR

dpr
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Pt

Workhorse of the field: measuring & parameterizing the shift of
spectrum to access information about medium interactions.



NUCLEAR MODIFICATION FACTOR
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- 27.4 pb' (5.02 TeV pp) + 404 ub™ (5.02 TeV PbPb)

. _I | | | | | 1 | | |

o0 b CMS charged hadrons e

| CMS5.02TeV ¢ ALICE 2.76 TeV §

12 O CMS 2.76 TeV vV  ATLAS 2.76 TeV _

S Tps and lumi. uncertainty -

5p i< * + :
< ® —

< 0.8 -

0.6

08 A%
0.4 o2
L] v \7

0.2

" "‘
>

0

Pt

10
P, (GeV)

10°

Workhorse of the field: measuring & parameterizing the shift of

spectrum to access information about medium interactions.



NUCLEAR MODIFICATION FACTOR

< ——— _ . — — T 27.4 pb” (5.02 TeV pp) + 404 ub™' (5.02 TeV PbPb)

o ATLAS anti-k, R = 0.4 jets ly| < 2.1 1.6 T T T

" [5]0-10%, Sy = 2.76 TeV [PRL 114 (2015) 072302] | 1_4:_ CMS Chal‘ged hadrons -

ey 0-10%, s =502Tev I B " [[@ |CMS5.02TeV ¢ ALICE 2.76 TeV ]

2 |30 - 40%, s, = 2.76 TeV [PRL 114 (2015) 072302] (ol © CMS276TeV v ATLAS 2.76 TeV B

| [2]30 - 40%, |5y = 5.02 TeV “H -

] (T, and luminosity uncer. s T, and lumi. uncertainty .

- i<t *+ -

==l =] 2 o8- £

—— — B _

i I:III?I ¢ . + + * l 0.6_— |

R = e e - e® :

¢ _ 0.2 —

40 60 100 200 300 500 900 0 e e
P, [GeV] P (GeV)

Workhorse of the field: measuring & parameterizing the shift of
spectrum to access information about medium interactions.

Signiticant difference of hadron and jet suppression at high-p,!
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QUENCHING OF PARTONIC HARD SPECTRUM

Baier; Dokshitzer; Mueller; Schiff (2001); Salgado, Wiedemann (2003)

i < dls | dls
Ple) ~ 1 — — |
(€) >~ d(€) | —/0 dw i o

Probability of radiating energy € away from parton

(1 gluon emission)

dO_me > dO_V&C dO_va,c > € —
Quenching factor © = / de P(e) — = / deP(e)e Pt
dpr 0 dpy pr=pT+e€ dpr Jo
T N——————  ———
Q(pr)

* Poissonian process
e applies for small energy losses & steeply falling spectra

e good approximation at RHIC/LHC

e energy loss distribution P(¢) includes fluctuations
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JET QUENCHING

* enhancement of energy loss out of the cone due to elastic ano
radiative processes

- previously: quenching of hadron spectra - new tools are
needed!

- pheno: how much & how does energy tlow out of the cone?

* jets are multi-parton objects with spacetime structure
- how many partons are contributing to energy loss?

- important to gain understanding from analytical approaches

K. Tywoniuk (UiB) 10



\< \<
1 emitter (coherent) n emitters (partially incoherent)
factorisation factorisation breaking

new element: importance of jet substructure fluctuations!

also seen in MC studies: Milhano, Zapp 1512.08107; Casalderrey-Solana, Milhano, Pablos, Rajagopal 1808.07386
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VACUUM RADIATION IN MEDIUM

Vacuum radiation at short timescales was considered first in the context of antenna radiation.

Mehtar-Tani, Salgado, KT PRL (2010), PLB (2012), JHEP (20132; Casalderrey, lancu JHEP (2011)
Dominguez, Milhano, Salgado, KT, Vila 1907.03653
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VACUUM RADIATION IN MEDIUM

Vacuum radiation at short timescales was considered first in the context of antenna radiation.

Mehtar-Tani, Salgado, KT PRL (2010), PLB (2012), JHEP (20132; Casalderrey, lancu JHEP (2011)
Dominguez, Milhano, Salgado, KT, Vila 1907.03653

First step: calculation of decoherence and energy loss of an initially color correlated pair

Mentar-Tani, KT 1706.0604 7
S

td - (QH%Z)_I/B

) o \/@L3
0 tf td
Q2(pr) = Q (p1) X Qsing (P1)
/ Ny
energy loss of total delayed energy loss from
color charge resolved partons
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PHASE SPACE ANALYSIS e T KT 170606047 107075

Caucal, lancu, Mueller, Soyez 1801.09703

Vacuum emissions w/ k> > 1/gw and @ > 6. are
emitted inside plasma and will eventually be

log k,

resolved by the medium (red area).

At border: all inside emissions get quenchea

How many modes are emitted inside?

O‘SCR R T j 2 R
(PS)mz2 - loge—c (log o | 3log 9_(;)

Potentially large and needs to be resummed.

Obs: phase space wo/coherence effects t; < L

s larger « log® p

K. Tywoniuk (UiB) 13



K. Tywoniuk (UiB)

SUPPRESSION OF EXCLUSIVE SPECTRUM

Simplified example: consider a 1 — N process followed by energy loss.

d ” " d
m Gexfilk = |dp { H de; P(c;) }fl—>N (k1+€1 - N+€N\p ( Z k,— Z ) %0
.. JURN d .

i dp

. dGeXCI —nel N dGO excl
At leading order: ~ | | deP(e)e™"eP ’
dk,...dky dk,...dky

systematically improvable...

Provides a framework for studying multi-parton energy-loss effects for
inclusive observables |

14



EFFECTIVE THEORY OF JET QUENCHING

Mehtar-Tani, KT in preparation

A probabilistic picture can be established due to the separation of jet and medium scales.

logk, |

R log1/6
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EFFECTIVE THEORY OF JET QUENCHING

Mehtar-Tani, KT in preparation

A probabilistic picture can be established due to the separation of jet and medium scales.

Qutside of the medium, we have AO vacuum (vetoed shower):

logk, | .
Zout (pa R) — U(p) + / dH (1 T @in) [Zout(zpa H)Zout((l o Z)p, 6)) o Zout (pa 9)}
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EFFECTIVE THEORY OF JET QUENCHING

Mehtar-Tani, KT in preparation

A probabilistic picture can be established due to the separation of jet and medium scales.

Qutside of the medium, we have AO vacuum (vetoed shower):

log k, .
Zout (p, R) — U(p) + / dH (1 o @in) [Zout(zpa H)Zout((l o Z)pa 6)) o Zout (p7 9)}
Vacuum-like (vetoed) AO shower inside the medium
R
Z(p, R) = Q(p1)Zout(p, 1) + / dI1Oin | Z(2p,0)Z((1 — 2)p,0) — Z(p,0)
R log1/6
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EFFECTIVE THEORY OF JET QUENCHING

Mehtar-Tani, KT in preparation

A probabilistic picture can be established due to the separation of jet and medium scales.

Qutside of the medium, we have AO vacuum (vetoed shower):

logk, | .
Zout (pa R) — U(p) + / dH (1 T @in) [Zout(zpa H)Zout((l o Z)p, 6)) o Zout (pa 9)}

Vacuum-like (vetoed) AO shower inside the medium

Z(p, R) = Q(pr)Zout(p, 1) + / dII Oy | Z(2p,0)Z((1 — 2)p,0) — Z(p, 0)]

N

out-shower restarted from max angle (AAQO)
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EFFECTIVE THEORY OF JET QUENCHING

Mehtar-Tani, KT in preparation

A probabilistic picture can be established due to the separation of jet and medium scales.

ook | Qutside of the medium, we have AO vacuum (vetoed shower):
02 K
R
Lout (p, R) — U(p) + / dll (1 — @in) [Zout(zpa H)Zout((l — Z)pa 6)) — ZLout (pa (9)}
Vacuum-like (vetoed) AO shower inside the medium
)+ [ A8 (20,0021~ 2)p.6) ~ 2(9.0),
out-shower restarted from max angle (AAQO)
R 10g>1/(9 accounts for quenching through rterative use of GF
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RESU M M E D Q U E N C H I N G FACTO R Mehtar-Tani, KT 1707.0736

Mehtar-Tani, Pablos, KT in preparation

Non-trivial normalization of the GF: Z(p,R; {u = 1}) = O(p, R)!

Q(p, R) =(Q(pr) + / AT 64, [Q(2p, O)Q((1 — 2)p, 8) — Q(p, )]

coupled egs for non-linear evolution of quenching

1.2: o S

1'0} solijiz resummed | ApprOXi mate ‘y

0.8:- dashed: bare R
&2 : Qi(pTa R) — Qz(pT) eXPp {/ dll @in (Qg(pT) — 1)}
é 0.6
= 0.4:-

The R-dependence is much milder than
for bare quenching!

T 10 100 1000

K. Tywoniuk (UiB) pr [GeV] 16
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EMERGING PROBABILISTIC PICTURE

Ot ... L &0
| | | |

tr < tg L < t;

»

hard, in-medium energy loss, “out” radiation,

vacuume-like radiation broadening, wake hadronization

[See also Caucal, lancu, Soyez, Mueller 1801.09/703]
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OUTLINE

* guenching in the improved opacity expansion

K. Tywoniuk (UiB) 18



RAD I ATIVE E N E RGY LOSS Mehtar-Tani, Tywoniuk 1910.02032

Mehtar-Tani, Barata 2004.02323

Momentum broadening (k) ~ gt leads to moditied

100 —
| bremsstrahlung spectrum — no collinear divergence!
10} d/ OzSOR L CMSCR C_?LQ
I W — = p— o
dw T i T W
— 3 L . .
—53@ 1 Bethe-Heitler regime (t < A)
0.10 LPM regime (4 < t; < L)
——— LO+NLO (f N |
ey | ' | N=1regime (L < t; ~ E/,uz)
001 _ . BDMPS 5 N
GA* aL’
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RADIATIVE ENERGY LOSS

BH

LPM N

Mehtar-Tani, Tywoniuk 1910.02032
Mehtar-Tani, Barata 2004.02323

=1
Momentum broadening (k?) ~ gt leads to modified

100

10}

" dl
dw

0.10|

0.01

| ——— LO+NLO (full
| — — GLV :
- — — — - BDMPS

bremsstrahlung spectrum — no collinear divergence!

d/ B OzSCR L

w— p—
dw T

&SCR

%
W

L T

Bethe-

eitler regime (t; S A)
LPM regime (4 < t; < L)

\ N=1regime (L < t; ~ E/u)

GA° < agL? < gL*

N —

K. Tywoniuk (UiB)

Soft scale: copious, large angle gluons

leading to energy loss & thermalization.
Blaizot, Dominguez, lancu, Mehtar-Tani 1301.6102
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TWO SEPARATED REGIMES |

see also Kurkela, Wiedemann [40/.0293

-nergy loss for jets is driven by out-of-cone emissions.

=

w ~ o, = §L*
N ~ O(a,)

O ~ 0. = (gL)~1*

perturbative: rare, small-angle radiation

intra-jet structure modifications

_ 2572
w~w,=a;qL

N ~ 1
1
~—0

2 C
aS

O

I

non-perturbative: copious, large-angle
emissions

K. Tywoniuk (UiB)

out-of-cone energy-loss, thermalization
\
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TWO SEPARATED REGIMES |

see also Kurkela, Wiedemann 140/.0293

=

w ~ o, = §L*
N ~ O(a,)

O ~ 0. = (gL)~1*

perturbative: rare, small-angle radiation

intra-jet structure modifications

J

K. Tywoniuk (UiB)

-nergy loss for jets is driven by out-of-cone emissions.

N\

_ 2572
w~w,=a;qL

N ~ 1
1
~—0

2 C
aS

O

I

non-perturbative: copious, large-angle
emissions

out-of-cone energy-loss, thermalization

Gluons with o, ~ 5 GeV melt into the plasmal

Blaizot, Dominguez, lancu, Mehtar-Tani 1301.6102
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MEDIUM-INDUCED RADIATION

Baier, Dokshitzer; Mueller; Peigne, Schiff (1996); Zakharov (1996); ...

d]ba g ZPba L2
— 5 2R dt dt
“Tdz (z(1 — 2) e/ 2/ !

8 - 0 {ICZ)CL('CB t27y7t1 ]CO('CB t27y7t1)}

x=y—=0
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MEDIUM-INDUCED RADIATION

Baier, Dokshitzer; Mueller; Peigne, Schiff (1996); Zakharov (1996); ...

dly, P sza / /tQ
— 2R dt dt
A (z(1 — 2) - ’ :

8 - 0 {Kba(m t27y7t1 /C()(.’L‘ t27y7t1)}

xr=y=0

3-body interactions of the medium via / doel
v(x,t) =
q

Schrodinger equation with potential:
Solved numerically in Caron-Huot, Gale 1006.2379, Feal,Vazquez 181 1.0159 |
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MEDIUM-INDUCED RADIATION 3

Baier, Dokshitzer; Mueller; Peigne, Schiff (1996); Zakharov (1996); ...

d]ba g ZPba L2
— 5 2R dt dt
“Tdz (z(1 — 2) e/ 2/ !

8 - 0 {Kba(m t27y7t1 ]CO('/L‘ t27y7t1)}

D
N

x=y—=0
F3
3—boc.i.y interactionsoof th.e medium.v'a o(@.1) = / d;’el (1 - i) ~ lqu2 log 24 :
Schrodinger equation with potential: q d°q 4 IRE"
——
Solved numerically in Caron-Huot, Gale 1006.2379, Feal,Vazquez 181 1.0159 | HO
K(ta,t1) = Ko(ta — t1) + /dt Ko(te —t)v(t) KC(t, 1) opacity expansion

Wiedemann (2000); Gyulassy, Levai,Vitev (2001); Sievert, Vitev,Yoon 1903.0617/0
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MEDIUM-INDUCED RADIATION 3

Baier, Dokshitzer; Mueller; Peigne, Schiff (1996); Zakharov (1996); ...

d]ba g ZPba L2
— 5 2R dt dt
“Tdz (z(1 — 2) e/ 2/ !

8 - 0 {Kba(m t27y7t1 /C()(.’L‘ t27y7t1)}

D
N

x=y—=0
F3
3—boc.i.y interactionsoof th.e medium.v'a o(@.1) = / d;’el (1 - i) ~ lquQ log 24 :
Schrodinger equation with potential: q d°q 4 IRE"
——
Solved numerically in Caron-Huot, Gale 1006.2379, Feal,Vazquez 181 1.0159 | HO
K(ta,t1) = Ko(ta — t1) + /dt Ko(te —t)v(t) KC(t, 1) opacity expansion

Wiedemann (2000); Gyulassy, Levai,Vitev (2001); Sievert, Vitev,Yoon 1903.0617/0

"improved”
unifying HO & N=1

Mehtar-Tani, Tywoniuk 1910.02032

/C(t27 tl) — ]CHO (t27 tl) + /dt ]CHO (t27 t)évhard (t)K(ta tl)

K. Tywoniuk (UiB) 21



DEEPER UNDERSTANDING OF THE SCALES

. dra’Crn for GW
©=Na,cpm3T for HTL

Moller expansion (Mehtar-Tani 1903.00506) .
1 1 1 ]

A\

—xpanding: V(x, 1) = N %x2 In pErs = N q0x2 IHF + N Qox2 In 0

Improved opacity expansion (Mehtar-Tani, Tywoniuk 1910.02032)
t1

K(z,t1;y,t0) = Kno(z,t1;y, to) —/dQU/ dt Kno(x, t1;u, t)ov(u, t)K(u, t;:y, to)
to

K. Tywoniuk (UiB) 22



IMPROVED OE: NLO CORRECTION

Mehtar-Tani, Tywoniuk 1910.02032
Barata, Mehtar- Tani 2004.02323

dI®  2a,Cp

In |cos Q2L , 00—
dw TW
dI(l) CYSCRQA()R L d —1 -l _kQ(S) | 10
— e S 1l
dw o o ks | Qr TE |
5 WS =l
k= (s) :i7[cotﬂs—tanQ(L—s)] S
0.10?
QQ . ——— LO+NLO (full) \
Q* =/dwIn-% matching scale I
7 P - - - - BDMPS v
o001 o010 1 90 joo 7000
w [GeV]
Interpolates well between the three regimes. B e n— Gwowl |
0.006f x=0. ] — —Gv 7 N 203 10.0015
. T AMY 11 |
Compact, analytic formula. PLANN| -
[ 7 11 /
[ e il e ‘
Rate (dI/dwdr) agrees well with full numerical =5 | I | 7 £
SO‘UUOH o:oogé_ "//7 ---------------------- ,/’{—: _______________________ 10.0005
S/ It /44 ‘
0.001} ,," o

K. Tywoniuk (UiB) 23 t [fim] t [fm)]



CONTRIBUTIONS TO ¢

In the LPM regime (w < w,), contributions up to NNLOog can be absorbed as:
df - _\/(_?eff(QC’,)
=

wdde W

,\ A ) 1016 0.316 4 [ Q2
Geft (Qc) = qo log (Qu) Q2 = O (log 3 ( *2>)
[ log( C) log” ( ) 8

2
- evaluated at the scale: Q2 = \/qulog (f‘“)

Barata, Mehtar-Tani 2004.02323

e significant (logarithmic) contributions from hard scattering to the “bare” g,

* accommodates straightforward comparison between different medium
models through ,uf

K. Tywoniuk (UiB) 24



BROADENING FACTOR AT NLO

10°,

Barata, Mehtar-Tani, Soto-Ontoso, KT 2009.13667/

Parametric estimates:

P(k) ~ Q7 > T
47 o L > 2 3

y= k> Q) S

&

Calculation within IOE gives (x = k/Qsz):

PLONLO(L 1) = é’; e_‘"{l —A(e" =2+ (1 —=z) (Ei(z) — log(4z a)) )} 105:

? kr[GeV]

(already found by Moliére in 1948!)

For the time being, we assume dl~ dIf > dk°
, o — — X
for out-of-cone emissions: dew dew y

K. Tywoniuk (UiB) 25



BARE QUENCHING FACTOR

i > d/ oy
Q(O) (pT) — exXPpP —/ dw > (1 — e PT)
O

dw

o—_ radiative & elastic energy loss out of the jet cone
| R =EHE |
ol : | ...l recovery of energy at large angles:
e | * hard gluons stay within cone
0.8 Ry — . . .
o | * soft gluons thermalize and drift back into the cone
S s
9@ ///////// // -
Q) ’///// ’/ - C . ‘ CF/CA
0.4 R : asimir scaling: ~
T s 5 Qulpr) ~ (Qolpr))
0.2} s L =3.5fm |
e oy = 0.3
00— 10 100 1000
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OUTLINE

* ohenomenological application: cone-size
dependent jet spectrum

K. Tywoniuk (UiB) 27



(GENERAL PICTURE

fewer color sources - less energy lost more color sources - more energy lost
easier for energy to flow out-of-cone recovery of lost energy

beware of biases: jet population is different!

K. Tywoniuk (UiB) 28



JET SPECTRUM IN HEAVY-ION COLLISIONS

* hard spectrum at LO contains nPDFs (EPSQ09)

e ]log 1/R resummation using moments of microjet
fragmentation functions

* quenching factors evaluated including event-by- S (1) =
event fluctuations through hydrodynamic

background

K. Tywoniuk (UiB) 29



ENERGY-LOSS

Qi(p.0) = Q') ,()QY(v)

|
e
-
&
=~
o O
O, ~—
N\
<
N—"
|

> d]> W d[ 2
dw == (1 — o= ¥v dio —— (1 - —vw(l—(R/Ryec) ))
/ws W T ( § )+/T wdw §

~ QY () = éLv(1 — (R/Ryec)?)

* both radiative and elastic energy loss implementea
* perturbative sector strongly constrained (only one parameter g,..4)

* non-perturbative sector: two modeling parameters w, and R,

- numerically confirmed modest dependence on these
parameters

K. Tywoniuk (UiB) 30



QUARK AND GLUON QUENCHING FACTORS

1

Qquark

s = 5H.02 ATeV

leuon

K. Tywoniuk (Ui 31
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CENTRALITY AND R-DEPENDENCE

0.8 F

0.6 F

Raa

0.4 }

0.2 |

30 — 40%
50 — 60%

10 — 20%
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Good agreement with experimental data!

Still prelim results, stay tuned tor tinal
parameters and interpretation!



OUTLOOK

® advances in theory of jet quenching allows tor precision era in
jet guenching physics
* perturbative merging of vacuum+in-medium evolution

- modeling of ultra-soft sector via phenomenological
parameters

- connection to thermalization to be further explored

* g is a measure of both the amount of energy lost & the
resolution properties of the medium (color coherence)

- Raa vs. R arich observable to probe regimes
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THANK YOU!



