Global Analysis of Locally Symmetric Spaces with Indefinite-Metric

Lecture 2 Properness Criterion and its Quantification

Toshiyuki Kobayashi

Graduate School of Mathematical Sciences The University of Tokyo http://www.ms.u-tokyo.ac.jp/~toshi/

Zariski Dense Subgroups, Number Theory and Geometric Applications ICTS, Bangalore, India, 2 January 2024

Global Analysis of Locally Symmetric Spaces with Indefinite Metric

Plan

Lecture 1

Local to Global in Non-Riemannian Geometry (Jan 1st)

- Introduction to pseudo-Riemannian space forms
- Construction/Obstruction of compact quotients $\Gamma \setminus X$
- Digression: "Tangential homogeneous space X_{θ} "

Lecture 2

Properness Criterion and its Quantification (Jan 2nd)

Lecture 3

Global Analysis on Locally Symmetric Spaces
Beyond the Riemannian Case (Jan 3rd)

Global Analysis of Locally Symmetric Spaces with Indefinite Metric

Plan

Lecture 1

Local to Global in Non-Riemannian Geometry (Jan 1st)

Lecture 2

Properness Criterion and its Quantification

(Jan 2nd)

- Proper Actions and Discontinuous Groups
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ-orbits

Lecture 3

Global Analysis on Locally Symmetric Spaces Beyond the Riemannian Case

(Jan 3rd)

$$\begin{array}{ccc} X & & L \\ \text{subset} \cup & \leadsto & \cup \\ S & & L_S := \{\gamma \in L : \gamma S \cap S \neq \phi \} \end{array}$$

$$S = \{x\} \longrightarrow L_{\{x\}} \equiv L_x = \text{stabilizer of } x$$

action
L X
Ioc. compact group Ioc. compact Hausdorff space

action
L X
Ioc. compact group Ioc. compact Hausdorff space

$$\begin{array}{ccc} X & & L \\ \text{subset} \cup & \leadsto & \cup \\ S & & L_S := \{ \pmb{\gamma} \in L : \pmb{\gamma}S \cap S \neq \varnothing \} \\ \\ S = \{x\} & \leadsto & L_{\{x\}} \equiv L_x = \text{stabilizer of } x \end{array}$$

$$X$$
 L subset $\cup \sim \cup$ S \cup $L_S := \{ \gamma \in L : \gamma S \cap S \neq \emptyset \}$

$$\begin{array}{ccc} X & L \\ \text{subset} \cup & \leadsto & \cup \\ S & L_S := \{ \pmb{\gamma} \in L : \pmb{\gamma}S \cap S \neq \emptyset \} \\ \\ S = \{x\} & \leadsto & L_{\{x\}} \equiv L_x = \text{stabilizer of } x \end{array}$$

Covering transformation and properly discontinuous action

Reminder from Lecture 1

Properly discontinuous actions: Riemannian geometry

(X,g): a complete Riemannian manifold,

G = Isom(X): the group of isometries,

 $\Gamma \subset G$ subgroup.

Proposition 2 (Riemannian geometry) Equivalent (i) ← (ii):

- (i) Γ is a discrete subgroup of G.
- (ii) Γ acts properly discontinuously on X.
- $(ii) \Rightarrow (i)$ easy.
- (i) \Rightarrow (ii) (non-trivial) Use an Ascoli–Arzela type argument to the metric space (X,g).

This proof depends heavily on the positivity of g.

Question What if X is a pseudo-Riemannian manifold?

Calabi-Markus phenomenon (1962) from Lecture 1

Riemannian geometry

Actions of discrete subgroups of isometries

⇔ isometric properly discontinuous actions

pseudo-Riemannian geometry

Actions of discrete subgroups of isometries

isometric properly discontinuous actions

Let
$$(G, H) = (O(n, 1), O(n - 1, 1))$$
.

$$\Gamma \quad \subset \atop \text{discrete} \quad G \quad \curvearrowright \atop \text{isometry} \quad G/H \simeq \{x_1^2 + \dots + x_n^2 - x_{n+1}^2 = 1\} \subset \mathbb{R}^{n,1}$$

Theorem A (Lect. 1) (Calabi–Markus)* Only a finite subgroup can act properly discontinuously on G/H.

^{*} E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.

Properness criterion

General Problem 2 (Lecture 1)

(1) Given an action of a discrete group Γ on X, find a "useful" criterion for the action to be properly discontinuous.

More generally

(2) Given an action of a Lie group L on X, find a "useful" criterion for the action to be proper.

Plan of Lecture 2

Properness Criterion and its Quantification

- Proper Actions
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ -orbits

Elementary consequences of proper actions

L: locally compact group.

X: locally compact, Hausdorff space.

Proposition If L acts properly on X, then one has

- (1) $L \setminus X$ is Hausdorff in the quotient topology;
- (2) Any orbit $L \cdot x$ is closed in X;
- (3) Any isotropy subgroup L_x is compact.

- The conditions (2) and (3) are "local" and easily verified.
- However, (1) \sim (3) do not guarantee the properness of the action.

Delicate examples (Hausdorff \neq (T_1))

$$a \in \mathbb{R}_{>0} \cap X = \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \\ \frac{1}{a}y \end{pmatrix}$$

This action is free, and any orbit is closed.

Delicate examples (Hausdorff \neq (T_1))

$$a \in \mathbb{R}_{>0} \curvearrowright X = \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \\ \frac{1}{a}y \end{pmatrix}$$

This action is free, and any orbit is closed. But the action is not proper.

The quotient space $\mathbb{R}_{>0}\backslash X$ is $\underline{(T_1)}$ but not Hausdorff.

$$\mathbb{R}_{>0}\backslash X\simeq$$

Delicate examples (Hausdorff \neq (T_1))

$$a \in \mathbb{R}_{>0} \curvearrowright X = \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \\ \frac{1}{a}y \end{pmatrix}$$
s action is free, and any orbit is closed.

This action is free, and any orbit is closed. But the action is not proper, and $\mathbb{R}_{>0}\backslash X$ is not Hausdorff.

$$\begin{array}{c} \underline{\text{Interpretation}} \ \ \text{in group language} \\ A = \{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a > 0 \} \ \subset \ G = SL(2,\mathbb{R}) \ \supset \ N = \{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{R} \} \\ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in A \ \curvearrowright \ G/N \\ \updownarrow \qquad & \forall \qquad \forall \\ a \in \mathbb{R}_{>0} \ \curvearrowright \ \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \\ \frac{1}{a}y \end{pmatrix} \end{array}$$

 $A \curvearrowright G/N$ non-proper $\iff N \curvearrowright G/A$ non-proper (Lorentz isometry)

Lipsman's conjecture (1995)

Setting
$$X = G/H$$
 where $L \subset G \supset H$ closed subgp

Lipsman's conjecture (1995)*
$$G$$
: 1-conn nilpotent Lie group $L \curvearrowright X$ free $\stackrel{?}{\Longleftrightarrow} L \curvearrowright X$ proper

True : G: 2-step nilpotent Lie group (Nasrin '01)

G: 3-step nilpotent Lie group (Baklouti '05, Yoshino '07)**

^{*} R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25-39.

^{**} A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).

Lipsman's conjecture (1995)

Setting
$$X = G/H$$
 where $L \subset G \supset H$ closed subgp

Lipsman's conjecture (1995)*
$$G$$
: 1-conn nilpotent Lie group $L \curvearrowright X$ free $\stackrel{?}{\Longleftrightarrow} L \curvearrowright X$ proper

True : G: 2-step nilpotent Lie group (Nasrin '01)

G: 3-step nilpotent Lie group (Baklouti '05, Yoshino '07)**

False: G: 4-step nilpotent Lie group (Yoshino '05)***

$$L \simeq \mathbb{R}^2 \curvearrowright X \simeq \mathbb{R}^5$$
 (nilmanifold)

This is a free action on a nilpotent homogeneous space X = G/H such that all L-orbits are closed. However, $L \setminus X$ is not Hausdorff.

^{*} R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25-39.

^{**} A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).

^{***} T. Yoshino, A counterexample to Lipsman's conjecture, Internat. J. Math. 16 (2005), pp. 561-566.

Plan of Lecture 2

Properness Criterion and its Quantification

- Proper Actions
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ -orbits

<u>Problem</u> For $L \subset G \supset H$, find a criterion that $L \curvearrowright G/H$ properly.

Expanding H in a group G by compact set S

 $G \supset H$ S: compact subset

\pitchfork and \sim for locally compact group G

 $L \subset G \supset H$

Idea: forget even that L and H are subgroups

\pitchfork and \sim for locally compact group G

 $L \subset G \supset H$

Idea: forget even that L and H are subgroups

Definition* (\pitchfork and \sim)

1) $L \cap H \iff \overline{L \cap SHS}$ is compact

for any compact subset $S \subset G$

2) $L \sim H \iff \exists$ compact subset $S \subset G$.

such that $L \subset SHS$ and $H \subset SLS$.

^{*} T. Kobayashi, Criterion for proper actions on homogeneous spaces ..., J. Lie Theory 6 (1996) 147–163.

\pitchfork and \sim for locally compact group G

 $L \subset G \supset H$

Idea: forget even that L and H are subgroups

Definition* (\pitchfork and \sim)

- 1) $L \cap H \iff \overline{L \cap SHS}$ is compact
 - for any compact subset $S \subset G$
- 2) $L \sim H \iff \exists$ compact subset $S \subset G$.
 - such that $L \subset SHS$ and $H \subset SLS$.

T. Kobayashi, Criterion for proper actions on homogeneous spaces \cdots , J. Lie Theory **6** (1996) 147–163.

\uparrow and \sim for locally compact group G

$$L \subset G \supset H$$

Idea: forget even that L and H are subgroups

Definition* (\pitchfork and \sim)

- 1) $L \cap H \iff \overline{L \cap SHS}$ is compact $\text{for any compact subset } S \subset G$ 2) $L \sim H \Longleftrightarrow \exists \text{ compact subset } S \subset G.$
- such that $L \subset SHS$ and $H \subset SLS$.

Example (abelian case) $G = \mathbb{R}^n$; L, H subspaces $L \cap H \iff L \cap H = \{0\}.$ $L \sim H \iff L = H.$

T. Kobayashi, Criterion for proper actions on homogeneous spaces ..., J. Lie Theory 6 (1996) 147-163.

\pitchfork and \sim (meaning)

$$L \quad \subset \quad \begin{array}{c} G \\ \text{loc compact group} \end{array} \supset \quad H$$

Meaning of \pitchfork : If both L and H are closed subgroups, then

$$L \pitchfork H \iff L \curvearrowright G/H$$
 proper action \updownarrow symmetric relation $\Leftrightarrow H \curvearrowright L$ $\Leftrightarrow H \curvearrowright G/L$ proper action

 \sim defines an equivalence relation suitable for \pitchfork

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

Discontinuous duality theorem

G: locally compact topological group, separable

 $G \supset H$ subset

 $\rightsquigarrow \pitchfork (H : G) := \{L : L \pitchfork H\}$ discontinuous dual

<u>Theorem F</u> (discontinuous duality thm*. TK '96, Yoshino '07**) Any subset H is determined uniquely by $\pitchfork(H:G)$ up to the equivalence relation \sim .

^{*} T. Kobayashi, Criterion for proper actions ..., J. Lie theory 6 (1996) 147-163. ... reductive case

^{**} T. Yoshino, Discontinuous duality theorem, Internat. J. Math. 18 (2007), pp. 887–893. · · · loc. compact gp

We reformulate Problem 2 in this generality.

General Problem 2' Find a handy criterion for two subsets $L, H \subset G$ to satisfy

 $L \cap H$ (properness criterion)

up to the equivalence relation $H \sim H'$.

Shall explain the solution when G is a real reductive group.

We reformulate Problem 2 in this generality.

General Problem 2' Find a handy criterion for two subsets $L, H \subset G$ such that $L \cap H$ (resp. $H \sim H'$).

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition of a real reductive group G $W \equiv W(\Sigma(\mathfrak{g},\mathfrak{a}))$: Weyl group.

 μ : $G \to \mathfrak{a}/W$: Cartan projection

Example
$$G = GL(n, \mathbb{R}), K = O(n), \mathfrak{a} \simeq \mathbb{R}^n, W \simeq \mathcal{S}_n.$$

$$\mu: \frac{GL(n, \mathbb{R})}{g} \longrightarrow \mathbb{R}^n/\mathfrak{S}_n$$

$$g \mapsto \frac{1}{2}(\log \lambda_1, \cdots, \log \lambda_n)$$
Here, $\lambda_1 \geq \cdots \geq \lambda_n (>0)$ are the eigenvalues of ${}^t gg$.

We reformulate Problem 2 in this generality.

General Problem 2' Find a handy criterion for two subsets $L, H \subset G$ such that $L \cap H$ (resp. $H \sim H'$).

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition of a real reductive group G $W \equiv W(\Sigma(\mathfrak{g},\mathfrak{a}))$: Weyl group.

 $\mu: G \to \mathfrak{a}/W$: Cartan projection

TK('89, '96) and Benoist('96) proved:

Theorem G (properness criterion) *

- (1) $L \sim H$ in $G \iff \mu(L) \sim \mu(H)$ in a. (2) $L \pitchfork H$ in $G \iff \mu(L) \pitchfork \mu(H)$ in a.

non-commutative

abelian

T. Kohavashi. Math. Ann. (1989): J. Lie Theory 6 (1996) 147-163.; Y. Benoist, Ann. Math., 144 (1996) 315-347.

We reformulate Problem 2 in this generality.

General Problem 2' Find a handy criterion for two subsets $L, H \subset G$ such that $L \cap H$ (resp. $H \sim H'$).

 $G = K \exp(\mathfrak{a})K$: Cartan decomposition of a real reductive group G $W \equiv W(\Sigma(\mathfrak{g},\mathfrak{a}))$: Weyl group.

 $\mu: G \to \mathfrak{a}/W$: Cartan projection

TK and Benoist proved:

Theorem G (properness criterion) *

- (1) $L \sim H$ in $G \iff \mu(L) \sim \mu(H)$ in a. (2) $L \pitchfork H$ in $G \iff \mu(L) \pitchfork \mu(H)$ in a.

non-commutative

abelian

Special cases include

⇒ in (1): Uniform error estimates of eigenvalues when a matrix is perturbed.

 \Leftrightarrow in (2): Criterion for proper actions.

^{*} T. Kobayashi, Math. Ann. (1989); J. Lie Theory 6 (1996) 147–163.; Y. Benoist, Ann. Math., 144 (1996) 315–347.

Properness criterion (Theorem G)

Properness criterion — <u>special case (*H*, *L* reductive)</u>

For a reductive subgroup G' in G, the Cartan projection of G' takes the form $\mu(G') = W \cdot \alpha_{G'}$ in α (after conjugation of G' in G):

$$\begin{split} \mathfrak{g} &= \mathfrak{k} + \mathfrak{p} \supset \mathfrak{p} \underset{\text{max abelian}}{\supset} \mathfrak{a} \\ \cup \ \cup \ \cup \ \cup \ \cup \ \cup \\ \mathfrak{g}' &= \mathfrak{k}' + \mathfrak{p}' \supset \mathfrak{p}' \underset{\text{max abelian}}{\supset} \mathfrak{a}_{G'} := \mathfrak{a} \cap \mathfrak{g}'. \end{split}$$

A special case of Theorem G includes:

Theorem G'(TK '89)* Assume $H, L \subset G$ are reductive subgroups. $L \cap G/H$ proper $\iff \alpha_H \cap W \cdot \alpha_L = \{0\}$ in α .

Remark $\mu(H) \pitchfork \mu(L)$ in $\mathfrak{a} \iff \mathfrak{a}_H \cap W \cdot \mathfrak{a}_L = \{0\}$.

^{*} Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989), 249–263.

Expanding H in a group G by compact set S

 $G \supset H$ S: compact subset

Criterion for the Calabi-Markus phenomenon

Theorem A (Calabi–Markus, '62)* (G, H) = (O(n + 1, 1), O(n, 1)). Then G/H does not admit an infinite discontinuous group.

Corollary of Thm G (criterion of Calabi–Markus phenomenon)

 $G \supset H$ pair of real reductive Lie groups. Then one has the following equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv):

- (i) G/H admits a discontinuous group $\Gamma \simeq \mathbb{Z}$.
- (ii) G/H admits an infinite discontinuous group Γ .
- (iii) $G \nsim H$.
- (iv) $\operatorname{rank}_{\mathbb{R}} G > \operatorname{rank}_{\mathbb{R}} H$.

(i)
$$\Longrightarrow$$
 (ii) \Longrightarrow (iii) \Longrightarrow Cartan decomposition (iv) \Longrightarrow Theorem G (i)

E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76. Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989), 249-263.

Another application: proper action of $SL(2,\mathbb{R})$ on G/H

- There are finitely many homomorphisms $\phi: SL(2,\mathbb{R}) \to G$ up to inner automorphisms.
- Okuda (2012)* classified all the irreducible symmetric spaces G/H and ϕ such that $\phi(SL(2,\mathbb{R}))$ acts properly on G/H.
- Proof is based on the properness criterion (Theorem G') and on the Dynkin–Kostant classification of nilpotent orbits.
- The above symmetric spaces G/H admit a discontinuous group $\Gamma \simeq \pi_1(\text{ }) (g \geq 2)$ and vice versa*.

^{*} T. Okuda, Classification of semisimple symmetric spaces with proper \$L(2, \mathbb{R})\tag{-actions}, J. Differential Geom. 94 (2013).

Plan of Lecture 2

Properness Criterion and its Quantification

- Proper Actions
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ -orbits

Deformation vs rigidity in the Riemannian setting

Reminder in the Riemannian setting

Deformation theory

The Teichmüller space describes the variations of complex structures (or hyperbolic structures) of

the Riemannn surface
$$\Sigma_g = \bigcirc \square \square \square \simeq \Gamma \backslash G/K$$
,

where

$$(\Gamma, G, K) = (\pi_1(\Sigma_g), PSL(2, \mathbb{R}), PSO(2)).$$

The dimension of (non-trivial) deformations is 6g - 6 if $g \ge 2$.

 Rigidity theorem (Selberg, Weil, Mostow, Prasad, Margulis, Zimmer, ...)

Deformation vs rigidity in the Riemannian setting

- Deformation in the Riemannian setting (previous slide) Teichmüller theory is for X = G/K of 2-dimension.
- Rigidity (Selberg, Weil, Mostow, Prasad, Margulis, Zimmer, ...)
 G: (non-compact) simple Lie group with Lie algebra g,
 X = G/K irreducible Riemannian symmetric space.

Theorem H (Selberg–Weil's local rigidity in the Riemannian setting) * If $\dim X > 2$ (*i.e.*, $\mathfrak{g} \neq \mathfrak{sl}(2,\mathbb{R})$), then no cocompact discontinuous group Γ for X admits a continuous deformation.

In contrast, a discovery** in the non-Riemannian case: Flexibility of cocompact discontinuous groups may happen for arbitrary higher dimensions!

^{*} A. Weil, On discrete subgroups of Lie group, II, Ann. Math., (1962).

^{**} TK. JGP (1993): Math. Ann. (1998).

Generalities: Deformation of quotients $\Gamma \setminus X = \Gamma \setminus G/H$

Formulation

Generalities: Deformation of quotients $\Gamma \setminus X = \Gamma \setminus G/H$

Formulation

$$\Gamma \qquad \stackrel{\varphi}{\hookrightarrow} \qquad \qquad G \stackrel{\wedge}{\sim} X = G/H$$
fix fix

Vary a homomorphism φ

 \rightsquigarrow Can we say that $\varphi(\Gamma) \setminus X$ is a deformation of $\Gamma \setminus X$?

Generalities: Deformation of quotients $\Gamma \setminus X = \Gamma \setminus G/H$

Formulation

$$\Gamma \qquad \stackrel{\varphi}{\hookrightarrow} \qquad \qquad G \stackrel{\wedge}{\sim} X = G/H$$
fix fix

Vary a homomorphism φ \leadsto Can we say that $\varphi(\Gamma) \setminus X$ is a deformation of $\Gamma \setminus X$?

We need to consider homomorphisms φ through which Γ acts properly discontinuously on X.

Deformation of $\Gamma \backslash G/H$ (formulation)

Assume G acts faithfully on X = G/H. Fix a discrete subgroup Γ . Formulate* "deformation" of $\Gamma \backslash G/H$ by varying $\varphi \colon \Gamma \to G$.

$$R(\Gamma, G; X) := \{ \varphi \colon \Gamma \overset{\text{injective}}{\to} G \mid \varphi(\Gamma) \overset{\curvearrowright}{\to} X \text{ properly discontinuous} \}.$$

$$\operatorname{Aut}(\Gamma) \curvearrowright R(\Gamma, G; X) \curvearrowright \operatorname{Int}(G).$$

Definition (Higher Teichmüller space and moduli space)*

$$\mathcal{T}(\Gamma, G; X) = R(\Gamma, G; X) / \operatorname{Int}(G),$$

$$\mathcal{M}(\Gamma, G; X) = \operatorname{Aut}(\Gamma) \backslash R(\Gamma, G; X) / \operatorname{Int}(G).$$

^{*} T. Kobavashi, JGP (1993), Math. Ann., (1998); see also TK, Discontinuous groups for non-Riemannian homogeneous spaces. Mathematics Unlimited — 2001 and Beyond, pages 723-747. Springer-Verlag, 2001.

Classical example: $\Sigma_g \simeq (\sim \sim \cdots \sim) (g \geq 2)$

$$R(\Gamma, G; X) := \{ \varphi \colon \Gamma \stackrel{\text{injective}}{\to} G | \varphi(\Gamma) \stackrel{\sim}{\to} X \text{ properly discontinuous} \}.$$

<u>Definition</u> (previous slide)

$$\mathcal{T}(\Gamma, G; X) = R(\Gamma, G; X) / \text{Int}(G),$$

 $\overline{\mathcal{T}(\Gamma, G; X)} = R(\Gamma, G; X) / \operatorname{Int}(G),$ $\mathcal{M}(\Gamma, G; X) = \operatorname{Aut}(\Gamma) \backslash R(\Gamma, G; X) / \operatorname{Int}(G).$

Example Let
$$G := PSL(2,\mathbb{R}) \supset K := PSO(2)$$
, and $\Gamma := \pi_1(\text{Corr}) \subset G \quad (g \ge 2)$.

Then

 $\mathcal{T}(\Gamma,G;X)=$ Teichmüler space of the Riemann surface Σ_g , $\mathcal{M}(\Gamma,G;X)=$ Moduli space of the Riemann surface Σ_g .

Deformation of quotients $\Gamma \setminus X = \Gamma \setminus G/H$

Formulation

$$\Gamma \qquad \stackrel{\varphi}{\hookrightarrow} \qquad \qquad G \stackrel{\wedge}{\sim} X = G/H$$
fix
$$fix$$

Vary an injective homomorphism φ \leadsto Can we say that $\varphi(\Gamma) \setminus X$ is a deformation of $\Gamma \setminus X$?

- Two problems
 - existence of nontrivial deformation φ ;
 - <u>stability of proper actions under deformation</u>.

Small deformation of \mathbb{Z}^{n}

Natural action of \mathbb{Z} on \mathbb{R} generated by

$$x \mapsto x + 1$$

Deformation A	$x \mapsto x + (1 + \varepsilon)$
Deformation B	$x \mapsto (1 + \varepsilon)x + 1$

Quotient space $\mathbb{Z}\backslash\mathbb{R}$

Proper action:

preserved!

destroyed!

Small deformation of $\mathbb{Z}^{\mathbb{Z}}\mathbb{R}$: Group theoretic interpretation

$$G := \operatorname{Aff}(1, \mathbb{R}) = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{R}^{\times}, b \in \mathbb{R} \}$$
$$H := \{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} : a \in \mathbb{R}^{\times} \}$$

 $\Gamma := \mathbb{Z}$ acts on $X := G/H \simeq \mathbb{R}$ via

$$\varphi \colon \mathbb{Z} \to G, \quad n \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n.$$

Deformation A
$$x \mapsto x + (1 + \varepsilon) \leftrightarrow \varphi_{\varepsilon}^{A}(1) = \begin{pmatrix} 1 & 1 + \varepsilon \\ 0 & 1 \end{pmatrix}$$

Deformation B
$$x \mapsto (1+\varepsilon)x + 1 \leftrightarrow \frac{\varphi_{\varepsilon}^{B}}{0}(1) = \begin{pmatrix} 1+\varepsilon & 1\\ 0 & 1 \end{pmatrix}$$

Both $\varphi_{\varepsilon}^{A}$ and $\varphi_{\varepsilon}^{B} \in \operatorname{Hom}(\Gamma, G)$ are "small deformations" of φ . Γ does not act on X properly discontinuously via $\varphi_{\varepsilon}^{B}$ ($\varepsilon \neq 0$).

3-dimensional anti-de Sitter manifold AdS³

$$SL(2,\mathbb{R}) = \{ g = \begin{pmatrix} x_1 + x_4 & -x_2 + x_3 \\ x_2 + x_3 & x_1 - x_4 \end{pmatrix} : \det g = 1 \}$$
$$= \{ x \in \mathbb{R}^4 : x_1^2 + x_2^2 - x_3^2 - x_4^2 = 1 \}$$

has a Lorentzian structure induced from

$$\mathbb{R}^{2,2} = (\mathbb{R}^4, dx_1^2 + dx_2^2 - dx_3^2 - dx_4^2),$$

which has a constant sectional curvature -1. Thus one may identify

$$G := SL(2, \mathbb{R}) \simeq AdS^3$$
 (anti-de Sitter space).

The direct group $G \times G$ acts on AdS^3 as isometries on

$$(G \times G)/\operatorname{diag} G \simeq \operatorname{AdS}^3$$

Any discrete subgroup of G acts properly discontinuously on G from the left, yielding an anti-de Sitter manifold

$$\Gamma \setminus AdS^3 = \Gamma \setminus G \simeq (\Gamma \times \{e\}) \setminus G \times G / \operatorname{diag} G.$$

A conjecture of Goldman

$$\Gamma \subset G = SL(2,\mathbb{R}) \simeq AdS^3$$
 (anti-de Sitter space)

$$\rightsquigarrow (\Gamma \times \{e\}) \setminus (G \times G) / \operatorname{diag} G = \Gamma \setminus \operatorname{AdS}^3$$
 is an anti-de Sitter mfd.

Deform $\Gamma \times \{e\}$ by considering a 'graph'

$$\Gamma_{\rho} := \{ (\gamma, \rho(\gamma)) : \gamma \in \Gamma \} \subset G \times G,$$

where $\rho \colon \Gamma \to G$ is a homomorphism.

Note that $\Gamma_1 \simeq \frac{\Gamma \times \{e\}}{}$ where 1 denotes the trivial homomorphism.

Conjecture (Goldman 1985) Suppose $\Gamma \setminus G$ is compact. If ρ is sufficiently 'close to' **1**, then Γ_{ρ} acts properly discontinuously on $(G \times G) / \operatorname{diag} G \simeq G$.

... Different situation from the deformation of \mathbb{Z}^{n} \mathbb{R} .

^{*} W. Goldman, Nonstandard Lorentz space forms, J. Differential Geometry 21 (1985), pp. 301-308.

Stability of properly discontinuous action

Theorem I (K- 1998)* Let $\Gamma \subset G \subset G' \subset G \supset H$ such that $G' \cap G/H$ properly. If $\rho_1 \times \rho_2 : \Gamma \to Z_G(G') \times Z_G(H)$ is 'close to' **1**, then $\Gamma_{(\rho_1,\rho_2)} \cap X$ properly discontinuously.

$$\Gamma_{(\rho_1,\rho_2)} := \{ (\gamma \rho_1(\gamma), \rho_2(\gamma)) : \gamma \in \Gamma \} \subset G \times G.$$

Applying Theorem E to $H = \{e\}$ and $G' = G = PSL(2, \mathbb{R})$, one sees

Corollary* Goldman's conjecture (1985) is true.

Since then, rapid developments include

- Solvable case (e.g., $\mathbb{Z}^{\curvearrowright}\mathbb{R}$)

 TK-Nasrin (2006), Baklouti and his collaborators, Yoshino, ...
- Reductive case
 Kassel (2012), Guéritard–Guichard–Kassel–Wienhard, Kannaka (2023), . . .

^{*} T. Kobayashi, "Deformation of compact Clifford-Klein forms of indefinite ...", Math. Ann., 310 (1998), pp. 395-409.

Higher dimensional deformation ("Teichmüller theory")

(1)
$$\Gamma^{\frown}G/K \iff (\Gamma \times 1)^{\frown}(G \times G)/\triangle G$$
 (2)

 $\Gamma \subset G$ simple Lie gp

Theorem H (Selberg–Weil's local rigidity, 1962) $^{\exists}$ uniform lattice Γ admitting continuous deformations for (1) $\iff G \approx SL(2,\mathbb{R})$ (loc. isom).

Theorem J (local rigidity in the non-Riemannian setting '98) ** \exists uniform lattice Γ admitting continuous deformations for (2) $\iff G \approx SO(n+1,1) \text{ or } SU(n,1) \ (n=1,2,3,\ldots$).

trivial representation is not isolated in the unitary dual (not having Kazhdan's property (T))

^{**} T. Kobayashi. "Deformation of ··· " Math. Ann. (1998), 305–409.

Sketch of proof for Theorems I and J

Theorem J (local rigidity in the non-Riemannian setting)** \exists uniform lattice Γ admitting continuous deformations for (2) $\iff G \approx SO(n+1,1)$ or SU(n,1) $(n=1,2,3,\ldots)$.

Local rigidity of $\Gamma \cap G/H$ in the non-Riemannian setting follows from infinitesimal rigidity $H^1(\Gamma, \mathfrak{g}) = 0$.

Deformation of $\Gamma \backslash G/H$

Need to prove that proper discontinuity is preserved under small deformation in the reductive case.

Idea: Use properness criterion (Theorem G).

Further examples for O(8,8)/O(8,7)

Construct compact standard quotients from Lecture 1.

Example (TK '96)* ³ 15-dimensional compact manifold having pseudo-Riemannian signature (8,7) with sectional curvature −1.

Take
$$L := Spin(8,1) \hookrightarrow G = O(8,8) \curvearrowright X = O(8,8)/O(8,7)$$
.

Testing deformations (bending constructions) (Kannaka et al. 2023)**

- 1) $\Gamma \subset L \leadsto No$ continuous deformation of $\Gamma \backslash X$.
- 2) ${}^{\exists}\Gamma \subset Spin(6,1) \ (\subset L) \leadsto {}^{\exists}$ continuous deformation φ such that $\varphi(\Gamma)$ is a discont subgroup for X and is Zariski dense in G.
- 3) ${}^{\exists}\Gamma = \pi_1(\bigcirc) \hookrightarrow G$ such that $\varphi(\Gamma)$ is a discontinuous group for X and is Zariski dense in G.

^{*} T. Kobayashi, Discontinuous groups and Clifford-Klein forms ..., Academic Press 1996, pp.99-165.

^{***} Johnson-Milson (1987); K. Kannaka-T. Okuda-K. Toio, arXiv:2309.0833.

Plan of Lecture 2

Properness Criterion and its Quantification

- Proper Actions
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ -orbits

Quantify proper actions

<u>Definition</u> A continuous action $G \cap X$ is called <u>proper</u> if the subset $G_S := \{g \in G : S \cap gS \neq \emptyset\}$ is compact for any compact subset $S \subset X$.

Quantify proper actions

<u>Definition</u> A continuous action $G \cap X$ is called <u>proper</u> if the subset $G_S := \{g \in G : S \cap gS \neq \emptyset\}$ is compact for any compact subset $S \subset X$.

Reminder: properness criterion (Theorem G)

Sharpness constant (c, C) **for** X = G/H

$G \supset H$ real reductive groups

<u>Definition</u> (Strongly proper action)* We say subgroup Γ of G is sharp for X if $\exists c \in (0,1]$ and $C \ge 0$ such that $||\mu(\gamma) - \mu(H)|| \ge c||\mu(\gamma)|| - C$.

- Γ is sharp for $X \Longrightarrow \Gamma^{\frown} X$ properly discontinuously.
- Well-behaved under deformation of Γ .

^{*} F. Kassel-T. Kobayashi, Poincaré series for non-Riemannian locally symemtric spaces, Adv. Math., 2016. 123-226.

Sharpness (strongly proper action) vs proper action

• properness criterion uses

• sharpness definition uses

Plan of Lecture 2

Properness Criterion and its Quantification

- Proper Actions
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ-orbits

Counting : $\Gamma \cdot x \cap B_R$ in the Riemannian manifold

Classical Riemannian setting $\Gamma \curvearrowright X$ isometry

 $\underline{B_R}$: ball of radius R from a base point $x_0 \in X$

 $\overline{\Gamma \cdot x}$: Γ -orbit through $x \in X$

$$N_{\Gamma}(x;R) := \#(\Gamma \cdot x \cap B_R)$$

Counting : $\Gamma \cdot x \cap B_R$ in the Riemannian manifold

Classical Riemannian setting $\Gamma^{\curvearrowright} X$ isometry

 B_R : ball of radius R from a base point $x_0 \in X$

 $\Gamma \cdot x : \Gamma$ -orbit through $x \in X$

$$N_{\Gamma}(x;R) := \#(\Gamma \cdot x \cap B_R)$$

Comparison with volume $vol(B_R)$ in the Riemannian setting.

Proposition (counting ≤ volume)

Let Γ be any discrete group of isometries of a complete Riemannian manifold X.

$$\Rightarrow \quad \forall x \in X, \, \exists c > 0$$

$$\sup_{R>0} \frac{N_{\Gamma}(x;R)}{\operatorname{vol}(B_{R+C})} < \infty.$$

Counting: $\Gamma \cdot x \cap B_R$ in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space

 \rightsquigarrow definition of "ball" B_R needs to be modified (the *G*-invariant "metric" is indefinite)

 B_R : ball of "pseudo-radius" R from a base point $x_0 \in X$

 $\Gamma \cdot x : \Gamma$ -orbit through $x \in X$

 $N_{\Gamma}(x;R) := \#(\Gamma \cdot x \cap B_R)$

^{*} F. Kassel and TK. Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123–236.

pseudo-ball for AdS³ (Example)

$$X = AdS^3 \simeq \{x \in \mathbb{R}^4 : x_1^2 + x_2^2 - x_3^2 - x_4^2 = 1\} \subset \mathbb{R}^{2,2}$$

• pseudo-distance ||x|| of x from the origin o := (1,0,0,0)

$$\cosh ||x|| = x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

• Volume of the pseudo-ball B_R with pseudo-radius R.

$$\mathbf{B}_R = \{ x \in X : x_1^2 + x_2^2 + x_3^2 + x_4^2 \le \cosh R \}$$

$$vol(B_R) = 4\pi^2 (\sinh \frac{R}{2})^2 \sim 4\pi^2 e^R$$
.

$$N_{\Gamma}(x;R) = \#(\Gamma \cdot x \cap B_R).$$

It may grow faster than $vol(B_R)$ even if Γ is a discont gp!

Counting: $\Gamma \cdot x \cap B_R$ in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space \rightsquigarrow definition of "ball" B_R needs to be modified (the G-invariant "metric" is indefinite)

> B_R : ball of "pseudo-radius" R from a base point $x_0 \in X$ $\Gamma \cdot x : \Gamma$ -orbit through $x \in X$ $N_{\Gamma}(x;R) := \#(\Gamma \cdot x \cap B_R)$

Eskin–McMullen, ...: Γ lattice of $G, x \in X$ special position Remark: $N_{\Gamma}(x;R) = \infty$ for $x \in X$ in generic position In fact Γ acts ergodically on X.

^{*} F. Kassel and TK. Poincaré series for non-Riemannian locally symmetric spaces. Adv. Math. 287. (2016), pp.123–236.

Counting : $\Gamma \cdot x \cap B_R$ in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space

 \rightsquigarrow definition of "ball" \underline{B}_R needs to be modified (the G-invariant "metric" is indefinite)

 $\underline{B_R}$: ball of "pseudo-radius" R from a base point $x_0 \in X$ $\Gamma \cdot x$: Γ -orbit through $x \in X$ $N_\Gamma(x;R) := \#(\Gamma \cdot x \cap B_R)$

- Eskin–McMullen, . . . : Γ lattice of G, $x \in X$ special position Remark: $N_{\Gamma}(x;R) = \infty$ for $x \in X$ in generic position In fact Γ acts ergodically on X.
- Kassel–TK*: Γ discontinuous group for X, $x \in X$ general Upper estimates of $N_{\Gamma}(x;R)$ uniformly with respect to $x \in X$ and deformation of Γ (Lecture 3).

^{*} F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123–236.

Counting $N_{\Gamma}(x;R) = \#(\Gamma \cdot x \cap B_R)$ for G/H

Theorem K^* Let X = G/H be a semisimple symmetric space, and B_R a ball with pseudo-distance R from the origin. Let Γ be a sharp discontinuous group for X. Then $\exists a > 0$, $\exists A > 0$ such that

$$N_{\Gamma}(x;R) \le Ae^{aR}$$
 $({}^{\forall}R > 0).$

Remark (1) (non-symmetric case, 2023)** Theorem K can be extended for any reductive homogeneous space.

(2) (Kannaka 2023)*** For any function F(t) (*e.g.*, $\exp(e^t)$), there exists a non-sharp discontinuous group Γ for $X = \operatorname{AdS}^3$ s.t.

$$\sup_{R>0} \frac{N_{\Gamma}(x;R)}{F(\operatorname{vol} B_R)} = \infty.$$

^{*} F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123–236.

^{** -,} Infinite multiplicity for Poincare series ..., preprint.

^{*} K. Kannaka. (Ph. D. thesis, to appear in Selecta math.)

Global Analysis of Locally Symmetric Spaces with Indefinite Metric

Plan

Lecture 1

Local to Global in Non-Riemannian Geometry (Jan 1st)

Lecture 2

Properness Criterion and its Quantification

(Jan 2nd)

- Proper Actions and Discontinuous Groups
- Properness Criterion
- Deformation vs local rigidity
- Quantifying Properness ("sharp" action)
- Counting of Γ-orbits

Lecture 3

Global Analysis on Locally Symmetric Spaces Beyond the Riemannian Case

(Jan 3rd)

Some references for Lecture 2

- Properness Criterion for Homogeneous Spaces of Reductive Groups
 - T. Kobayashi (Math Ann '89, J. Lie Theory 1996)
 - Y. Benoist (Ann Math 1996)
- Deformation theory

Goldman (JDG, 1985); TK, (Math. Ann, 1998); Kassel (Math Ann 2012), Kannaka–Okuda–Tojo (arXiv:2309.08331).

- Quantification of proper action
 - Weakening proper actions via volume estimates
 Y. Benoist–TK, Tempered homogeneous spaces I, II, III, IV (2015–2023)
 - Strengthening proper action ('sharpness constant')
 F. Kassel and T. Kobayashi,
 Poincaré series for non-Riemannian locally symmetric spaces.
 Adv. Math. 287, (2016), pp.123–236.

Thank you very much for your attention!