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Global Analysis of Locally Symmetric Spaces
with Indefinite Metric
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Reminder- - - proper [properly discontinuous, free] action

action
L 7 X
loc. compact group loc. compact Hausdorff space
X L
subsetUu ~ U
S Ls ={yeL:ySNS + @}

S ={x} ~ Ly =L, =stabilizer of x

Definition
L™ Xis proper & Lgiscompact YS:compact.
LY X is properly discont <= Lg is finite S : compact.

L™ X is free = #L,=1 Vx € X.




Covering transformation and properly discontinuous action

Reminder from Lecture 1

r~ x properly discontinuously and freely
C* manifold

= The quotient '\ X carries a C*-manifold structure
such that the covering X — I'\X is smooth.

Example (Riemann surface X, of genus g > 2)
H={zeC:Imz> 0}
1l covering

surface group




Properly discontinuous actions: Riemannian geometry
(X, g) : a complete Riemannian manifold,
G = Isom(X) : the group of isometries,
I'c G subgroup.

Proposition 2 (Riemannian geometry) Equivalent (i) < (ii):
(i) ' is a discrete subgroup of G.
(ii) T acts properly discontinuously on X.

(i) = (i) easy.
(i) = (ii) (non-trivial) Use an Ascoli-Arzela type argument
to the metric space (X, g).
This proof depends heavily on the positivity of g. O

Question What if X is a Eseudo-Riemannian manifold? I




Calabi—-Markus phenomenon (1962) from Lecture 1

Riemannian geometry

Actions of discrete subgroups of isometries

<= isometric properly discontinuous actions

pseudo-Riemannian geometry
Actions of discrete subgroups of isometries

=
=

isometric properly discontinuous actions

Let (G,H) = (O(n,1),0(n — 1, 1)).

r c G Y GH={Z+ -+x2-x, =1}cR"

discrete isometry de Sitter spag;

Theorem A (Lect. 1) (Calabi—Markus)® Only a finite subgroup
can act properly discontinuously on G/H.

*
E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.



Properness criterion

General Problem 2 (Lecture 1)

(1) Given an action of a discrete group I" on X,
find a “useful” criterion for the action to be
properly discontinuous.

More generally

(2) Given an action of a Lie group L on X,
find a “useful” criterion for the action to be proper.
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Elementary consequences of proper actions

L : locally compact group.
X : locally compact, Hausdorff space.

Proposition If L acts Erogerlx on X, then one has
(1) L\X is Hausdorff in the quotient topology;

(2) Any orbit L - x is closed in X;

(3) Any isotropy subgroup L, is compact.

° Hausdorff = T Obvious
H = 2
global local

e The conditions (2) and (3) are “local” and easily verified.

e However, (1) ~ (3) do not guarantee the properness of the
action.
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Delicate examples (Hausdorff = (7))

aER>0mX=R2\{(8)}, (;)'—’(Zx) JL

a

y
This action is free, and any orbit is closed. j r

But the action is not proper.
S Sna-S

The quotient space R.o\X is (1) but not Hausdorff.

Roo\X = ><




Delicate examples (Hausdorff = (7))

aeR>0mX=R2\{(8)}’ (;)'—’(im) JL

a

y
This action is free, and any orbit is closed. j r

But the action is not proper, and R\ X is not Hausdorff.

Interpretation in group language

A:{(g a(_)l):a>0} c G=SLQ2,R) > N:{((l) ’;):neR}
0
(g a_l)eA ™~ GIN
) 2 z|

ae Ryy 7Y R2\ {(8)} (;) - (g;)

A" GIN non-proper < NYG/A non-proper (Lorentz isometry)




Lipsman’s conjecture (1995)

Setting X =G/H where L c G > H
closed subgp Lie gp  closed subgp

Lipsman’s conjecture (1995)° G: 1-conn nilpotent Lie group

.
L™ X free &= L"~ X proper

True : G: 2-step nilpotent Lie group (Nasrin '01)
G: 3-step nilpotent Lie group (Baklouti ‘05, Yoshino '07)**

* R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25-39.
** A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).



Lipsman’s conjecture (1995)

Setting X =G/H where L c G > H
closed subgp Lie gp  closed subgp

Lipsman’s conjecture (1995)° G: 1-conn nilpotent Lie group

?
L™ X free &< L X proper

True : G: 2-step nilpotent Lie group (Nasrin '01)
G: 3-step nilpotent Lie group (Baklouti ‘05, Yoshino '07)**
False : G: 4-step nilpotent Lie group (Yoshino '05

)***

L=R>"¥X=~R> (nilmanifold)

This is a free action on a nilpotent homogeneous space X = G/H
such that all L-orbits are closed. However, L\X is not Hausdorff.

* R. Lipsman, Proper actions and a cocompactness condition, J. Lie Theory 5 (1995), 25-39.
** A. Baklouti, Internat. J. Math. 16 (2005); T. Yoshino, Internat. J. Math. 18 (2007).
*** T. Yoshino, A counterexample to Lipsman's conjecture, Internat. J. Math. 16 (2005), pp. 561-566.
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Problem ForL c G > H,
find a criterion that L”~ G/H properly.




Expanding H in a group G by compact set S

GDOH
S: compact subset
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M and ~ for locally compact group G
L c G > H

Idea: forget even that L and H are subgroups

Definition* (th and ~)
1) LhH < LNSHS is compact
for any compact subset S ¢ G
2) L ~ H < ¥ compact subset S c G.
suchthat Lc SHS and H c SLS.

Example (abelian case) G =R"; L, H subspaces
LhH < LnH-={0}.
L~H < L=H.

*
T. Kobayashi, Criterion for proper actions on homogeneous spaces - - -, J. Lie Theory 6 (1996) 147-163.



M and ~ (meaning)
L cC G > H

loc compact group

Meaning of r: If both L and H are closed subgroups, then

LhH = L"”G/H proper action
{ symmetric relation { duality
HAhL & H"YG/L proper action

~ defines an equivalence relation suitable for rh
H~H = | HhNL— H AL |




Discontinuous duality theorem

G: locally compact topological group, separable

G D H subset
~» M (H:G):={L:LhH} discontinuous dual

Theorem F (discontinuous duality thm*. TK '96, Yoshino '07**)
Any subset H is determined uniquely by h (H : G)
up to the equivalence relation ~.

* T. Kobayashi, Criterion for proper actions ..., J. Lie theory 6 (1996) 147—163. - -- reductive case

** T. Yoshino, Discontinuous duality theorem, Internat. J. Math. 18 (2007), pp. 887-893. --- loc. compact gp



Properness criterion for reductive groups
We reformulate Problem 2 in this generality.

General Problem 2’ Find a handy criterion for two subsets L, H ¢ G
to satisfy

Lh H (properness criterion)
up to the equivalence relation H ~ H'.

Shall explain the solution when G is a real reductive group.



Properness criterion for reductive groups
We reformulate Problem 2 in this generality.

General Problem 2’ Find a handy criterion for two subsets
L,H c Gsuchthat Lt H (resp. H ~ H').

G = Kexp(a)K: Cartan decomposition of a real reductive group G
W = W(Z(g, a)): Weyl group.

u: G — a/W: Cartan projection

Example G =GL(n,R), K =0®m), a=R" W =S§,.
p: GL@n,R) —R"/G,
g+ 5(ogay,---,logd,)
Here, 1 > --- > 4, (> 0) are the eigenvalues of ‘gg.



Properness criterion for reductive groups
We reformulate Problem 2 in this generality.

General Problem 2’ Find a handy criterion for two subsets
L,H c Gsuchthat Lt H (resp. H ~ H').

G = Kexp(a)K: Cartan decomposition of a real reductive group G
W = W(Z(g, a)): Weyl group.
u: G — a/W: Cartan projection
TK(’89, '96) and Benoist(’96) proved:
Theorem G (properness criterion) *

(1) L~HING & u(lL)~u(H)ina.

2) LAHING < uL)Mhu(H)Iina.

non-commutative abelian

%
T. Kobayashi, Math. Ann. (1989); J. Lie Theory 6 (1996) 147-163. ; Y. Benoist, Ann. Math., 144 (1996) 315-347.



Properness criterion for reductive groups
We reformulate Problem 2 in this generality.

General Problem 2’ Find a handy criterion for two subsets
L,H c Gsuchthat Lt H (resp. H ~ H').

G = Kexp(a)K: Cartan decomposition of a real reductive group G
W = W(Z(g, a)): Weyl group.
u: G — a/W: Cartan projection
TK and Benoist proved:
Theorem G (properness criterion) *

(1) L~HING & u(lL)~u(H)ina.

2) LAHING < uL)Mhu(H)Iina.

non-commutative abelian

Special cases include

= in (1): Uniform error estimates of eigenvalues when a matrix is
perturbed.

& in (2): Criterion for proper actions.

%
T. Kobayashi, Math. Ann. (1989); J. Lie Theory 6 (1996) 147-163. ; Y. Benoist, Ann. Math., 144 (1996) 315-347.



Properness criterion (Theorem G)

s

\ arcsin(c)
w(H)

s

()

IrmH = u@) M u(H) ina

properness criterion

| |

I'"YG/H #(u() N g-nbd of u(H)) < o

properly discontinuously




Properness criterion — special case (H, L reductive)

For a reductive subgroup G’ in G, the Cartan projection of G’ takes
the form u(G’) = W - ag in a (after conjugation of G’ in G):

g=f+poOp D a
max abelian

u u u u U

o=t +p o9 >  ay =ang.
max abelian

A special case of Theorem G includes:

Theorem G’(TK '89)* Assume H, L C G are reductive subgroups.
L™ G/H proper < ayNW-az ={0}in a.

Remark u(H) hu(L)ina < aygnNW-aq, ={0}.

%
Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989), 249-263.



Expanding H in a group G by compact set S

GDOH
S: compact subset




Criterion for the Calabi—-Markus phenomenon

Theorem A (Calabi—-Markus, '62)" (G,H) = (O(n + 1,1),0(n, 1)).
Then G/H does not admit an infinite discontinuous group.

Corollary of Thm G (criterion of Calabi—-Markus phenomenon) **
G D H pair of real reductive Lie groups. Then one has

the following equivalences (i) < (ii) & (iii) & (iv):

(i) G/H admits a discontinuous group I' ~ Z.

(i) G/H admits an infinite discontinuous group I'.

(i) G » H.

(iv) rankg G > rankg H.

(i) = (i) = (i) = iv) = (i)
clear CaH Cartan decomposition Theorem G
MG

%
E. Calabi-L. Markus, Relativistic space forms, Ann. Math., 75, (1962), 63-76.
Kobayashi, Proper action on homogeneous spaces of reductive type, Math. Ann. (1989), 249-263.




Another application: proper action of SL(2,R) on G/H

e There are finitely many homomorphisms ¢: SL(2,R) - G upto
inner automorphisms.

e Okuda (2012)* classified all the irreducible symmetric spaces
G/H and ¢ such that ¢(S L(2,R)) acts properly on G/H.

e Proof is based on the properness criterion (Theorem G’) and on
the Dynkin—Kostant classification of nilpotent orbits.

e The above symmetric spaces G/H admit a discontinuous group
I~ m( ) (g > 2) and vice versa®.

* T. Okuda, Classification of semisimple symmetric spaces with proper $ L(2, R)-actions, J. Differential Geom. 94 (2013).
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Deformation vs rigidity in the Riemannian setting

Reminder in the Riemannian setting
e Deformation theory

The Teichmiuiller space describes the variations of complex
structures (or hyperbolic structures) of

the Riemannn surface X, = ~T'\G/K,
g

where
I, G, K) = (m1(Ze), PSL(2,R), PS O(2)).
The dimension of (non-trivial) deformations is 6g — 6 if g > 2.

e Rigidity theorem (Selberg, Weil, Mostow, Prasad, Margulis,
Zimmer, ...)



Deformation vs rigidity in the Riemannian setting
e Deformation in the Riemannian setting (previous slide)
Teichmuiller theory is for X = G/K of 2-dimension .

¢ Rigidity (Selberg, Weil, Mostow, Prasad, Margulis, Zimmer, ...)
G: (non-compact) simple Lie group with Lie algebra g,
X = G/K irreducible Riemannian symmetric space.

Theorem H (Selberg—Weil’s local rigidity in the Riemannian setting) *
If dimX > 2 (i.e., g # sl(2,R)), then no cocompact
discontinuous group I' for X admits a continuous deformation.

In contrast, a discovery™ in the non-Riemannian case : Flexibility
of cocompact discontinuous groups may happen for arbitrary
higher dimensions!

* A. Weil, On discrete subgroups of Lie group, II, Ann. Math., (1962).

** TK, JGP (1993); Math. Ann. (1998).



Generalities: Deformation of quotients I'\X = I'\G/H
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Generalities: Deformation of quotients I'\X = I'\G/H

Formulation

Y
r — GV X=G/H
. discrete ——m——
fix fix

Vary a homomorphism ¢
~> Can we say that ¢(T') \X is a deformation of '\ X ?

We need to consider homomorphisms ¢ through which I" acts
properly discontinuously on X.




Deformation of '\G/H (formulation)

Assume G acts faithfully on X = G/H. Fix a discrete subgroup I'.
Formulate* “deformation” of I'\G/H by varying ¢: I' — G.

injective

R(I,G;X) :={p: T — G|~ X properly discontinuous}.

Aut(D) YR, G; X)) Int(G).

Definition (Higher Teichmiiller space and moduli space)*
T7@,G:X) = R(I,G;X)/Int(G),
MT,G;X) = Aut(D\RT, G; X)/ Int(G).

%
T. Kobayashi, JGP (1993), Math. Ann., (1998); see also TK, Discontinuous groups for non-Riemannian homogeneous

spaces. Mathematics Unlimited — 2001 and Beyond, pages 723-747. Springer-Verlag, 2001.



Classical example: T, ~ (g>2)

injective

R(I,G;X):={p:T =" G|e@) ™ X properly discontinuous}.

Definition (previous slide)
7T@,G;X)= RT,G;X)/ Int(G),
MT,G;X) = Au(D\RT, G; X)/ Int(G).

Example Let G := PSL(2,R) > K := PSO(2), and

Fi=m(CE=-)CcG (g22).
Then

7(I,G;X)= Teichmiler space of the Riemann surface X,
M, G;X) = Moduli space of the Riemann surface X,.




Deformation of quotients I'\X = I'\G/H

Formulation

Y
r — GV X=G/H
. discrete ~—m-+--- ——-
fix fix

Vary an injective homomorphism ¢
~> Can we say that ¢(T') \X is a deformation of '\ X ?

e Two problems
— existence of nontrivial deformation ¢ ;

— stability of proper actions under deformation.




Small deformation of Z“ “R
Natural action of Z on R generated by

x> x+1

Deformation A x+— x+ (1 +¢)
DeformationB  x+— (1 +&)x + 1

Quotient space Z\R

Deformation A @ Deformation B

& e

clee.

non-Hausdorff

Proper action: preserved! destroyed!



Small deformation of Z“ > R: Group theoretic interpretation

G := Aff(1,R) = {(g’;) caeR*,beR)

H ::{(8 (1)) :a € R*}

I':=Zactson X := G/H ~ R via

¢0:Z— G, n|—>((1)})n.

0 1

l+e 1
0 1

Deformation A x — x+ (1 +&) o ¢ (1) = (1 1+ s)
Deformation B x — (1 +&)x+ 1 & B (1) = (

Both ¢? and ¢? € Hom(T', G) are “small deformations” of .

I" does not act on X properly discontinuously via @2 (e # 0).



3-dimensional anti-de Sitter manifold AdS?

X1+ X4 —X2+X3) . _
SLRR) =(g={ " x1_x4).detg—1}

=xeR': g+ -x3-x] =1}
has a Lorentzian structure induced from
R*? = (R, dx} + dx5 — dxj — dx?),

which has a constant sectional curvature —1.
Thus one may identify

G := SL(2,R) ~ AdS® (anti-de Sitter space).
The direct group G x G acts on AdS® as isometries on
(G x G)/ diag G ~ AdS?

Any discrete subgroup of G acts properly discontinuously on G
from the left, yielding an anti-de Sitter manifold

I\ AdS® = T'\G =~ (I'x {¢} )\G x G/ diag G.



A conjecture of Goldman

I' ¢ G=SL2,R)~AdS® (anti-de Sitter space)

discrete
~» (T x {e} )\(G x G)/ diag G = T'\ AdS® is an anti-de Sitter mfd.
Deform I x {e} by considering a ‘graph’

Iy :={(y,p(y)) 1y €I C G X G,

where p: I' = G is a homomorphism.
Note that I'; ~ I' X {¢} where 1 denotes the trivial homomorphism.

Conjecture (Goldman 1985) Suppose I'\G is compact.
If p is sufficiently ‘close to’ 1, then I, acts
properly discontinuously on (G x G)/ diag G ~ G.

... Different situation from the deformation of Z” ¥ R.

* W. Goldman, Nonstandard Lorentz space forms, J. Differential Geometry 21 (1985), pp. 301-308.



Stability of properly discontinuous action

Theorem | (K-1998)" LetI' ¢ G < G > H

cocompact reductive reductive
such that G’ "~ G/H properly. If p X ps: T = Z;(G) X Zg(H) is
‘close to’ 1, then I, ,») ”~ X properly discontinuously.

Lioron = {yo1(0),p2(1)) 1 y €T} € G X G.
Applying Theorem E to H = {e} and G’ = G = PSL(2,R), one sees

Corollary* Goldman’s conjecture (1985) is true. I

Since then, rapid developments include
e Solvable case (e.g., Z" “R)
TK—Nasrin (2006), Baklouti and his collaborators, Yoshino, ...
o Reductive case
Kassel (2012), Guéritard—Guichard—Kassel-Wienhard, Kannaka (2023), ...

* T. Kobayashi, “Deformation of compact Clifford—Klein forms of indefinite ---”, Math. Ann., 310 (1998), pp. 395-409.



Higher dimensional deformation (“Teichmuller theory”)

| (1) T™VG/K = ITxDVGxG)/AG (2)

| simple Lie gp

Theorem H (Selberg—Weil's local rigidity, 1962)
T uniform lattice I admitting continuous deformations for (1)
— G~SL2,R) (loc.isom).

Theorem J (local rigidity in the non-Riemannian setting 98) **
3 uniform lattice I' admitting continuous deformations for (2)
— G=SOmn+1L,DHorSUMm,1)(n=1,2,3,...,).

<= trivial representation is not isolated in the unitary dual
(not having Kazhdan’s property (T))

EE
T. Kobayashi, “Deformation of ---” Math. Ann. (1998), 305-409.



Sketch of proof for Theorems | and J

Theorem J (local rigidity in the non-Riemannian setting)™*
3 uniform lattice I admitting continuous deformations for (2)
— G=SOmn+1,HorSUmn,1)(n=1,2,3,...,).

Local rigidity of "~ G/H in the non-Riemannian setting
follows from infinitesimal rigidity (I, ) = 0.

Deformation of I'\G/H

Need to prove that proper discontinuity is preserved under
small deformation in the reductive case.

Idea: Use properness criterion (Theorem G).



Further examples for O(8,8)/0(8,7)

Construct compact standard quotients from Lecture 1.

Example (TK '96)* 4 15-dimensional compact manifold having
pseudo-Riemannian signature (8,7) with sectional curvature —1.

Take L := Spin(8,1) = G = 0(8,8) "~ X = 0(8,8)/0(8,7).

Testing deformations (bending constructions) (Kannaka et al. 2023)**

1) I' < L ~»No continuous deformation of I'\ X.
cocompact

2) I < Spin6,1) (c L) ~ ? continuous deformation ¢ such
cocompact

that ¢(I') is a discont subgroup for X and is Zariski dense in G.

El
3) T = mi( )<> G such that ¢(I) is a discontinuous

group for X and is Zariski dense in G.

* T. Kobayashi, Discontinuous groups and Clifford—Klein forms ..., Academic Press 1996, pp.99—165.

** Johnson—Milson (1987); K. Kannaka-T. Okuda—K. Tojo, arXiv:2309.0833.
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Quantify proper actions

Definition A continuous action G RX is called proper if the subset

Gs ={geG:5nNgS + 2}
is compact for any compact subset S C X.

Two “ quantifications ” of properness of the actionon X = G/H:

“asymptotic” volume proper “sharpness condition”
(Benoist—K, ’15) (Kassel-K, ’15)
3 “more proper” 2
spectrum of deformation theory of

G VILA(X) I'\G/H




Quantify proper actions

Definition A continuous action G RX is called proper if the subset

Gs ={geG:5nNgS + 2}
is compact for any compact subset S C X.

Two “ quantifications ” of properness of the actionon X = G/H:
proper “sharpness condition”
(Kassel-K, ’15)
“more proper” 2

deformation theory of
NG/H




Reminder: properness criterion (Theorem G)

s

\ arcsin(c)
w(H)

s

()

IrmH = u@) M u(H) ina

properness criterion

| |

I'"YG/H #(u() N g-nbd of u(H)) < o

properly discontinuously




Sharpness constant (¢, C) for X = G/H

G D H real reductive groups

Definition (Strongly proper action)* We say subgroup I' of G is
sharp for X if 'c € (0,1] and C 2 0 such that
lluCy) — p(E)I = clluy)ll — C.

as

. \' arcsin(c)
R — g u(H)

)

e I'is sharp for X = '~ X properly discontinuously.
e Well-behaved under deformation of I'.

%
F. Kassel-T. Kobayashi, Poincaré series for non-Riemannian locally symemtric spaces, Adv. Math., 2016. 123-226.




Sharpness (strongly proper action) vs proper action

e properness criterion uses

2l

\( arcsin(c)
u(H)

©ouM)

e sharpness definition uses

a

\ arcsin(c)
J(H)

i

©ouM)
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Counting : T' - x N By in the Riemannian manifold

Classical Riemannian setting I'” X isometry
By : ball of radius R from a base point xp € X
I'- x: T-orbit through x € X

Nr(x;R) := #(T - x N Bg)

Example T =7Z% X =R? x=x=(0,0)
m(x;R) ~ 7R* (= volume of Bg)
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Counting : T' - x N By in the Riemannian manifold

Classical Riemannian setting I'” X isometry
By : ball of radius R from a base point xp € X
I'- x: T-orbit through x € X

Nr(x;R) := #(T - x N Bg)

Comparison with volume vol(Bg) in the Riemannian setting.

Proposition (counting < volume)

Let I" be any discrete group of isometries of a complete
Riemannian manifold X.

= YxeX,3>0
Nr(x; R)
r>0 VOl(BRryc)




Counting : I' - x N By in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space
~» definition of “ball” Bg needs to be modified
(the G-invariant “metric” is indefinite)

Bg : ball of “pseudo-radius” R from a base point xo € X
I'- x : T-orbit through x € X
Nr(x;R) := #(I' - x N Bg)

* F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123-236.



pseudo-ball for AdS® (Example)

X=AdS’ = {xeR*:x]+5 - x5 —x; =1} cR*?
e pseudo-distance ||x|| of x from the origin o := (1,0,0,0)
cosh||x|| = x3 + x5 + x5 + x5.

e Volume of the pseudo-ball Bg with pseudo-radius R.

BR:{xEX:x%+x§+x§+xi£coshR}

R
vol(Bg) = 4n°(sinh 5)2 ~ 4r%eR.
e Counting of I"-orbits
Nr(x;R) = #T - x N By).

It may grow faster than vol(Bg) even if I' is a discont gp!



Counting : I' - x N By in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space
~» definition of “ball” Bg needs to be modified
(the G-invariant “metric” is indefinite)

Bg : ball of “pseudo-radius” R from a base point xo € X
I'- x : T-orbit through x € X
Nr(x;R) := #(I' - x N Bg)

e Eskin—McMullen, ...: I' lattice of G, x € X special position
Remark: Nr(x; R) = oo for x € X in generic position
In fact I" acts ergodically on X.

* F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123-236.



Counting : I' - x N By in pseudo-Riemannian manifolds

New setting X = G/H reductive homogeneous space
~» definition of “ball” Bg needs to be modified
(the G-invariant “metric” is indefinite)

Bg : ball of “pseudo-radius” R from a base point xo € X
I'- x : T-orbit through x € X
Nr(x;R) := #(I' - x N Bg)

e Eskin—McMullen, ...: I' lattice of G, x € X special position
Remark: Nr(x; R) = oo for x € X in generic position
In fact I" acts ergodically on X.
e Kassel-TK* : I" discontinuous group for X, x € X general

Upper estimates of Nr(x; R) uniformly
with respect to x € X and deformation of I" (Lecture 3).

* F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123-236.



Counting Nr(x; R) = #(I' - x N Bg) for G/H

Theorem K* Let X = G/H be a semisimple symmetric space,
and By, a ball with pseudo-distance R from the origin.
Let I be a sharp discontinuous group for X. Then

da > 0,74 > 0 such that
Nr(x;R) < AeR (YR > 0).

Remark (1) (non-symmetric case, 2023)** Theorem K can be
extended for any reductive homogeneous space.
(2) (Kannaka 2023)** For any function F(r) (e.g., exp(e')),

there exists a non-sharp discontinuous group I for X = AdS® s.t.
Nr(oR)
sup F(\rrol B — -
R>0

* F. Kassel and TK, Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math. 287, (2016), pp.123-236.

** —, Infinite multiplicity for Poincare series - - -, preprint.

* K. Kannaka, (Ph. D. thesis, to appear in Selecta math.)



Global Analysis of Locally Symmetric Spaces
with Indefinite Metric

Plan
Lecture 1
Local to Global in Non-Riemannian Geometry (Jan 1st)
Lecture 2
Properness Criterion and its Quantification (Jan 2nd)

— Proper Actions and Discontinuous Groups
— Properness Criterion

— Deformation vs local rigidity

— Quantifying Properness (“sharp” action)
— Counting of I'-orbits

Lecture 3
Global Analysis on Locally Symmetric Spaces
Beyond the Riemannian Case (Jan 3rd)



Some references for Lecture 2

e Properness Criterion for Homogeneous Spaces of Reductive
Groups
T. Kobayashi (Math Ann '89, J. Lie Theory 1996)
Y. Benoist (Ann Math 1996)

e Deformation theory

Goldman (JDG, 1985); TK, (Math. Ann, 1998); Kassel (Math
Ann 2012), Kannaka—Okuda—Tojo (arXiv:2309.08331).

¢ Quantification of proper action

— Weakening proper actions via volume estimates
Y. Benoist—TK, Tempered homogeneous spaces I, II, I, IV
(2015-2023)

— Strengthening proper action (‘sharpness constant’)
F. Kassel and T. Kobayashi,
Poincaré series for non-Riemannian locally symmetric spaces.
Adv. Math. 287, (2016), pp.123-236.



http://www.ms.u-tokyo.ac.jp/~toshi/pub/tk2012g.html

Thank you very much for your attention!



