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Happy 75th birthday, Professor Dani!
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Uniform distribution of roots

• Consider the roots µ of the quadratic congruence

µ2 ≡ D (mod m)

with m = 1,2,3, . . . and D > 0 square-free (all will work also for D < 0; it’s easier)

• Define sequence ξ1, ξ2, . . . ∈ T = R/Z by normalised roots µ
m, ordered by

increasing denominator m (choose arbitrary order for terms with same m)

• Hooley (1963): We have uniform distribution mod 1

lim
N→∞

1

N
#
{
j ≤ N : ξj ∈ [a, b) + Z

}
= b− a

• Extension to higher-order polynomial congruences (Hooley 1964); use of modular forms,
Poincaré series (Bykovskii 1984; see also Good 1983); u.d. still holds for m restricted
to primes (Duke, Friedlander, Iwaniec 1995); joint distribution (Zahavi 2020); fits in more
general CRT framework (Kowalski and Soundararajan 2020).
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Randomness mod 1

Given distinct points ξ1, . . . , ξN ∈ T, denote by s1, . . . , sN the corresponding
“gaps” between those points. Gap distribution:

PNf :=
1

N

N∑
n=1

f(Nsn), f ∈ Cb(R≥0) (bounded continuous)

Two point correlation:

RNf :=
1

N

N∑
m,n=1
m 6=n

∑
`∈Z

f(N(ξm − ξn + `)), f ∈ Cc(R) (cmpct supp)

Theorem A. Let ξ1, ξ2, . . . be iid in T (uniformly distributed). Then almost surely

lim
N→∞

PNf =
∫ ∞

0
f(s)e−sds, ∀f ∈ Cb(R≥0)

lim
N→∞

RNf =
∫
R
f(s)ds, ∀f ∈ Cc(R)

“Gap and two-point statistics are Poisson”
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Random matrices

Theorem B. (Wigner 1950s, Gaudin 1961)
Let (ξNn)n≤N the ev’s of A ∈ U(N). Then Haar-a.s.

lim
N→∞

PNf =
∫ ∞

0
f(s) pGaudin(s)ds, ∀f ∈ Cb(R≥0)

lim
N→∞

RNf =
∫
R
f(s)

(
1−

(
sin(πs)

πs

)2)
ds, ∀f ∈ Cc(R)

• The probability density pGaudin(s) is given by a Painlevé transcendent

• Wigner surmise: pGaudin(s) ≈
32

π2
s2e−4s2/πds
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Riemann zeros

A. M. Odlyzko, Math. Comp., 48 (1987), pp. 273-308

• Montgomery (1973) ”The pair correlation of zeros of the zeta function”
• Hejhal (1994, 3-point)
• Rudnick and Sarnak (1996, n-point)
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Polynomials mod 1

Theorem C. (Rudnick & Sarnak, 1998)
Let (ξn) = (ndα mod 1), d ≥ 2. Then for Lebesgue a.e. α,

lim
N→∞

RNf =
∫
R
f(s)ds, ∀f ∈ Cc(R)

• Proof uses averages over Weyl sums and
estimating solutions to polynomial Dio-
phantine equations

• Rudnick, Sarnak & Zaharescu (2001): for
α that are well-approximable by rationals,
proof of convergence of gap distribution PN
for n2α to exponential distribution along
subsequence of N ; for these however
convergence not expected along full se-
quence

• No proofs for PN , nor for RN for explicit
examples of α e.g. for α =

√
2; cf. al-

gorithmic characterization by Heath-Brown
(2010).
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Pair correlation for roots

Theorem D. (JM & Welsh, 2021)
Assume D > 0 is square-free and D 6≡ 1 (mod 4). Then there is an even and
continuous function wD : R→ R≥0, such that

lim
N→∞

RNf =
∫
R
f(s)wD(s) ds, ∀f ∈ Cc(R)

D = 2 N = 106
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Pair correlation for roots

Theorem D. (JM & Welsh, 2021)
Assume D > 0 is square-free and D 6≡ 1 (mod 4). Then there is an even and
continuous function wD : R→ R≥0, such that

lim
N→∞

RNf =
∫
R
f(s)wD(s) ds, ∀f ∈ Cc(R)

D = 3 N = 106
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Pair correlation for roots

Theorem D. (JM & Welsh, 2021)
Assume D > 0 is square-free and D 6≡ 1 (mod 4). Then there is an even and
continuous function wD : R→ R≥0, such that

lim
N→∞

RNf =
∫
R
f(s)wD(s) ds, ∀f ∈ Cc(R)

D = 10 N = 106
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Higher-order statistics

• Define the random counting measure (random point process) on R

ΞN,λ =
N∑
j=1

∑
k∈Z

δN(ξj−ξ+k)

• Here ξ random variable in T distributed according to Borel prob. measure λ

• Example: For any interval I ⊂ R and integer k

P(ΞN,λ(I) = k) = λ({x ∈ T : NI(x,N) = k})

with

NI(x,N) = #{j ≤ N : ξj ∈ x+N−1I + Z}.
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Higher-order statistics

Theorem E. (JM & Welsh, 2021)

For D as above, there exists a random point process Ξ depending only on D

so that, for every Borel probability measure λ on T that is absolutely continuous
with respect to the Lebesgue measure, we have convergence ΞN,λ → Ξ in
distribution as N →∞.

Specifically, for all k1, . . . , kr ∈ Z≥0 and finite intervals I1, . . . , Ir ⊂ R, we have
that

lim
N→∞

λ
({
x ∈ T : NIi(x,N) = ki ∀i

})
= P

(
Ξ(Ii) = ki ∀i

)
and the limit is a continuous function of the endpoints of Ii.

• Implies convergence of (joint) gap distributions
• We also prove convergence of all moments
• Can impose further congruence restrictions on m and µ (leads to different

limit process)
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Basic hyperbolic geometry

• H complex upper half plane, ds2 = dx2+dy2

y2

• boundary ∂H = R ∪ {∞}

• SL(2,R) acts by Möbius transformations

• geodesics, horocycles

• stabiliser Γc = {g ∈ SL(2,R) : gc = c}

• Γ∞ =

{
±
(

1 k
0 1

)
: k ∈ Z

}
• SL(2,Z)\H modular surface

• SL(2,Z)\SL(2,R) ' unit tangent bundle

• c closed geodesic (resp. horocycle) if Γc ∩ SL(2,Z) < SL(2,Z) non-trivial

• Denote by zc the “top” of the geodesic c ∈ H (i.e. the point on c closest to∞; in general zγcl 6= γzcl )
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Key insight: the geometry of roots

Theorem F. (JM & Welsh, 2021)
For D as above, there exists a finite set of geodesics {c1, . . . , ch} such that:

(i) For any m > 0 and µ (mod m) satisfying µ2 ≡ D (mod m), there is a
unique l and double coset Γ∞γΓcl ∈ Γ∞\SL(2,Z)/Γcl such that

zγcl ≡
µ

m
+ i

√
D

m
(mod Γ∞). (*)

(ii) Conversely, given l and double coset Γ∞γΓcl ∈ Γ∞\SL(2,Z)/Γcl with
γcl positively oriented, there exist unique m > 0 and µ (mod m) satisfy-
ing µ2 ≡ D (mod m) such that (*) holds.

• The geodesics {c1, . . . , ch} project to closed geodesics of equal length in SL(2,Z)\H
• Extends to setting with additional congruence conditions m ≡ 0 (mod n), and µ ≡ ν

(mod n), need to replace SL(2,Z) by Γ0(n)
• See Welsh (Algebra & Number Theory, 2022) for parametrization of roots of higher-degree

polynomial congruences
• Theorems D-F recently extended to D ≡ 1 mod 4 by Li and Welsh (preprint 2022)
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Indefinite quadratic forms and closed geodesics
• F (X,Y ) = aX2 + bXY + cY 2, (a, b, c) = 1, discriminant d = b2 − 4ac > 0

• F ↔
(
a b/2
b/2 c

)

• F, F ′ equivalent if ∃γ ∈ SL(2,Z) s.t.
(
a′ b′/2
b′/2 c′

)
= tγ

(
a b/2
b/2 c

)
γ

• finite number hd of equivalence classes {F}d of F with discriminant d

• Solutions of F (X,1) = 0 define end points of geodesic: x± = −b±
√
b2−4ac

2a

• F ↔ geodesics in H that are closed in SL(2,Z)\H
{F}d ↔ closed geodesics of same length `d in SL(2,Z)\H

• If F (X,Y ) = mX2 − 2µXY + cY 2 has discriminant d = 4D, then µ2 ≡ D (mod m)

and x± = µ
m
±
√
D
m

, so top of geodesic is µ
m

+ i
√
D
m
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More general geometric setting

• Γ < SL(2,R) discrete subgroup so that
Γ\H has finite area with standard cusp at
∞

• c1, . . . , ch collection of geodesics in H so
that each cl projects to a closed geodesic
in Γ\H (⇔ Γcl ∩ Γ < Γ non-trivial)
assume w.l.o.g. no two cl are Γ-equivalent

• study distribution of the geodesics

h⋃
l=1

⋃
γ∈Γ/Γcl

γcl

• and specifically the real parts of geodesic tops with imaginary part larger than y:

X(y) =
h⊎
l=1

X l(y)

with

X l(y) =
{

Re(zγcl) mod 1 : γ ∈ Γ∞\Γ/Γcl, Im(zγcl) ≥ y
}
⊂ T
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Distribution in small intervals

• counting in small intervals: NB(x, y) = #
(
X(y) ∩ (x+ yI + Z)

)

• set BI = {u+ iv ∈ H : u ∈ I, v ≥ 1}

• then for y sufficiently small (so that y|I| < 1)

NI(x, y) =
h∑
l=1

#
{
γ ∈ Γ∞\Γ/Γcl : zγcl ∈ x+ yBI + Z

}

=
h∑
l=1

#
{
γ ∈ Γ/Γcl : zγcl ∈ x+ yBI

}

=
h∑
l=1

#
{
γ ∈ Γ/Γcl : zγcl ∈ n(x)a(y)BI

}

with n(x) =

(
1 x
0 1

)
, a(y) =

y1
2 0

0 y−
1
2
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Geodesic line processes

• for B ∈ H define NB(g) =
h∑
l=1

#{γ ∈ Γ/Γcl : zg−1γcl
∈ B}

• then NI(x, y) = NB(n(x)a(y)) for B = BI

• note: NB(γg) = NB(g) for all γ ∈ Γ

• this motivates definition of the geodesic random “line” processes

Θy,λ =
h∑
l=1

∑
γ∈Γ/Γcl

δz(n(ξ)a(y))−1γcl
, Θ =

h∑
l=1

∑
γ∈Γ/Γcl

δz
g−1γcl

– random variable ξ distributed according to a Borel probability measure λ on T
– random element g distributed with respect to Haar probability measure µΓ on Γ\SL(2,R)

• intensity measure: EΘ(B) =
∫

Γ\SL(2,R)
NB(g)dµΓ(g) = κΓ volH(B)
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Convergence in distribution

Theorem G. (JM & Welsh, 2021)

For every a.c. Borel probability measure λ on T we have convergence Θy,λ → Θ

in distribution as y → 0.

In particular, for all k1, . . . , kr ∈ Z≥0, finite intervals Ii, we have that

lim
y→0

λ
({
x ∈ T : NIi(x, y) = ki ∀i

})
= P

(
Θ(BIi) = ki ∀i

)
and the limit is a continuous function of the endpoints of Ii.

• Follows from equidistribution of long closed horocycles on Γ\SL(2,R), i.e. for any bounded
continuous f : Γ\SL(2,R)→ C

lim
y→0

∫
f(n(x)a(y))dλ(x) =

∫
f(g)dµ(g)

• Similar results for angles of hyperbolic lattice points: Boca, Paşol, Popa, Zaharescu (2014),
Kelmer & Kontorovich (2015), Risager & Södergren (2017), Marklof & Vinogradov (2018),
Lutsko (2020)
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Moments

• We alse prove convergence of all moments

• In particular, for the first moment

lim
y→0

∫
T
NI(x, y)dλ(x) = EΘ(BI) = κΓ|I|

• This implies uniform distribution of

Xl(y) =
{

Re(zγcl) mod 1 : γ ∈ Γ∞\Γ/Γcl, Im(zγcl) ≥ y
}
⊂ T

as y → 0 and hence (via our geometric interpretation) Hooley’s uniform
distribution of the roots
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Towards spacing statistics: A Poincaré section for the horocycle flow

• Let ĉl be the lift of the (oriented) geodesic cl to PSL(2,R) ' T1(H)

• Define two-dimensional Poincaré section for the horocycle flow

Sl = Γ\Γĉl{k(−π2)a(v−1) : v ≥ 1}

k(θ) =

(
cos θ

2
− sin θ

2
sin θ

2
cos θ

2

)
, a(y) =

(
y

1
2 0

0 y−
1
2

)
• Natural invariant measure ν for return map on Sl is arc-length measure on ĉl

times v−2dv.

• Compare with Athreya-Cheung section (IMRN 2014) for horocycle flow where
the (closed) geodesic Γ\Γĉl is replaced by a closed horocycle⇒ return map
is Boca-Cobeli-Zaharescu map (statistics of Farey fractions)
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An equidistribution theorem

Theorem H. (JM & Welsh, 2021)
For f : T× Γ\SL(2,R)→ C bounded continuous, we have

lim
y→0

y
∑

ξ∈X(y)

f(ξ,Γn(ξ)a(y)) =
∫
T

∫
Γ\SL(2,R)

f(x, g)dν(g)dx.

• Key observation is that return times for the periodic orbit {Γa(y)n(t) : t ∈ T}
have the form y−1Re(zγcl)

• Use this equidistribution theorem (in place of the previous horocycle equidis-
tribution) to obtain spacing statistics
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Conditioned geodesic line processes

• Earlier we discussed geodesic random line processes

Θy,λ =
h∑
l=1

∑
γ∈Γ/Γcl

δz(n(ξ)a(y))−1γcl
, Θ =

h∑
l=1

∑
γ∈Γ/Γcl

δz
g−1γcl

– random variable ξ distributed according to a Borel probability measure λ on T
– random element g distributed with respect to Haar probability measure µΓ on Γ\SL(2,R)

• Consider now the “conditioned” processes

Θ0
y =

h∑
l=1

∑
γ∈Γ/Γcl

δz(n(ξ)a(y))−1γcl
, Θ0 =

h∑
l=1

∑
γ∈Γ/Γcl

δz
g−1γcl

– random variable ξ distributed uniformly in X(y)
– random element g distributed with respect to ν on Γ\SL(2,R)
– Θ0 is related to the Palm distribution of Θ

• Using the previous equidistribution theorem, we can prove Θ0
y → Θ0 in

distribution and for all moments
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Moments

• In particular the intensity measure EΘ0
y → EΘ0 is nothing but the pair cor-

relation measure!
• The limit is EΘ0(BI) = δ0(I) +

∫
I
W (v)dv

where W : R→ R≥0 is the even and continuous function given by

W (v) =
1

`v2

h∑
l1,l2=1

∑
γ∈Γcl1

\Γ/Γcl2

γcl2 6=cl1 ,cl1

Hsign(g−1
l1
γgl2(0))(q(γ, l1, l2), v, v), (1)

where q(γ, l1, l2) = r+1
r−1

with r the cross-ratio r =
((γcl2)+−c−

l1
)((γcl2)−−c+

l1
)

((γcl2)+−c+
l1

)((γcl2)−−c−
l1

)
, and

H+(q, v, v) =


0 if q < −1
0 if − 1 < q < 1 and v <

√
2− 2q

hq(s1(q, v))− hq(s2(q, v)) if − 1 < q < 1 and v >
√

2− 2q

hq(s1(q, v))− hq(−q +
√
q2 − 1) if q > 1,

(2)

H−(q, v, v) =


0 if q < −1 and |v| <

√
2− 2q

hq(s1(q, v))− hq(s2(q, v)) if q < −1 and |v| >
√

2− 2q
hq(s1(q, v))− hq(s2(q, v)) if − 1 < q < 1 and v < −

√
2− 2q

0 if − 1 < q < 1 and v > −
√

2− 2q

hq(−q −
√
q2 − 1)− hq(s2(q, v)) if q > 1,

(3)

hq(s) = log
s+ q

1− s2
, s1(q, v) =

−q +
√
v2 + q2 − 1

v + 1
, s2(q, v) = v − q −

√
v2 + q2 − 1.

24



Pair correlation densities (→ Theorem D)

D = 2,3,10 N = 106
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