Geodesic random line processes and the roots of quadratic congruences

Jens Marklof
University of Bristol
http://www.maths.bristol.ac.uk

joint work with Matthew Welsh (Maryland)

Research supported by EPSRC

ICTS Bangalore, 13 December 2022

Happy 75th birthday, Professor Dani!

Uniform distribution of roots

- Consider the roots μ of the quadratic congruence

$$
\mu^{2} \equiv D \quad(\bmod m)
$$

with $m=1,2,3, \ldots$ and $D>0$ square-free (all will work also for $D<0$; it's easier)

- Define sequence $\xi_{1}, \xi_{2}, \ldots \in \mathbb{T}=\mathbb{R} / \mathbb{Z}$ by normalised roots $\frac{\mu}{m}$, ordered by increasing denominator m (choose arbitrary order for terms with same m)
- Hooley (1963): We have uniform distribution mod 1

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{j \leq N: \xi_{j} \in[a, b)+\mathbb{Z}\right\}=b-a
$$

- Extension to higher-order polynomial congruences (Hooley 1964); use of modular forms, Poincaré series (Bykovskii 1984; see also Good 1983); u.d. still holds for m restricted to primes (Duke, Friedlander, Iwaniec 1995); joint distribution (Zahavi 2020); fits in more general CRT framework (Kowalski and Soundararajan 2020).

Randomness mod 1

Given distinct points $\xi_{1}, \ldots, \xi_{N} \in \mathbb{T}$, denote by s_{1}, \ldots, s_{N} the corresponding "gaps" between those points. Gap distribution:

$$
P_{N} f:=\frac{1}{N} \sum_{n=1}^{N} f\left(N s_{n}\right), \quad f \in \mathrm{C}_{b}\left(\mathbb{R}_{\geq 0}\right) \quad \text { (bounded continuous) }
$$

Two point correlation:

$$
R_{N} f:=\frac{1}{N} \sum_{\substack{m, n=1 \\ m \neq n}}^{N} \sum_{\ell \in \mathbb{Z}} f\left(N\left(\xi_{m}-\xi_{n}+\ell\right)\right), \quad f \in \mathrm{C}_{c}(\mathbb{R}) \quad \text { (cmpct supp) }
$$

Theorem A. Let ξ_{1}, ξ_{2}, \ldots be iid in \mathbb{T} (uniformly distributed). Then almost surely

$$
\begin{array}{cl}
\lim _{N \rightarrow \infty} P_{N} f=\int_{0}^{\infty} f(s) \mathrm{e}^{-s} d s, & \forall f \in \mathrm{C}_{b}(\mathbb{R} \geq 0) \\
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s) d s, & \forall f \in \mathrm{C}_{c}(\mathbb{R})
\end{array}
$$

"Gap and two-point statistics are Poisson"

Random matrices

Theorem B. (Wigner 1950s, Gaudin 1961)
Let $\left(\xi_{N n}\right)_{n \leq N}$ the ev's of $A \in U(N)$. Then Haar-a.s.

$$
\begin{gathered}
\lim _{N \rightarrow \infty} P_{N} f=\int_{0}^{\infty} f(s) p_{\operatorname{Gaudin}}(s) d s, \quad \forall f \in \mathrm{C}_{b}(\mathbb{R} \geq 0) \\
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s)\left(1-\left(\frac{\sin (\pi s)}{\pi s}\right)^{2}\right) d s, \quad \forall f \in \mathrm{C}_{c}(\mathbb{R})
\end{gathered}
$$

- The probability density $p_{\text {Gaudin }}(s)$ is given by a Painlevé transcendent
- Wigner surmise: $p_{\text {Gaudin }}(s) \approx \frac{32}{\pi^{2}} s^{2} \mathrm{e}^{-4 s^{2} / \pi} d s$

Riemann zeros

Figure 4
Probability density of the normalized spacings δ_{n}. Solid line: GUE prediction. Scatter plot: empirical data based on zeros $\gamma_{n}, 10^{12}+1 \leqslant n \leqslant 10^{12}+10^{5}$.

Pair correlation function, $\mathrm{N}=10^{* * 12}$

Figure 2
Pair correlation of zeros of the zeta function. Solid line: GUE prediction. Scatter plot: empirical data based on zeros γ_{n}, $10^{12}+1 \leqslant n \leqslant 10^{12}+10^{5}$.
A. M. Odlyzko, Math. Comp., 48 (1987), pp. 273-308

- Montgomery (1973) "The pair correlation of zeros of the zeta function"
- Hejhal (1994, 3-point)
- Rudnick and Sarnak (1996, n-point)

Polynomials mod 1

Theorem C. (Rudnick \& Sarnak, 1998)
Let $\left(\xi_{n}\right)=\left(n^{d} \alpha \bmod 1\right), d \geq 2$. Then for Lebesgue a.e. α,

$$
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s) d s, \quad \forall f \in \mathrm{C}_{c}(\mathbb{R})
$$

- Proof uses averages over Weyl sums and estimating solutions to polynomial Diophantine equations
- Rudnick, Sarnak \& Zaharescu (2001): for α that are well-approximable by rationals, proof of convergence of gap distribution P_{N} for $n^{2} \alpha$ to exponential distribution along subsequence of N; for these however convergence not expected along full sequence
- No proofs for P_{N}, nor for R_{N} for explicit
$\ln [\{0]=\mathrm{M}=\mathbf{5 0 0 0 0}$;
alpha:=Sqrt[2]
xi[n_]:=n^2 alpha;
points $=$
Sort [
$\mathrm{N}[$ FractionalPart [ParallelTable[xi[n], $[\mathrm{n}, 1, \mathrm{M})]]]$; gaps $=M *$ Differences [points] ;
$\operatorname{In}[$ [95] $=$ Show [Histogram[gaps, $\{0,3,0.05\}$, "PDF"], Plot [Exp[-x], $\{x, 0,3\}]]$
 examples of α e.g. for $\alpha=\sqrt{2}$; cf. algorithmic characterization by Heath-Brown (2010).

Pair correlation for roots

Theorem D. (JM \& Welsh, 2021)
Assume $D>0$ is square-free and $D \not \equiv 1(\bmod 4)$. Then there is an even and continuous function $w_{D}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s) w_{D}(s) d s, \quad \forall f \in \mathrm{C}_{c}(\mathbb{R})
$$

Pair correlation for roots

Theorem D. (JM \& Welsh, 2021)
Assume $D>0$ is square-free and $D \not \equiv 1(\bmod 4)$. Then there is an even and continuous function $w_{D}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s) w_{D}(s) d s, \quad \forall f \in \mathrm{C}_{c}(\mathbb{R})
$$

Pair correlation for roots

Theorem D. (JM \& Welsh, 2021)
Assume $D>0$ is square-free and $D \not \equiv 1(\bmod 4)$. Then there is an even and continuous function $w_{D}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\lim _{N \rightarrow \infty} R_{N} f=\int_{\mathbb{R}} f(s) w_{D}(s) d s, \quad \forall f \in \mathrm{C}_{c}(\mathbb{R})
$$

$$
D=10 \quad N=10^{6}
$$

Higher-order statistics

- Define the random counting measure (random point process) on \mathbb{R}

$$
\bar{E}_{N, \lambda}=\sum_{j=1}^{N} \sum_{k \in \mathbb{Z}} \delta_{N\left(\xi_{j}-\xi+k\right)}
$$

- Here ξ random variable in \mathbb{T} distributed according to Borel prob. measure λ
- Example: For any interval $I \subset \mathbb{R}$ and integer k

$$
\mathbb{P}\left(\equiv_{N, \lambda}(I)=k\right)=\lambda\left(\left\{x \in \mathbb{T}: \mathcal{N}_{I}(x, N)=k\right\}\right)
$$

with

$$
\mathcal{N}_{I}(x, N)=\#\left\{j \leq N: \xi_{j} \in x+N^{-1} I+\mathbb{Z}\right\} .
$$

Higher-order statistics

Theorem E. (JM \& Welsh, 2021)
For D as above, there exists a random point process \equiv depending only on D so that, for every Borel probability measure λ on \mathbb{T} that is absolutely continuous with respect to the Lebesgue measure, we have convergence $\bar{\Xi}_{N, \lambda} \rightarrow$ 三 in distribution as $N \rightarrow \infty$.

Specifically, for all $k_{1}, \ldots, k_{r} \in \mathbb{Z}_{\geq 0}$ and finite intervals $I_{1}, \ldots, I_{r} \subset \mathbb{R}$, we have that

$$
\lim _{N \rightarrow \infty} \lambda\left(\left\{x \in \mathbb{T}: \mathcal{N}_{I_{i}}(x, N)=k_{i} \forall i\right\}\right)=\mathbb{P}\left(\equiv\left(I_{i}\right)=k_{i} \forall i\right)
$$

and the limit is a continuous function of the endpoints of I_{i}.

- Implies convergence of (joint) gap distributions
- We also prove convergence of all moments
- Can impose further congruence restrictions on m and μ (leads to different limit process)

Basic hyperbolic geometry

- \mathbb{H} complex upper half plane, $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$
- boundary $\partial \mathbb{H}=\mathbb{R} \cup\{\infty\}$
- $\operatorname{SL}(2, \mathbb{R})$ acts by Möbius transformations
- geodesics, horocycles
- stabiliser $\Gamma_{c}=\{g \in \operatorname{SL}(2, \mathbb{R}): g c=c\}$
- $\Gamma_{\infty}=\left\{ \pm\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right): k \in \mathbb{Z}\right\}$

- $\operatorname{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ modular surface
- $S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R}) \simeq$ unit tangent bundle
- \boldsymbol{c} closed geodesic (resp. horocycle) if $\Gamma_{c} \cap S L(2, \mathbb{Z})<S L(2, \mathbb{Z})$ non-trivial
- Denote by z_{c} the "top" of the geodesic $\boldsymbol{c} \in \mathbb{H}$ (i.e. the point on \boldsymbol{c} closest to ∞; in general $z_{\gamma c_{l}} \neq \gamma z_{c_{l}}$)

Key insight: the geometry of roots

Theorem F. (JM \& Welsh, 2021)

For D as above, there exists a finite set of geodesics $\left\{c_{1}, \ldots, c_{h}\right\}$ such that:
(i) For any $m>0$ and $\mu(\bmod m)$ satisfying $\mu^{2} \equiv D(\bmod m)$, there is a unique l and double coset $\Gamma_{\infty} \gamma \Gamma_{c_{l}} \in \Gamma_{\infty} \backslash \operatorname{SL}(2, \mathbb{Z}) / \Gamma_{c_{l}}$ such that

$$
z_{\gamma c_{l}} \equiv \frac{\mu}{m}+\mathrm{i} \frac{\sqrt{D}}{m} \quad\left(\bmod \Gamma_{\infty}\right) .
$$

(ii) Conversely, given l and double coset $\Gamma_{\infty} \gamma \Gamma_{c_{l}} \in \Gamma_{\infty} \backslash \mathrm{SL}(2, \mathbb{Z}) / \Gamma_{c_{l}}$ with γc_{l} positively oriented, there exist unique $m>0$ and $\mu(\bmod m)$ satisfying $\mu^{2} \equiv D(\bmod m)$ such that (*) holds.

- The geodesics $\left\{\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{h}\right\}$ project to closed geodesics of equal length in $\operatorname{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$
- Extends to setting with additional congruence conditions $m \equiv 0(\bmod n)$, and $\mu \equiv \nu$ $(\bmod n)$, need to replace $\operatorname{SL}(2, \mathbb{Z})$ by $\Gamma_{0}(n)$
- See Welsh (Algebra \& Number Theory, 2022) for parametrization of roots of higher-degree polynomial congruences
- Theorems D-F recently extended to $D \equiv 1$ mod 4 by Li and Welsh (preprint 2022)

Indefinite quadratic forms and closed geodesics

- $F(X, Y)=a X^{2}+b X Y+c Y^{2},(a, b, c)=1$, discriminant $d=b^{2}-4 a c>0$
- $F \leftrightarrow\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$
- F, F^{\prime} equivalent if $\exists \gamma \in \operatorname{SL}(2, \mathbb{Z})$ s.t. $\left(\begin{array}{cc}a^{\prime} & b^{\prime} / 2 \\ b^{\prime} / 2 & c^{\prime}\end{array}\right)={ }^{t} \gamma\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \gamma$
- finite number h_{d} of equivalence classes $\{F\}_{d}$ of F with discriminant d
- Solutions of $F(X, 1)=0$ define end points of geodesic: $x_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- $F \leftrightarrow$ geodesics in \mathbb{H} that are closed in $\operatorname{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ $\{F\}_{d} \leftrightarrow$ closed geodesics of same length ℓ_{d} in $\operatorname{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$
- If $F(X, Y)=m X^{2}-2 \mu X Y+c Y^{2}$ has discriminant $d=4 D$, then $\mu^{2} \equiv D(\bmod m)$ and $x_{ \pm}=\frac{\mu}{m} \pm \frac{\sqrt{D}}{m}$, so top of geodesic is $\frac{\mu}{m}+\mathrm{i} \frac{\sqrt{D}}{m}$

More general geometric setting

- $\Gamma<\operatorname{SL}(2, \mathbb{R})$ discrete subgroup so that $\Gamma \backslash \mathbb{H}$ has finite area with standard cusp at ∞
- c_{1}, \ldots, c_{h} collection of geodesics in \mathbb{H} so that each c_{l} projects to a closed geodesic in $\Gamma \backslash \mathbb{H} \quad\left(\Leftrightarrow \Gamma_{c_{l}} \cap \Gamma<\Gamma\right.$ non-trivial) assume w.l.o.g. no two c_{l} are Γ-equivalent
- study distribution of the geodesics

$$
\bigcup_{l=1}^{h} \bigcup_{\gamma \in \Gamma / \Gamma_{c_{l}}} \gamma c_{l}
$$

- and specifically the real parts of geodesic tops with imaginary part larger than y :

$$
X(y)=\biguplus_{l=1}^{h} X^{l}(y)
$$

with

$$
X^{l}(y)=\left\{\operatorname{Re}\left(z_{\gamma c_{l}}\right) \bmod 1: \gamma \in \Gamma_{\infty} \backslash \Gamma / \Gamma_{c_{l}}, \operatorname{Im}\left(z_{\gamma c_{l}}\right) \geq y\right\} \subset \mathbb{T}
$$

Distribution in small intervals

- counting in small intervals: $\mathcal{N}_{B}(x, y)=\#(X(y) \cap(x+y I+\mathbb{Z}))$
- set $B_{I}=\{u+i v \in \mathbb{H}: u \in I, v \geq 1\}$
- then for y sufficiently small (so that $y|I|<1$)

$$
\begin{aligned}
\mathcal{N}_{I}(x, y) & =\sum_{l=1}^{h} \#\left\{\gamma \in \Gamma \infty \backslash \Gamma / \Gamma_{c_{l}}: z_{\gamma c_{l}} \in x+y B_{I}+\mathbb{Z}\right\} \\
& =\sum_{l=1}^{h} \#\left\{\gamma \in \Gamma / \Gamma_{c_{l}}: z_{\gamma c_{l}} \in x+y B_{I}\right\} \\
& =\sum_{l=1}^{h} \#\left\{\gamma \in \Gamma / \Gamma_{c_{l}}: z_{\gamma c_{l}} \in n(x) a(y) B_{I}\right\}
\end{aligned}
$$

with $n(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right), \quad a(y)=\left(\begin{array}{cc}y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}}\end{array}\right)$

Geodesic line processes

- for $B \in \mathbb{H}$ define $\mathcal{N}_{B}(g)=\sum_{l=1}^{h} \#\left\{\gamma \in \Gamma / \Gamma c_{l}: z_{g^{-1} \gamma c_{l}} \in B\right\}$
- then $\mathcal{N}_{I}(x, y)=\mathcal{N}_{B}(n(x) a(y))$ for $B=B_{I}$
- note: $\mathcal{N}_{B}(\gamma g)=\mathcal{N}_{B}(g)$ for all $\gamma \in \Gamma$
- this motivates definition of the geodesic random "line" processes

$$
\Theta_{y, \lambda}=\sum_{l=1}^{h} \sum_{\gamma \in \Gamma / \Gamma_{c_{l}}} \delta_{z_{(n(\xi) a(y))^{-1}} c_{l}}, \quad \Theta=\sum_{l=1}^{h} \sum_{\gamma \in \Gamma / \Gamma_{c_{l}}} \delta_{z_{g}-1} c_{c_{l}}
$$

- random variable ξ distributed according to a Borel probability measure λ on \mathbb{T}
- random element g distributed with respect to Haar probability measure μ_{Γ} on $\Gamma \backslash \mathrm{SL}(2, \mathbb{R})$
- intensity measure: $\mathbb{E} \Theta(B)=\int_{\Gamma \backslash \mathrm{SL}(2, \mathbb{R})} \mathcal{N}_{B}(g) d \mu_{\Gamma}(g)=\kappa \Gamma \operatorname{vol}_{\mathbb{H}}(B)$

Convergence in distribution

Theorem G. (JM \& Welsh, 2021)
For every a.c. Borel probability measure λ on \mathbb{T} we have convergence $\Theta_{y, \lambda} \rightarrow \Theta$ in distribution as $y \rightarrow 0$.

In particular, for all $k_{1}, \ldots, k_{r} \in \mathbb{Z}_{\geq 0}$, finite intervals I_{i}, we have that

$$
\lim _{y \rightarrow 0} \lambda\left(\left\{x \in \mathbb{T}: \mathcal{N}_{I_{i}}(x, y)=k_{i} \forall i\right\}\right)=\mathbb{P}\left(\Theta\left(B_{I_{i}}\right)=k_{i} \forall i\right)
$$

and the limit is a continuous function of the endpoints of I_{i}.

- Follows from equidistribution of long closed horocycles on $\Gamma \backslash S L(2, \mathbb{R})$, i.e. for any bounded continuous $f: \Gamma \backslash \mathrm{SL}(2, \mathbb{R}) \rightarrow \mathbb{C}$

$$
\lim _{y \rightarrow 0} \int f(n(x) a(y)) d \lambda(x)=\int f(g) d \mu(g)
$$

- Similar results for angles of hyperbolic lattice points: Boca, Paşol, Popa, Zaharescu (2014), Kelmer \& Kontorovich (2015), Risager \& Södergren (2017), Marklof \& Vinogradov (2018), Lutsko (2020)

Moments

- We alse prove convergence of all moments
- In particular, for the first moment

$$
\lim _{y \rightarrow 0} \int_{\mathbb{T}} \mathcal{N}_{I}(x, y) d \lambda(x)=\mathbb{E} \Theta\left(B_{I}\right)=\kappa_{\Gamma}|I|
$$

- This implies uniform distribution of

$$
X^{l}(y)=\left\{\operatorname{Re}\left(z_{\gamma c_{l}}\right) \bmod 1: \gamma \in \Gamma_{\infty} \backslash \Gamma / \Gamma_{c_{l}}, \operatorname{Im}\left(z_{\gamma c_{l}}\right) \geq y\right\} \subset \mathbb{T}
$$

as $y \rightarrow 0$ and hence (via our geometric interpretation) Hooley's uniform distribution of the roots

Towards spacing statistics: A Poincaré section for the horocycle flow

- Let \hat{c}_{l} be the lift of the (oriented) geodesic c_{l} to $\operatorname{PSL}(2, \mathbb{R}) \simeq \top^{1}(\mathbb{H})$
- Define two-dimensional Poincaré section for the horocycle flow

$$
\begin{gathered}
S^{l}=\Gamma \backslash \Gamma \widehat{\boldsymbol{c}}_{l}\left\{k\left(-\frac{\pi}{2}\right) a\left(v^{-1}\right): v \geq 1\right\} \\
k(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{\theta^{2}} \\
\sin \frac{\frac{\theta}{2}}{2} & \cos \frac{\theta^{2}}{2}
\end{array}\right), a(y)=\left(\begin{array}{cc}
y^{\frac{1}{2}} & 0 \\
0 & y^{-\frac{1}{2}}
\end{array}\right)
\end{gathered}
$$

- Natural invariant measure ν for return map on S_{l} is arc-length measure on \widehat{c}_{l} times $v^{-2} d v$.
\square
- Compare with Athreya-Cheung section (IMRN 2014) for horocycle flow where the (closed) geodesic $\Gamma \backslash \Gamma \hat{\boldsymbol{c}}_{l}$ is replaced by a closed horocycle \Rightarrow return map is Boca-Cobeli-Zaharescu map (statistics of Farey fractions)

An equidistribution theorem

Theorem H. (JM \& Welsh, 2021)
For $f: \mathbb{T} \times \Gamma \backslash \mathrm{SL}(2, \mathbb{R}) \rightarrow \mathbb{C}$ bounded continuous, we have

$$
\lim _{y \rightarrow 0} y \sum_{\xi \in X(y)} f\left(\xi,\ulcorner n(\xi) a(y))=\int_{\mathbb{T}} \int_{\Gamma \backslash \mathrm{SL}(2, \mathbb{R})} f(x, g) d \nu(g) d x\right.
$$

- Key observation is that return times for the periodic orbit $\{\lceil a(y) n(t): t \in \mathbb{T}\}$ have the form $y^{-1} \operatorname{Re}\left(z_{\gamma c_{l}}\right)$
- Use this equidistribution theorem (in place of the previous horocycle equidistribution) to obtain spacing statistics

Conditioned geodesic line processes

- Earlier we discussed geodesic random line processes
- random variable ξ distributed according to a Borel probability measure λ on \mathbb{T}
- random element g distributed with respect to Haar probability measure μ_{Γ} on $\Gamma \backslash \mathrm{SL}(2, \mathbb{R})$
- Consider now the "conditioned" processes

$$
\Theta_{y}^{0}=\sum_{l=1}^{h} \sum_{\gamma \in \Gamma / \Gamma_{c_{l}}} \delta_{(n(\xi) a(y))^{-1} c_{l}}, \quad \Theta^{0}=\sum_{l=1}^{h} \sum_{\gamma \in \Gamma / \Gamma_{c_{l}}} \delta_{z_{g}^{-1} c_{l}}
$$

- random variable ξ distributed uniformly in $X(y)$
- random element g distributed with respect to ν on $\Gamma \backslash \mathrm{SL}(2, \mathbb{R})$
- Θ^{0} is related to the Palm distribution of Θ
- Using the previous equidistribution theorem, we can prove $\Theta_{y}^{0} \rightarrow \Theta^{0}$ in distribution and for all moments

Moments

- In particular the intensity measure $\mathbb{E} \Theta_{y}^{0} \rightarrow \mathbb{E} \Theta^{0}$ is nothing but the pair correlation measure!
- The limit is $\quad \mathbb{E} \Theta^{0}\left(B_{I}\right)=\delta_{0}(I)+\int_{I} W(v) d v$
where $W: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is the even and continuous function given by

$$
\begin{equation*}
W(v)=\frac{1}{\ell v^{2}} \sum_{\substack{l_{1}, l_{2}=1}}^{h} \sum_{\substack{\gamma \in \Gamma_{c_{1}} \backslash \Gamma / \Gamma_{c_{l_{2}}} \\ \gamma c_{2} \neq c_{1}, c_{1}, c_{1}}} H_{\text {sign }\left(g_{l_{1}}^{-1} \gamma g_{l_{2}}(0)\right)}\left(q\left(\gamma, l_{1}, l_{2}\right), v, v\right), \tag{1}
\end{equation*}
$$

where $q\left(\gamma, l_{1}, l_{2}\right)=\frac{r+1}{r-1}$ with r the cross-ratio $r=\frac{\left(\left(\gamma c_{l_{2}}\right)^{+}-c_{c_{1}}^{-}\right)\left(\left(\gamma c_{l_{2}}\right)^{-}-c_{l_{1}}^{+}\right)}{\left(\left(\gamma c_{l_{2}}\right)^{+}-c_{l_{1}}^{+}\right)\left(\left(\gamma c_{l_{2}}\right)^{-}-c_{l_{1}}^{-}\right)}$, and

$$
\begin{gather*}
H_{+}(q, v, v)= \begin{cases}0 & \text { if } q<-1 \\
0 & \text { if }-1<q<1 \text { and } v<\sqrt{2-2 q} \\
h_{q}\left(s_{1}(q, v)\right)-h_{q}\left(s_{2}(q, v)\right) & \text { if }-1<q<1 \text { and } v>\sqrt{2-2 q} \\
h_{q}\left(s_{1}(q, v)\right)-h_{q}\left(-q+\sqrt{q^{2}-1}\right) & \text { if } q>1,\end{cases} \tag{2}\\
H_{-}(q, v, v)= \begin{cases}0 & \text { if } q<-1 \text { and }|v|<\sqrt{2-2 q} \\
h_{q}\left(s_{1}(q, v)\right)-h_{q}\left(s_{2}(q, v)\right) & \text { if } q<-1 \text { and }|v|>\sqrt{2-2 q} \\
h_{q}\left(s_{1}(q, v)\right)-h_{q}\left(s_{2}(q, v)\right) & \text { if }-1<q<1 \text { and } v<-\sqrt{2-2 q} \\
0 & \text { if }-1<q<1 \text { and } v>-\sqrt{2-2 q} \\
h_{q}\left(-q-\sqrt{q^{2}-1}\right)-h_{q}\left(s_{2}(q, v)\right) & \text { if } q>1,\end{cases} \tag{3}\\
h_{q}(s)=\log \frac{s+q}{1-s^{2}}, \quad s_{1}(q, v)=\frac{-q+\sqrt{v^{2}+q^{2}-1}}{v+1}, \quad s_{2}(q, v)=v-q-\sqrt{v^{2}+q^{2}-1} .
\end{gather*}
$$

Pair correlation densities (\rightarrow Theorem D)

$$
D=2,3,10 \quad N=10^{6}
$$

