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Scalar-input control affine systems : well-posedness

Let fy, i € CYH(R",R") with f(0) = 0. We consider

x(t) = fo(x(t)) + u(t)f(x(1))- (*)

Proposition

e Llet T>0,x €R"anduc L0, T),R). There exists a unique
maximal solution x € C°([0, T'], R") such that x(0) = xo, i.e.

Vte [0, T], x(t)=x0+ /Ot (fo(x(s)) + u(s)ﬂ(x(s)))ds.

Moreover, if xo = 0 and ||u||;1 is small enough, then T' = T.
e The end-point map u € L*(0, T) + x(T; u,0) is CL.

Proof : Fixed point argument. Implicit function theorem.
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Small time local controllability : W™>-STLC

x = fo(x) +u(t)(x)  f(0)=0

Definition (W™>-STLC)

Let m € N. The system is W™-Small-Time Locally Controllable if for
every T,n > 0, there exists 6 > 0 such that, for every x¢ € Bgn(0,0),
there exists u : [0, T] — R such that ||ul|wm~ < 7 and x(T; u,0) = x¢.

e Nonlinear open mapping + continuity of xf — u at 0.

e Starting from x(0) = 0 is not restrictive (under LARC).

e The historical definition of STLC corresponds to m = 0.

e For nonlinear systems, the choice of norm influences the answer.
Vm € N*, (W™>-STLC) = (L*°-STLC) = small-state-STLC.
Any reciprocal implication is false.

e Specifying the norm prepares the transfer to PDEs.

Definition
smooth-STLC = W™>-STLC for any m € N

e We are also interested in Holder cost estimates ||u|| < C|x¢|*.
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Example : influence of the time on the local controllability

)'<1:u
).<2:X1
X3 =x2 — x5

Poincaré-Wirtinger : fOT »? < (%)2 fOT(¢’)2 is = for ¢(t) = sin(%).

e The system is not controllable in time T < 7 because (¢ + x2)

x3(T) > (1 - (:>2> /OTxf > 0.

e The system is controllable in any time T > 7 : if u(t) := x1(t)
where x;(t) = p°(t) cos(%) and p¢ is a cut-off, then

x3(T) = /OT <x1(t)2 - (/Otx1>2> dt — <1 - (Zf) % <0
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Example : influence of the norm on the local controllability

).(1=U
X2:X1
X3 = X3+ X3

e The system is not W>-STLC : if xo(T) = 0 then

fOT 3= fOT 2xox1U = +fOT ux3  thus, if ||d]|.~ < 1 then

)
mnzuwwmvrézo
0

e The system is L°-STLC because : if u(t) = e¢” (%) where
¢ € C2((0,1),R) and T = } then

1 1
(T =¥ [ o exte [ oy
0 0
With A << e then x3(T,u) <0.
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Example : influence of the norm on the Holder exponent

).<1 =u

Xp = X1

X3 = x22 + xf’
Holder exponent : for L*°-STLC = %, for W—1>°_STLC = %
o With x(t) = €x(t)6 (1) where x € C2°(0, T) and 6 is 1-periodic, we
obtain a control u ~ ex(t)8"” () such that

(T, u) ~ & (/OTX2/019+/0TX3/01(9/)2> e,

By choosing  such that [ x3 =1 and 6(s) = 0(ns) we get x3(T) < 0.
Moreover |ulli~ ~ e <|xf|s and |jui~ ~ € < |xf|3.

o let o > %. Assume that, for A > 0 small, Ju* € L>°(0, T) such that
x(T,u*) = —Xes and ||u*||;~ < CA?. By Gagliardo Nirenberg inequality

3/2 3/2 30 3/2 1
a2 S 115710 1327 < A% [0 1357 < €A + S |2

,
1
A 2. = _/ (x)3 < C'X\07 + §HX2>‘||%2 : contradiction.
0
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Structure of this course

@ Linear theory and Kalman rank condition

@ Linear test and linear cost-estimate

© Power series expansion and Hdlder-cost estimate

@ Lie brackets

© A new representation formula of the state

@ Proof of necessary conditions to STLC

@ Extension to a PDE : the bilinear Schrédinger equation
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Linear theory and
Kalman rank condition
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Linear theory and Kalman rank condition

y = Ay +u(t)b
where y(t) € R", A€ M,(R), u(t) € R and b € R".

Smooth-STLC : VT > 0,yr € R”, Ju € C>=((0, T),R) such that
y(T;u,0) = yr and ||u]|wme < C(m, T)|ys|.
& Kalman condition : rank {b, Ab,... A" b} = n

Proof of <= : For every T > 0, the Grammian matrix is invertible.
T
G = / AT pb* e (T-7) g7
0

For y; € R", the explicit control u: t € (0, T) — b*e* (T-0G 1y,
belongs to C*°(0, T') and gives the conclusion.
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Linear test and linear
cost-estimate
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Linear test and linear cost-estimate

Let fo, f; € CYH(R",R") such that f,(0) = 0, A := 0,%(0) and b := £;(0)

%= folx) + u(t)(x) (*)

Theorem

@ If the linearized system y = Ay + u(t)b is controllable then the
nonlinear system (%) is smooth-STLC.

@ Moreover, Vm € N, T >0, 3C,d > 0, such that Vxr € Bgrn(0,9),
there exists u : [0, T] — R with ||u||wme < C|x¢| such that
x(T; u,0) = x¢.

© Kalman is necessary for STLC **with** linear cost estimate.

Proof : Apply the inverse mapping theorem to the Cl-end-point map
©:ue Wm™>(0,T)+ x(T;u,0). The right inverse ©~! is locally
lipschitz : |©7(x¢)||wme = |[©7L(xr) — ©71(0)||wmeo < Clx¢l.

Kalman is not necessary for STLC : = u3 n==u
Xo = X v»=20
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Local controllability with linear cost estimate = Kalman

{ X = fo(x) + u(t)f(x), { y = Ay + u(t)b,
x(0) =0, y(0)=0

Let T > 0. We assume 3C,d > 0,Vxr € Bgn(0,6),3u € L>(0, T) such
that x(T; u) = xr and ||ul|r= < C|x¢|.

Goal : Vyr € R", Ju € L>°(0, T) such that y(T; u) = yr.
Let yr € R". For € > 0 small enough, there exists u® € L>°(0, T) such

that x(T; u®) = eyr and ||u¢||1= < Ce|yr|. There exists u € L>(0, T)
such that, up to an extraction, “? Souin o(L, LY). Then

= ATow)] = [AEOAT) (70— (T
1 € T A(T—t)p [u(t) _ ‘
<1 o (|lu ||)+]f0 b (41— u(r)) dt
= o(1)
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Power series expansion
and Holder-cost estimate
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When the linear test fails : power series expansion

x = fo(x) + ufi(x), f6(0) =0,A =9,%(0), b= f(0)
We assume that the linearized system misses one direction e;
R"=Re1 ¢ S where S :=Vect{Akh;0 < k < n—1}

that we try to recover at the quadratic order. We make a formal power
series expansion of (x, u)

u=0+eu + up+ ... x =04 ey + yr + ...
y1 = 0Oxfo(0)y1 + u1f1(0) = Ays + 1 b
Jo = 002 + 12 (0) + 502(0).( 1) + 130 (0) 1
= Ay2 + b + %337%(0)-(}/17}/1) + t110x£1(0).y1

Assume there exists ui, uf € L°°(0, T) such that the associated
solutions with y:=(0) = y57(0) = 0 satisfy y5(T) = 0 and yi£(T) = +e;.
Then, the nonlinear system is locally controllable in time T.
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Power series expansion and Holder cost-estimate

Let T > 0.
Q If there exists u, uf € L>°(0, T) that steer the linearized
system from O to 0 and the quadratic system from Q to +e,
then the nonlinear system is STLC.

@ Moreover, 3Ct,d1 > 0, such that Vxs € Brn(0,07), there
exists u : [0, T| — R such that x(T) = x¢ and

1/2

lulloo < Crlxe[*2.

© Controlling at the quadratic order the component along e;
with controls leaving the linear order invariant is necessary
for the %-Ho/der cost estimate.
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Proof : SC for STLC with %—H'dlder cost-estimate

We consider x = fy(x) + u(t)fi(x) where R" = Re; @ 5;

S =Span{ey,...,e,} and Eluli, uzi, Va,...,V, such that
= Ay + us(t)b, ya = Aya + ua(t)b+ Q(y1) + urL(y1),
yl(Ta u]j_z)zoa }/2(7—7 u]_iau;:):iela
(T, v) =¢.

Goal : For x¢ small enough, find u st x(T; u) = x¢ and ||lu|| < C|x¢|*/2.

For b=73""_, bjej € R", the control

up(t) == /1br [uBP () + |by |2 (2) va,

satisfies x(T; up) = b+ o(b). By applying the Brouwer fixed point
theorem to the map F : b+— b — x(T; up) + x¢ we obtain b* such that
xr = x(T; up~). Then b* = F(b*) = o(b*) — x¢ proves |b*| < C|x¢| thus
lup- | < CIb*[*/2 < Clxe['/2.
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NC for %—Hb’lder cost-estimate

non linear linear quadratic
x = fo(x) + ufi(x) | y1 = Ay + u1b | yo = Aya + Q(y1) + u1L(y1)

Let T > 0. We assume 3C,0 > 0,Vxs € Brn(0,6),3u € L°°(0, T) such
that x(T; u) = x¢ and |Jul| = < C|x¢|*/2.

Goal : Jut € L™ that leaves the linear order invariant : y; (T, u*) =0,
and moves the second order along te; : P, yo(T,u) = £1

Juc € L>°(0, T) such that x(T; u¢) = teey and ||uf|= < Cy/e.
Ju € L(0, T) such that 4= = uin o(L>, L").

yle( ) —)/1(t \u[ fo eAlt— s)bu (s)d pOInthe>&L y1(t, u),

Yi(T) = JzPs,(y1 — x)(T, u) = Z-0(||u|?) = O(/e),

vo(T, %) = Jo AT (Q(yf(s) S)Lyl )ds—>y2(T, u),
Peya(T, 42) = £1 = tPe(y1 +y2 — x)(T, u) = to([[u[P) = o(1).
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@ Local controllability in time T > 7 with %-H(’ilder cost estimate

)'qzu
X2 = X1

oo 2 2
X3 = X{ — X3

@ STLC with %—Hé’)lder cost-estimate :

).(1 = u
).(2 = Xio’
° %—Hb’lder cost estimate does not hold for
).<1 = u
).(2 = X1
3= x5+ x3
Here, the optimal exponent for L*°-STLC is %.

When 2 nonlinear terms are in competition, determining the
optimal Holder exponent can be complicated.
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Goal and structure of the 2nd course

x = fo(x) + u(t)f(x)

@ Prove necessary conditions of STLC formulated in terms of Lie
brackets of fy and f; evaluated at 0
o With a new strategy :
e to go further on ODEs
e to prepare the transfer to PDEs

© Linear theory and Kalman rank condition

© Linear test and linear cost-estimate

© Power series expansion and Hdlder-cost estimate

@ Lie brackets

O A new representation formula of the state

@ Proof of necessary conditions to STLC

@ Extension to a PDE : the bilinear Schrédinger equation
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Lie brackets
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An important tool : iterated Lie brackets

Definition

Let £ and g be smooth vector fields on R”. The Lie bracket [f, g] of f
and g is the smooth vector field defined by :

[f, 81(x) == f'(x)g(x) — g'(x)f(x).

We define by induction on k € N :

Ad¥g) =g,  AdfT(g) = |f,Adf(Y)].

When f(x) = Ax and g(x) = Bx with A, B € M,(R), then

[f,g](x) = (BA— AB)x.

Lie brackets measure the lack of commutativity between motions.

Jacobi : Ad¢([g, h]) = [Adf(g), h] + [g, Ads(h)]
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Convenient notations for Lie brackets

@ Let X := {Xo, X1} be non-commutative indeterminates

o Let A(X) be the free algebra over X
i.e. the vector space of non-commutative polynomials
ex 1 TXZ +3X1 X + 2Xp X1 € A(X)

@ Let £(X) the free Lie algebra over X,
i.e. the smallest vector subspace of A(X) containing Xo, X1, and
stable by the Lie bracket (commutator) operation [a, b] := ab — ba
ex : Xo + 2[XQ.X1] + 8[X1 [Xl‘Xg]] S ,C(X)

@ nj(b) is the nb of occurrences of X; in b, for a Lie bracket b € L(X)
ex : for b = [ X1, [X1, Xo]] then ng(b) =1 and ny(b) = 2.

@ One can “evaluate” (although not injective)
be L(X)— f, e CY(R"R") — £,(0) € R”
[X1, Xo] = X1 Xo — Xo X1 — [f1, o] = (Do) — (Df)fo — [f1, 5](0)
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Why Lie brackets ? (# 1) The Lie Algebra Rank Condition

For analytic vector fields fy, f; on a neighborhood of 0, the LARC is
Lie(fo, £1)(0) := span {£,(0); be L(X)} =R". (1)

e For driftless syst x = ug(t)fo(x) + v1(t)f(x) : LARC < smooth-STLC.
(= uses piecewise cst controls with max 2n switches, smoothing OK)
The solutions live in a submanifold M such that T, M = Lie(fy, fi)(x).

e For systems x = fy(x) + u(t)fi(x), small-state-STLC = LARC.
[Hermann 1963, Nagano 1966].

The analyticity of fy, f; is necessary : % = ue~ /v,

e But for non-zero drift f; # 0, LARC is not sufficient.

{ 5(1 = u, fX1(O) = fl(O) =€
X =, fws (0) = [f1, [fi, 6]](0) = 2e»

The quadratic Lie bracket W, := [Xy, [X1, Xo]] looks like a 'bad’ :
associated with a signed motion in an oriented direction.
The goal is to determine good/bad brackets.
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Why Lie brackets ? (#2)

Consider analytic systems X = fo(x) + u(t)fi(x) with £(0)=0
y = 8o(y) +u(t)gily) with g(0)=0

Theorem (Nagano 1968, Krener 1973, Sussmann 1974, 1985)

The systems are loc. diffeomorphic : 3, Vu, y(t, u) = d(x(t, u))
& their Lie brackets at 0 have the same vectorial structure :

{b € L(X); f,(0) =0} = {b € L(X); g5(0) = 0}.

Proof of <= : Let by, ..., b, € L(X) such that R" = Span{f, (0)}.
Define loc. coordinates (a1, ..., a,) of x € R” by x = e®fu .. e%fn(0).
Then ®(x) = e*18k1 .. e*8 (0) gives the conclusion.

If W(t, p) = e p then (9,W(t, p) " g (W(t.p)) = 2175 HAdL(g)(p).

Hence, the vectors f,(0) contain all the information for STLC.
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A new representation
formula of the state
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Computing the state using Lie brackets

x = fo(x) + u(t)fi(x) x(0) =0

Theorem (Beauchard, Le Borgne, Marbach 2020)

x(t; u) = Z np(t, u)fp(0) + O(‘remainders”) + o(x(t; u)).
b

The sum

@ ranges over elements b of a basis of £(X)

@ involves system-dependent vectors f,(0) € R"

@ universal functionals ny(t, u)
Caution : The full sum does not converge, even with analyticity. One has
to consider (possibly infinite) truncations (wrt t, or u, or a parameter).

And well chosen bases of £(X). This is not a Taylor expansion, but a
csq of a Magnus-type formula.
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Proof of necessary
conditions for STLC
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A naive strategy to prove obstructions

x(Tiw)= 3 ns(T. u)fs(0) + O (Jlullfy s + IX(Ts ) )
bGB[LM]
where By = BN {n < M}, ||ullw-1» = ||tn]1e and wi(t) = [y u.
@ Choose B € B st the functionnal ng(T,.) is signed for T small.
@ Find M € N st |Jul|{t"] 1.s = o(ng(T, u)) when (T, ||uwme) — 0.

Then a necessary condition for STLC is
f5(0) € Span {£,(0); b € By,m \ {B}}
Indeed otherwise, x(T; u) drifts along f5(0) :
Px(T,u) =ns(T,u) + o(|ns(T, u)| + [x(T, u)]).
Motions of the form x(T, u) = —efg(0) are impossible.

Drawback : The coordinates 7 are not signed in general

e a principal part g ("coordinates of the second kind") :
easily computable by recursion, nice for B* i.e. obvious signs
e cross terms of other &

ex: nw(tu) = o uf — un(t)us(t)
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Our unified approach for obstructions to STLC

x(T;u)= Z &u(T, u)fp(0)+cross terms+0O (||u| I‘\/”Vﬂ_,,wﬂ +|x(T; u)|l+ﬁ>

beBﬂ,M]

@ Choose B € B* such that the functional £5(T,.) is signed.

@ Find M € Nst ||u||}/*} s = o(€8(T, u)) when (T, |Jullwmo) =0
using interpolation inequality.

@ Prove cross terms = o(|€g( T, u)| + |x(T; u)|) when

f2(0) ¢ Span { £5(0); b € Biy iy \ {B}} (+)
using closed loop estimates + interpolation

If (x) and T, ||u|jwm.~ are small enough then x(T; u) drifts along f5(0).

Thus a NC for W™>-STLCis fg(0) € Span {fb(O); b e By \ {B}}
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Elements of our Hall basis B* of £(X), coordinates &p(t, u)

Bi: M, = X0 ua(t) = fo S u(r)dr
Bs: W, = (M1, M;)0” Jo (tj) uj(r)?dr

where b0¥ = [...[b, Xo], ..., Xo] and Xy appears v times.

Let us prove the following results.

L>-STLC = fw,(0) € Span{f,(0); b € By 5 \ {W1}}
fw.(0) € Span{fy(0); b € Bf; 5 \ {W2}}

ex : The following systems are not L>°-STLC

. ).(1:U
ol X2 =X
2, .3 =

X2 = X{ + X{ 2 4

X3 = X5 — X;
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Proof of the necessary condition on Wy = [Xy, [X1, Xo]]

We assume

fwy (0) ¢ F := Span{f,(0); b € Bfj 5 \ {W1}} (%)

Let P: R" — R be a projection on fy, (0) parallel to F.
We apply P to our representation formula

(Tiw) = 3 s(T0)fs(0) + O (Jlunlffs + Ix(T ) )

bEBY,

Px(Tiu) =y (T,u) + O (Jlusllfs + Ix(T; 0)]?)
= Jo %+ Ju(Mua(T) + 0 (Jy 1l + (T ) )
- 0“71+0(|u1(T)\2+(T+||ulum>fJu%+|x(T:u)|%)

because |up(T ‘fo ul) < Tfo ? by Cauchy-Schwarz.
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Proof of the necessary condition on Wy (2)

Proof of a closed loop estimate on |ui(T)| by higher order terms :

The assumption (x) implies that fy,(0) & F’ = Span{fy;,(0);j > 1}.
Let P’ be a projection on fy,(0) parallel to F’.
We apply I’ to our representation formula

(T4 (0) + O ()2 + Ix(T, u)}?)

I

Il
-

x(T,u) =

P'x(T,u) = wu(T)+ O (||ur|l?2 + [x(T, u)?)

thus
u(T) = O ([ullfz + [x(T, u)]) -
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Proof of the necessary condition on Wy (3)

We have proved
T u2 T R
Px(Tiw) = [ R0 TP+ (T funles) [ 4+ x(Tiw)l? ).
0 0

u(T) = O(wnllZ= + [x(T, w)]).
Thus

T 2 T
PAP@=/2+OQTHmma/tfﬂmﬂmﬁ
0 0

This estimate prevents motions of the form x(T; u) = —efy, (0).
. 3
because they would imply —e > —Cez.
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Sharp necessary condition on Adj; (Xo)

By refining/extending the previous proof, we obtain

Q@ W L=STLC = £y, (0) € Span{f,(0); b € Bf}
[Sussmann 1983]

@ WL STLC = AdZ(%)(0) € Span{f,(0); b € B, 5y}
for all k € N*  [Stefani 1986]

coercive

1 t
X(t; u70) ~ Z nb(tv u)fb(o) + @ (/0 U%Z) fAd;‘\(i(Xo)(O)

ny(b)<2¢
t t
+0 (t/ uf[—&-/ |u12€+1) .
0 0
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Proof of the necessary condition on W, = [X;0, X107

We assume

fw,(0) ¢ F :=Span{f,(0); b € By 5 \ {W2}} (%)

Let P: R" — R be a projection on fi,(0) parallel to F.
We apply P to our representation formula

(Tiw) = 3 s(T 0)fs(0) + O (Jlunllt + x(Tw)|3)

beBj; 5

Px(Tiu) = nua(T,u) + O (lunllfe + x(T: 0)|$)
= Jy % + 3 — nau)(T) + O (Jlunlifa + Ix(Ts )3
Tu2 4
= Jy %+ 0 ((tn, ) (D + Tllualfs + Nl lfa + <(T; )] $)
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Proof of the necessary condition on W; (2)

Closed loop estimate on |(u1, u2)(T)| by higher order terms :

The assumption (x) implies that fy, (0), fa, (0) are linearly independent
and Span{fy,(0), fm, (0)} N F" = {0} where F" = Span{fy.(0);j > 2}.
Let P be a projection on Span{fum,(0), fi, (0)} parallel to F’.

We apply P’ to our representation formula

X(T,u) =" u(T) iy, (0) + O (lusl2= + [x(T, u)[?)
j=1

P'x(T, u) = un(t)fin, (0) + t2(t)fan, (0) + O ([lur |z + x(T, w)[?)

thus
(w1, w)(8)] = O (|x(T, u)| + [[un]|72)
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Proof of the necessary condition on W, €)

We have proved
’ u3 2 2 4 4
PX(Tit) = [ 240 ([(ur. )T + Tilualf + sl + b(T: )13

(w1, w)(8)] = O (|x(T, u)| + [[un]|72)
thus

T 2
u s
Px(T;u) = / ?2 +0 (T||U2H%z + o || fe + x(T; u)|3)
0
Gagliardo-Nirenberg inequality :  ||u1]|}s < |lul|?|/u2]|?2  implies

T 2
u 4
Px(Tiu) = [ %+ 0((T -+t + (T o))

which prevents motions of the form x(T; u) = —efy, (0).
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Sharp necessary condition on W, and extensions

By refining/extending the previous proof, we obtain

o L®*STLC = fi,(0) € Span{f(0); b € B U{Ad}, (X0)0"}}
[Kawski 1987]

® [*-STLC = fu,(0) € Span{fs(0); b € sharp list of Bf; 5}

[Kawski's conjecture 1986]

o Wm=-STLC = fw,(0) € Span{(0); b € By . (x m (23}
where m(k, m) = 1+ [22] is optimal.

@ necessary condition on quartic/sextic brackets for W™>-STLC

[KB, Marbach]
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Necessary conditions : conclusion, perspectives

x = fo(x) + u(t)f(x)
We have proposed methodology ingredients to prove NC for STLC :

@ approximate formula for the state from the f,(0),
@ a new Hall basis B* of £(X), designed for this purpose,

@ interpolation inequalities to absorb the remainder by the
coercive signed drift and the smallness of the control

Perspectives :

e "splitting" between good/bad brackets B* = By, U B},g
— OK at the level of {n; < 4} [KB-Marbach]

e multi-input systems [Gherdaoui]
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Transfer to PDEs :
the bilinear Schrodinger
equation



Example of transfer to Schrédinger PDE

i0pp = =01 — u(t)u(x)¢ P(t,0) = 9(t,1) =0

Ground state :

Y1 (t,x) := V/2sin(mx)e ™t

Depending on the assumption on ( :

@ linear test + smoothing effect [KB-Laurent 2010]
@ 1 direction lost on the linearized syst and [Bournissou 2022]
e quadratic obstruction in some regimes
e STLC in complementary regimes : Az fOT u3dt + CfOT U uo
This is the first positive STLC result for a PDE with a
nonlinear competition.

Perspectives : Does it work for other equations? KdV ?
How behave the high order terms for multi-input syst ? [Gherdaoui]
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