Lie brackets and functional analysis for control

Karine Beauchard

ENS Rennes, IRMAR
Recent advances on control theory of PDE systems
ICTS-TIFR, Bangalore, India, 20-21 February 2024

Scalar-input control affine systems : well-posedness

Let $f_{0}, f_{1} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $f_{0}(0)=0$. We consider

$$
\dot{x}(t)=f_{0}(x(t))+u(t) f_{1}(x(t))
$$

Proposition

- Let $T>0, x_{0} \in \mathbb{R}^{n}$ and $u \in L^{1}((0, T), \mathbb{R})$. There exists a unique maximal solution $x \in \mathcal{C}^{0}\left(\left[0, T^{\prime}\right], \mathbb{R}^{n}\right)$ such that $x(0)=x_{0}$, i.e.

$$
\forall t \in\left[0, T^{\prime}\right], \quad x(t)=x_{0}+\int_{0}^{t}\left(f_{0}(x(s))+u(s) f_{1}(x(s))\right) \mathrm{d} s
$$

Moreover, if $x_{0}=0$ and $\|u\|_{L^{1}}$ is small enough, then $T^{\prime}=T$.

- The end-point map $u \in L^{1}(0, T) \mapsto x(T ; u, 0)$ is C^{1}.

Proof: Fixed point argument. Implicit function theorem.

Small time local controllability : W ${ }^{m, \infty}$-STLC

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) \quad f_{0}(0)=0
$$

Definition ($W^{m, \infty}$-STLC)

Let $m \in \mathbb{N}$. The system is $W^{m, \infty}$-Small-Time Locally Controllable if for every $T, \eta>0$, there exists $\delta>0$ such that, for every $x_{f} \in B_{\mathbb{R}^{n}}(0, \delta)$, there exists $u:[0, T] \rightarrow \mathbb{R}$ such that $\|u\|_{w^{m, \infty}} \leqslant \eta$ and $x(T ; u, 0)=x_{f}$.

- Nonlinear open mapping + continuity of $x_{f} \mapsto u$ at 0 .
- Starting from $x(0)=0$ is not restrictive (under LARC).
- The historical definition of STLC corresponds to $m=0$.
- For nonlinear systems, the choice of norm influences the answer.
$\forall m \in \mathbb{N}^{*},\left(W^{m, \infty}\right.$-STLC $) \Rightarrow\left(L^{\infty}-\right.$ STLC $) \Rightarrow$ small-state-STLC.
Any reciprocal implication is false.
- Specifying the norm prepares the transfer to PDEs.

Definition

smooth-STLC $=W^{m, \infty}-$ STLC for any $m \in \mathbb{N}$

- We are also interested in Hölder cost estimates $\|u\| \leq C\left|x_{f}\right|^{\alpha}$.

Example : influence of the time on the local controllability

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{1}^{2}-x_{2}^{2}
\end{array}\right.
$$

Poincaré-Wirtinger : $\int_{0}^{T} \phi^{2} \leq\left(\frac{T}{\pi}\right)^{2} \int_{0}^{T}\left(\phi^{\prime}\right)^{2} \quad$ is $=$ for $\phi(t)=\sin \left(\frac{\pi t}{T}\right)$.

- The system is not controllable in time $T \leq \pi$ because ($\phi \leftarrow x_{2}$)

$$
x_{3}(T) \geq\left(1-\left(\frac{T}{\pi}\right)^{2}\right) \int_{0}^{T} x_{1}^{2} \geq 0
$$

- The system is controllable in any time $T>\pi$: if $u(t):=\dot{x}_{1}(t)$ where $x_{1}(t)=\rho^{\epsilon}(t) \cos \left(\frac{\pi t}{T}\right)$ and ρ^{ϵ} is a cut-off, then

$$
x_{3}(T)=\int_{0}^{T}\left(x_{1}(t)^{2}-\left(\int_{0}^{t} x_{1}\right)^{2}\right) d t \underset{\epsilon \rightarrow 0}{\longrightarrow}\left(1-\left(\frac{T}{\pi}\right)^{2}\right) \frac{T}{2 \pi}<0
$$

Example : influence of the norm on the local controllability

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{2}^{2}+x_{1}^{3}
\end{array}\right.
$$

- The system is not $W^{1, \infty}$-STLC : if $x_{2}(T)=0$ then $\int_{0}^{T} x_{1}^{3}=-\int_{0}^{T} 2 x_{2} x_{1} u=+\int_{0}^{T} \dot{u} x_{2}^{2} \quad$ thus, if $\|\dot{u}\|_{L^{\infty}} \leq 1$ then

$$
x_{3}(T) \geq\left(1-\|\dot{u}\|_{L \infty}\right) \int_{0}^{T} x_{2}^{2} \geq 0
$$

- The system is L^{∞}-STLC because : if $u(t)=\epsilon \phi^{\prime \prime}\left(\frac{t}{\lambda}\right)$ where $\phi \in C_{c}^{2}((0,1), \mathbb{R})$ and $T=\frac{1}{\lambda}$ then

$$
x_{3}(T, u)=\lambda^{5} \epsilon^{2} \int_{0}^{1} \phi^{2}+\lambda^{4} \epsilon^{3} \int_{0}^{1}\left(\phi^{\prime}\right)^{3}
$$

With $\lambda \ll \epsilon$ then $x_{3}(T, u)<0$.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{2}^{2}+x_{1}^{3}
\end{array}\right.
$$

Hölder exponent : for $L^{\infty}-\mathbf{S T L C}=\frac{1}{6}$, for $W^{-1, \infty}-\mathbf{S T L C}=\frac{1}{3}$

- With $x_{2}(t)=\epsilon^{3} \chi(t) \theta\left(\frac{t}{\epsilon}\right)$ where $\chi \in C_{c}^{\infty}(0, T)$ and θ is 1-periodic, we obtain a control $u \approx \epsilon \chi(t) \theta^{\prime \prime}\left(\frac{t}{\epsilon}\right)$ such that

$$
x(T, u) \approx \epsilon^{6}\left(\int_{0}^{T} \chi^{2} \int_{0}^{1} \theta+\int_{0}^{T} \chi^{3} \int_{0}^{1}\left(\theta^{\prime}\right)^{2}\right) e_{3}
$$

By choosing χ such that $\int \chi^{3}=1$ and $\theta(s)=\bar{\theta}(n s)$ we get $x_{3}(T)<0$. Moreover $\|u\|_{L^{\infty}} \approx \epsilon \leq\left|x_{f}\right|^{\frac{1}{6}} \quad$ and $\quad\left\|u_{1}\right\|_{L^{\infty}} \approx \epsilon^{2} \leq\left|x_{f}\right|^{\frac{1}{3}}$.

- Let $\sigma>\frac{1}{6}$. Assume that, for $\lambda>0$ small, $\exists u^{\lambda} \in L^{\infty}(0, T)$ such that $x\left(T, u^{\lambda}\right)=-\lambda e_{3}$ and $\left\|u^{\lambda}\right\|_{L^{\infty}} \leq C \lambda^{\sigma}$. By Gagliardo Nirenberg inequality

$$
\begin{aligned}
& \left\|x_{1}^{\lambda}\right\|_{L^{3}}^{3} \lesssim\left\|u^{\lambda}\right\|_{L^{6}}^{3 / 2}\left\|x_{2}^{\lambda}\right\|_{L^{2}}^{3 / 2} \lesssim \lambda^{\frac{3 \sigma}{2}}\left\|x_{2}^{\lambda}\right\|_{L^{2}}^{3 / 2} \leq C^{\prime} \lambda^{6 \sigma}+\frac{1}{2}\left\|x_{2}^{\lambda}\right\|_{L^{2}}^{2} \\
& \lambda+\left\|x_{2}^{\lambda}\right\|_{L^{2}}^{2}=-\int_{0}^{T}\left(x_{1}^{\lambda}\right)^{3} \leq C^{\prime} \lambda^{6 \sigma}+\frac{1}{2}\left\|x_{2}^{\lambda}\right\|_{L^{2}}^{2}: \text { contradiction. }
\end{aligned}
$$

Structure of this course

(1) Linear theory and Kalman rank condition
(2) Linear test and linear cost-estimate
(3) Power series expansion and Hölder-cost estimate
(9) Lie brackets
(5) A new representation formula of the state
(0) Proof of necessary conditions to STLC
(Oxtension to a PDE: the bilinear Schrödinger equation

Linear theory and Kalman rank condition

Linear theory and Kalman rank condition

$$
\dot{y}=A y+u(t) b
$$

where $y(t) \in \mathbb{R}^{n}, A \in M_{n}(\mathbb{R}), u(t) \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$.

Theorem

Smooth-STLC : $\forall T>0, y_{f} \in \mathbb{R}^{n}, \exists u \in C^{\infty}((0, T), \mathbb{R})$ such that
$y(T ; u, 0)=y_{f}$ and $\|u\|_{w^{m, \infty}} \leq C(m, T)\left|y_{f}\right|$.
\Leftrightarrow Kalman condition : $\operatorname{rank}\left\{b, A b, \ldots A^{n-1} b\right\}=n$
Proof of \Leftarrow : For every $T>0$, the Grammian matrix is invertible.

$$
G:=\int_{0}^{T} e^{A(T-\tau)} b b^{*} e^{A^{*}(T-\tau)} d \tau
$$

For $y_{f} \in \mathbb{R}^{n}$, the explicit control $u: t \in(0, T) \mapsto b^{*} e^{A^{*}(T-t)} G^{-1} y_{f}$ belongs to $C^{\infty}(0, T)$ and gives the conclusion.

Part 2

Linear test and linear cost-estimate

Linear test and linear cost-estimate

Let $f_{0}, f_{1} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that $f_{0}(0)=0, A:=\partial_{x} f_{0}(0)$ and $b:=f_{1}(0)$

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem

(1) If the linearized system $\dot{y}=A y+u(t) b$ is controllable then the nonlinear system (\star) is smooth-STLC.
(2) Moreover, $\forall m \in \mathbb{N}, T>0, \exists C, \delta>0$, such that $\forall x_{f} \in B_{\mathbb{R}^{n}}(0, \delta)$, there exists $u:[0, T] \rightarrow \mathbb{R}$ with $\|u\|_{W^{m, \infty}} \leq C\left|x_{f}\right|$ such that $x(T ; u, 0)=x_{f}$.
(3) Kalman is necessary for STLC **with** linear cost estimate.

Proof: Apply the inverse mapping theorem to the C^{1}-end-point map $\Theta: u \in W^{m, \infty}(0, T) \mapsto x(T ; u, 0)$. The right inverse Θ^{-1} is locally lipschitz : $\left\|\Theta^{-1}\left(x_{f}\right)\right\| w^{m, \infty}=\left\|\Theta^{-1}\left(x_{f}\right)-\Theta^{-1}(0)\right\| w^{m, \infty} \leq C\left|x_{f}\right|$.
Kalman is not necessary for STLC : $\left\{\begin{array}{l}\dot{x}_{1}=u \\ \dot{x}_{2}=x_{1}^{3}\end{array} \quad\left\{\begin{array}{l}\dot{y}_{1}=u \\ \dot{y}_{2}=0\end{array}\right.\right.$

Local controllability with linear cost estimate \Rightarrow Kalman

$$
\left\{\begin{array} { l }
{ \dot { x } = f _ { 0 } (x) + u (t) f _ { 1 } (x) , } \\
{ x (0) = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\dot{y}=A y+u(t) b \\
y(0)=0
\end{array}\right.\right.
$$

Let $T>0$. We assume $\exists C, \delta>0, \forall x_{f} \in B_{\mathbb{R}^{n}}(0, \delta), \exists u \in L^{\infty}(0, T)$ such that $x(T ; u)=x_{f}$ and $\|u\|_{L^{\infty}} \leq C\left|x_{f}\right|$.

Goal : $\forall y_{f} \in \mathbb{R}^{n}, \exists u \in L^{\infty}(0, T)$ such that $y(T ; u)=y_{f}$.

Let $y_{f} \in \mathbb{R}^{n}$. For $\epsilon>0$ small enough, there exists $u^{\epsilon} \in L^{\infty}(0, T)$ such that $x\left(T ; u^{\epsilon}\right)=\epsilon y_{f}$ and $\left\|u^{\epsilon}\right\|_{L^{\infty}} \leq C \epsilon\left|y_{f}\right|$. There exists $u \in L^{\infty}(0, T)$ such that, up to an extraction, $\frac{u^{\epsilon}}{\epsilon} \stackrel{*}{\rightharpoonup} u$ in $\sigma\left(L^{\infty}, L^{1}\right)$. Then

$$
\begin{aligned}
\left|y_{f}-y(T ; u)\right| & =\left|\frac{x\left(T ; u^{\epsilon}\right)-y\left(T ; u^{\epsilon}\right)}{\epsilon}+y\left(T ; \frac{u^{\epsilon}}{\epsilon}\right)-y(T ; u)\right| \\
& \leq \frac{1}{\epsilon} \underset{\epsilon \rightarrow 0}{o}\left(\left\|u^{\epsilon}\right\|\right)+\left|\int_{0}^{T} e^{A(T-t)} b\left(\frac{u^{\epsilon}(t)}{\epsilon}-u(t)\right) d t\right| \\
& =o(1)
\end{aligned}
$$

Power series expansion and Hölder-cost estimate

When the linear test fails : power series expansion

$$
\dot{x}=f_{0}(x)+u f_{1}(x), \quad f_{0}(0)=0, A=\partial_{x} f_{0}(0), b=f_{1}(0)
$$

We assume that the linearized system misses one direction e_{1}

$$
\mathbb{R}^{n}=\mathbb{R} e_{1} \oplus S \quad \text { where } \quad S:=\operatorname{Vect}\left\{A^{k} b ; 0 \leqslant k \leqslant n-1\right\}
$$

that we try to recover at the quadratic order. We make a formal power series expansion of (x, u)

$$
\begin{aligned}
& u= 0+\epsilon u_{1}+\epsilon^{2} u_{2}+\ldots \quad x=0+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots \\
& \dot{y}_{1}=\partial_{x} f_{0}(0) y_{1}+u_{1} f_{1}(0)=A y_{1}+u_{1} b \\
& \dot{y}_{2}=\partial_{x} f_{0}(0) y_{2}+u_{2} f_{1}(0)+\frac{1}{2} \partial_{x}^{2} f_{0}(0) \cdot\left(y_{1}, y_{1}\right)+u_{1} \partial_{x} f_{1}(0) \cdot y_{1} \\
&=A y_{2}+u_{2} b+\frac{1}{2} \partial_{x}^{2} f_{0}(0) \cdot\left(y_{1}, y_{1}\right)+u_{1} \partial_{x} f_{1}(0) \cdot y_{1}
\end{aligned}
$$

Assume there exists $u_{1}^{ \pm}, u_{2}^{ \pm} \in L^{\infty}(0, T)$ such that the associated solutions with $y_{1}^{ \pm}(0)=y_{2}^{ \pm}(0)=0$ satisfy $y_{1}^{ \pm}(T)=0$ and $y_{2}^{ \pm}(T)= \pm e_{1}$. Then, the nonlinear system is locally controllable in time T,

Power series expansion and Hölder cost-estimate

Theorem

Let $T>0$.
(1) If there exists $u_{1}^{ \pm}, u_{2}^{ \pm} \in L^{\infty}(0, T)$ that steer the linearized system from 0 to 0 and the quadratic system from 0 to $\pm e$, then the nonlinear system is STLC.
(2) Moreover, $\exists C_{T}, \delta_{T}>0$, such that $\forall x_{f} \in B_{\mathbb{R}^{n}}\left(0, \delta_{T}\right)$, there exists $u:[0, T] \rightarrow \mathbb{R}$ such that $x(T)=x_{f}$ and

$$
\|u\|_{\infty}<C_{T}\left|x_{f}\right|^{1 / 2}
$$

(3) Controlling at the quadratic order the component along e_{1} with controls leaving the linear order invariant is necessary for the $\frac{1}{2}$-Holder cost estimate.

Proof : SC for STLC with $\frac{1}{2}$-Hölder cost-estimate

We consider $\dot{x}=f_{0}(x)+u(t) f_{1}(x)$ where $\mathbb{R}^{n}=\mathbb{R} e_{1} \oplus S_{1}$ $S=\operatorname{Span}\left\{e_{2}, \ldots, e_{n}\right\}$ and $\exists u_{1}^{ \pm}, u_{2}^{ \pm}, v_{2}, \ldots, v_{n}$ such that

$$
\begin{array}{ll}
\dot{y}_{1}=A y+u_{1}(t) b, & \dot{y}_{2}=A y_{2}+u_{2}(t) b+Q\left(y_{1}\right)+u_{1} L\left(y_{1}\right), \\
y_{1}\left(T, u_{1}^{ \pm}\right)=0, & y_{2}\left(T, u_{1}^{ \pm}, u_{2}^{ \pm}\right)= \pm e_{1} \\
y_{1}\left(T, v_{j}\right)=e_{j} . &
\end{array}
$$

Goal : For x_{f} small enough, find u st $x(T ; u)=x_{f}$ and $\|u\| \leq C\left|x_{f}\right|^{1 / 2}$.
For $b=\sum_{j=1}^{n} b_{j} e_{j} \in \mathbb{R}^{n}$, the control

$$
u_{b}(t):=\sqrt{\left|b_{1}\right|} u_{1}^{\mathrm{sg}\left(b_{1}\right)}(t)+\left|b_{1}\right| u_{2}^{\operatorname{sg}\left(b_{2}\right)}(t)+\sum_{j=2}^{n} b_{j} v_{j}(t)
$$

satisfies $x\left(T ; u_{b}\right)=b+o(b)$. By applying the Brouwer fixed point theorem to the map $\mathcal{F}: b \mapsto b-x\left(T ; u_{b}\right)+x_{f}$ we obtain b^{*} such that $x_{f}=x\left(T ; u_{b^{*}}\right)$. Then $b^{*}=\mathcal{F}\left(b^{*}\right)=o\left(b^{*}\right)-x_{f}$ proves $\left|b^{*}\right| \leq C\left|x_{f}\right|$ thus $\left\|u_{b^{*}}\right\| \leq C\left|b^{*}\right|^{1 / 2} \leq C\left|x_{f}\right|^{1 / 2}$.

NC for $\frac{1}{2}$-Hölder cost-estimate

non linear	linear	quadratic
$\dot{x}=f_{0}(x)+u f_{1}(x)$	$\dot{y}_{1}=A y+u_{1} b$	$\dot{y}_{2}=A y_{2}+Q\left(y_{1}\right)+u_{1} L\left(y_{1}\right)$

Let $T>0$. We assume $\exists C, \delta>0, \forall x_{f} \in B_{\mathbb{R}^{n}}(0, \delta), \exists u \in L^{\infty}(0, T)$ such that $x(T ; u)=x_{f}$ and $\|u\|_{L \infty} \leq C\left|x_{f}\right|^{1 / 2}$.

Goal : $\exists u^{ \pm} \in L^{\infty}$ that leaves the linear order invariant: $y_{1}\left(T, u^{ \pm}\right)=0$, and moves the second order along $\pm e_{1}: \mathbb{P}_{e_{1}} y_{2}(T, u)= \pm 1$
$\exists u^{\epsilon} \in L^{\infty}(0, T)$ such that $x\left(T ; u^{\epsilon}\right)= \pm \epsilon e_{1}$ and $\left\|u^{\epsilon}\right\|_{L^{\infty}} \leq C \sqrt{\epsilon}$. $\exists u \in L^{\infty}(0, T)$ such that $\frac{u^{\epsilon}}{\sqrt{\epsilon}} \stackrel{*}{\rightharpoonup} u$ in $\sigma\left(L^{\infty}, L^{1}\right)$.
$y_{1}^{\epsilon}(t):=y_{1}\left(t, \frac{u^{\epsilon}}{\sqrt{\epsilon}}\right)=\int_{0}^{t} e^{A(t-s)} b \frac{u^{\epsilon}(s)}{\sqrt{\epsilon}} d s \xrightarrow{\text { pointwise } \& L^{2}} y_{1}(t, u)$,
$y_{1}^{\epsilon}(T)=\frac{1}{\sqrt{\epsilon}} \mathbb{P}_{S_{1}}\left(y_{1}-x\right)\left(T, u^{\epsilon}\right)=\frac{1}{\sqrt{\epsilon}} O\left(\left\|u^{\epsilon}\right\|^{2}\right)=O(\sqrt{\epsilon})$,
$y_{2}\left(T, \frac{u^{\epsilon}}{\sqrt{\epsilon}}\right)=\int_{0}^{T} e^{A(T-s)}\left(Q\left(y_{1}^{\epsilon}(s)\right)+\frac{u^{\epsilon}(s)}{\sqrt{\epsilon}} L y_{1}^{\epsilon}(s)\right) d s \longrightarrow y_{2}(T, u)$,
$\mathbb{P}_{e} y_{2}\left(T, \frac{u^{\epsilon}}{\sqrt{\epsilon}}\right)- \pm 1=\frac{1}{\epsilon} \mathbb{P}_{e}\left(y_{1}+y_{2}-x\right)\left(T, u^{\epsilon}\right)=\frac{1}{\epsilon} o\left(\left\|u^{\epsilon}\right\|^{2}\right)=o(1)$.

- Local controllability in time $T>\pi$ with $\frac{1}{2}$-Hölder cost estimate

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{1}^{2}-x_{2}^{2}
\end{array}\right.
$$

- STLC with $\frac{1}{3}$-Hölder cost-estimate :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1}^{3}
\end{array}\right.
$$

- $\frac{1}{3}$-Hölder cost estimate does not hold for

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{2}^{2}+x_{1}^{3}
\end{array}\right.
$$

Here, the optimal exponent for L^{∞}-STLC is $\frac{1}{6}$.
When 2 nonlinear terms are in competition, determining the optimal Holder exponent can be complicated.

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

- Prove necessary conditions of STLC formulated in terms of Lie brackets of f_{0} and f_{1} evaluated at 0
- With a new strategy :
- to go further on ODEs
- to prepare the transfer to PDEs
(1) Linear theory and Kalman rank condition
(2) Linear test and linear cost-estimate
(3) Power series expansion and Hölder-cost estimate
(9) Lie brackets
(3) A new representation formula of the state
((Proof of necessary conditions to STLC
(1) Extension to a PDE: the bilinear Schrödinger equation

Part 4

Lie brackets

An important tool : iterated Lie brackets

Definition

Let f and g be smooth vector fields on \mathbb{R}^{n}. The Lie bracket $[f, g]$ of f and g is the smooth vector field defined by :

$$
[f, g](x):=f^{\prime}(x) g(x)-g^{\prime}(x) f(x)
$$

We define by induction on $k \in \mathbb{N}$:

$$
\operatorname{Ad}_{f}^{0}(g)=g, \quad \operatorname{Ad}_{f}^{k+1}(g)=\left[f, \operatorname{Ad}_{f}^{k}(Y)\right] .
$$

When $f(x)=A x$ and $g(x)=B x$ with $A, B \in \mathcal{M}_{n}(\mathbb{R})$, then

$$
[f, g](x)=(B A-A B) x
$$

Lie brackets measure the lack of commutativity between motions.
Jacobi : $\operatorname{Ad}_{f}([g, h])=\left[\operatorname{Ad}_{f}(g), h\right]+\left[g, \operatorname{Ad}_{f}(h)\right]$

Convenient notations for Lie brackets

- Let $X:=\left\{X_{0}, X_{1}\right\}$ be non-commutative indeterminates
- Let $\mathcal{A}(X)$ be the free algebra over X
i.e. the vector space of non-commutative polynomials
ex: $7 X_{0}^{2}+3 X_{1} X_{0}+2 X_{0} X_{1} \in \mathcal{A}(X)$
- Let $\mathcal{L}(X)$ the free Lie algebra over X,
i.e. the smallest vector subspace of $\mathcal{A}(X)$ containing X_{0}, X_{1}, and stable by the Lie bracket (commutator) operation $[a, b]:=a b-b a$ ex: $X_{0}+2\left[X_{0}, X_{1}\right]+8\left[X_{1},\left[X_{1}, X_{0}\right]\right] \in \mathcal{L}(X)$
- $n_{j}(b)$ is the $n b$ of occurrences of X_{j} in b, for a Lie bracket $b \in \mathcal{L}(X)$ ex: for $b=\left[X_{1},\left[X_{1}, X_{0}\right]\right]$ then $n_{0}(b)=1$ and $n_{1}(b)=2$.
- One can "evaluate" (although not injective)

$$
\begin{gathered}
b \in \mathcal{L}(X) \hookrightarrow f_{b} \in C^{\omega}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right) \hookrightarrow f_{b}(0) \in \mathbb{R}^{n} \\
{\left[X_{1}, X_{0}\right]=X_{1} X_{0}-X_{0} X_{1} \rightarrow\left[f_{1}, f_{0}\right]=\left(D f_{0}\right) f_{1}-\left(D f_{1}\right) f_{0} \rightarrow\left[f_{1}, f_{0}\right](0)}
\end{gathered}
$$

Why Lie brackets? (\# 1) The Lie Algebra Rank Condition

For analytic vector fields f_{0}, f_{1} on a neighborhood of 0 , the LARC is

$$
\begin{equation*}
\operatorname{Lie}\left(f_{0}, f_{1}\right)(0):=\operatorname{span}\left\{f_{b}(0) ; b \in \mathcal{L}(X)\right\}=\mathbb{R}^{n} \tag{1}
\end{equation*}
$$

- For driftless syst $\dot{x}=u_{0}(t) f_{0}(x)+u_{1}(t) f_{1}(x)$: LARC \Leftrightarrow smooth-STLC. (\Rightarrow uses piecewise cst controls with max $2 n$ switches, smoothing OK) The solutions live in a submanifold M such that $T_{x} M=\operatorname{Lie}\left(f_{0}, f_{1}\right)(x)$.
- For systems $\dot{x}=f_{0}(x)+u(t) f_{1}(x)$, small-state-STLC \Rightarrow LARC. [Hermann 1963, Nagano 1966].
The analyticity of f_{0}, f_{1} is necessary : $\quad \dot{x}=u e^{-1 / u^{2}}$.
- But for non-zero drift $f_{0} \neq 0$, LARC is not sufficient.

$$
\begin{cases}\dot{x}_{1}=u, & f_{X_{1}}(0)=f_{1}(0)=e_{1} \\ \dot{x}_{2}=x_{1}^{2}, & f_{W_{1}}(0)=\left[f_{1},\left[f_{1}, f_{0}\right]\right](0)=2 e_{2}\end{cases}
$$

The quadratic Lie bracket $W_{1}:=\left[X_{1},\left[X_{1}, X_{0}\right]\right]$ looks like a 'bad': associated with a signed motion in an oriented direction.
The goal is to determine good/bad brackets.

Why Lie brackets? (\#2)

Consider analytic systems

$$
\begin{array}{rll}
\dot{x}=f_{0}(x)+u(t) f_{1}(x) & \text { with } & f_{0}(0)=0 \\
\dot{y}=g_{0}(y)+u(t) g_{1}(y) & \text { with } & g_{0}(0)=0
\end{array}
$$

Theorem (Nagano 1968, Krener 1973, Sussmann 1974, 1985)

The systems are loc. diffeomorphic: $\exists \Phi, \forall u, y(t, u)=\Phi(x(t, u))$ \Leftrightarrow their Lie brackets at 0 have the same vectorial structure :

$$
\left\{b \in \mathcal{L}(X) ; f_{b}(0)=0\right\}=\left\{b \in \mathcal{L}(X) ; g_{b}(0)=0\right\} .
$$

Proof of \Leftarrow : Let $b_{1}, \ldots, b_{n} \in \mathcal{L}(X)$ such that $\mathbb{R}^{n}=\operatorname{Span}\left\{f_{b_{j}}(0)\right\}$. Define loc. coordinates $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of $x \in \mathbb{R}^{n}$ by $x=e^{\alpha_{1} f_{b_{1}}} \ldots e^{\alpha_{n} f_{b_{n}}}(0)$. Then $\Phi(x)=e^{\alpha_{1} g_{b_{1}}} \ldots e^{\alpha_{n} g_{b_{n}}}(0)$ gives the conclusion. If $\Psi(t, p)=e^{t f} p$ then $\left(\partial_{p} \Psi(t, p)\right)^{-1} g(\Psi(t, p))=\sum_{k=0}^{+\infty} \frac{t^{k}}{k!} \operatorname{Ad}_{f}^{k}(g)(p)$.

Hence, the vectors $f_{b}(0)$ contain all the information for STLC.

A new representation formula of the state

Computing the state using Lie brackets

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) \quad x(0)=0
$$

Theorem (Beauchard, Le Borgne, Marbach 2020)

$$
x(t ; u)=\sum_{b} \eta_{b}(t, u) f_{b}(0)+O(\text { "remainders") }+o(x(t ; u))
$$

The sum

- ranges over elements b of a basis of $\mathcal{L}(X)$
- involves system-dependent vectors $f_{b}(0) \in \mathbb{R}^{n}$
- universal functionals $\eta_{b}(t, u)$

Caution : The full sum does not converge, even with analyticity. One has to consider (possibly infinite) truncations (wrt t, or u, or a parameter). And well chosen bases of $\mathcal{L}(X)$. This is not a Taylor expansion, but a csq of a Magnus-type formula.

Proof of necessary conditions for STLC

A naive strategy to prove obstructions

$$
x(T ; u)=\sum_{b \in \mathcal{B}_{[\mathbf{1}, M]}} \eta_{b}(T, u) f_{b}(0)+O\left(\|u\|_{W-\mathbf{1}, M+\mathbf{1}}^{M+1}+|x(T ; u)|^{1+\frac{1}{M}}\right)
$$

where $\mathcal{B}_{[1, M]}=\mathcal{B} \cap\left\{n_{1} \leq M\right\},\|u\|_{W^{-\mathbf{1}, p}}=\left\|u_{1}\right\|_{L^{p}}$ and $u_{1}(t)=\int_{0}^{t} u$.

- Choose $B \in \mathcal{B}$ st the functionnal $\eta_{B}(T,$.$) is signed for T$ small.
- Find $M \in \mathbb{N}$ st $\|u\|_{W^{-1, M+1}}^{M+1}=o\left(\eta_{B}(T, u)\right)$ when $\left(T,\|u\|_{W^{m, \infty}}\right) \rightarrow 0$.

Then a necessary condition for STLC is

$$
f_{B}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1, M]} \backslash\{B\}\right\}
$$

Indeed otherwise, $x(T ; u)$ drifts along $f_{B}(0)$:

$$
\mathbb{P} x(T, u)=\eta_{B}(T, u)+o\left(\left|\eta_{B}(T, u)\right|+|x(T, u)|\right)
$$

Motions of the form $x(T, u)=-\epsilon f_{B}(0)$ are impossible.
Drawback : The coordinates η_{B} are not signed in general

- a principal part ξ_{B} ("coordinates of the second kind") :
easily computable by recursion, nice for \mathcal{B}^{\star} i.e. obvious signs
- cross terms of other $\xi_{b^{\prime}}$
ex : $\quad \eta_{W_{1}}(t, u)=\int_{0}^{t} u_{1}^{2}-u_{1}(t) u_{2}(t)$

Our unified approach for obstructions to STLC

$$
x(T ; u)=\sum_{b \in \mathcal{B}_{[1, M]}^{*}} \xi_{b}(T, u) f_{b}(0)+\text { cross terms }+O\left(\|u\|_{W-1, M+1}^{M+1}+|x(T ; u)|^{1+\frac{1}{M}}\right)
$$

- Choose $B \in \mathcal{B}^{\star}$ such that the functional $\xi_{B}(T,$.$) is signed.$
- Find $M \in \mathbb{N}$ st $\|u\|_{W^{-1, M+1}}^{M+1}=o\left(\xi_{B}(T, u)\right)$ when $\left(T,\|u\|_{W^{m, \infty}}\right) \rightarrow 0$ using interpolation inequality.
- Prove cross terms $=o\left(\left|\xi_{B}(T, u)\right|+|x(T ; u)|\right)$ when

$$
f_{B}(0) \notin \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1, M]}^{\star} \backslash\{B\}\right\}
$$

using closed loop estimates + interpolation
If (\star) and $T,\|u\|_{W^{m, \infty}}$ are small enough then $x(T ; u)$ drifts along $f_{B}(0)$.
Thus a NC for $W^{m, \infty_{-}} \operatorname{STLC}$ is $\quad f_{B}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1, M]}^{\star} \backslash\{B\}\right\}$.
$\mathcal{B}_{1}^{\star}: \quad M_{\nu}:=X_{1} 0^{\nu}$

$$
\begin{aligned}
& u_{\nu+1}(t)=\int_{0}^{t} \frac{(t-\tau)^{\nu}}{\nu!} u(\tau) d \tau \\
& \int_{0}^{t} \frac{(t-\tau)^{\nu}}{\nu!} u_{j}(\tau)^{2} d \tau
\end{aligned}
$$

where $b 0^{\nu}=\left[\ldots\left[b, X_{0}\right], \ldots, X_{0}\right]$ and X_{0} appears ν times.
Let us prove the following results.

Theorem

$$
\begin{aligned}
L^{\infty}-S T L C \Rightarrow & f_{W_{1}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{11,2]}^{\star} \backslash\left\{W_{1}\right\}\right\} \\
& f_{W_{2}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1,3]}^{\star} \backslash\left\{W_{2}\right\}\right\}
\end{aligned}
$$

ex : The following systems are not L^{∞}-STLC

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = u } \\
{ \dot { x } _ { 2 } = x _ { 1 } ^ { 2 } + x _ { 1 } ^ { 3 } }
\end{array} \quad \left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{2} \\
\dot{x}_{3}=x_{2}^{2}-x_{1}^{4}
\end{array}\right.\right.
$$

Proof of the necessary condition on $W_{1}=\left[X_{1},\left[X_{1}, X_{0}\right]\right]$

We assume

$$
f_{W_{1}}(0) \notin F:=\operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1,2]}^{\star} \backslash\left\{W_{1}\right\}\right\}
$$

Let $\mathbb{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a projection on $f_{W_{1}}(0)$ parallel to F.
We apply \mathbb{P} to our representation formula

$$
\begin{gathered}
x(T ; u)=\sum_{b \in \mathcal{B}_{[1,2]}^{\star}} \eta_{b}(T, u) f_{b}(0)+O\left(\left\|u_{1}\right\|_{L^{3}}^{3}+|x(T ; u)|^{\frac{3}{2}}\right) \\
\mathbb{P} x(T ; u)= \\
=\eta_{W_{1}}(T, u)+O\left(\left\|u_{1}\right\|_{L^{3}}^{3}+|x(T ; u)|^{\frac{3}{2}}\right) \\
\\
=\int_{0}^{T} \frac{u_{1}^{2}}{2}+\frac{1}{2} u_{1}(T) u_{2}(T)+O\left(\int_{0}^{T}\left|u_{1}\right|^{3}+|x(T ; u)|^{\frac{3}{2}}\right) \\
=\int_{0}^{T} \frac{u_{1}^{2}}{2}+O\left(\left|u_{1}(T)\right|^{2}+\left(T+\left\|u_{1}\right\|_{L^{\infty}}\right) \int_{0}^{T} u_{1}^{2}+|x(T ; u)|^{\frac{3}{2}}\right)
\end{gathered}
$$

because $\left|u_{2}(T)\right|^{2}=\left|\int_{0}^{T} u_{1}\right| \leq T \int_{0}^{T} u_{1}^{2}$ by Cauchy-Schwarz.

Proof of a closed loop estimate on $\left|u_{1}(T)\right|$ by higher order terms:
The assumption (\star) implies that $f_{M_{0}}(0) \notin F^{\prime}=\operatorname{Span}\left\{f_{M_{j}}(0) ; j \geq 1\right\}$.
Let \mathbb{P}^{\prime} be a projection on $f_{M_{0}}(0)$ parallel to F^{\prime}.
We apply \mathbb{P}^{\prime} to our representation formula

$$
\begin{gathered}
x(T, u)=\sum_{j=1}^{\infty} u_{j}(T) f_{M_{j-1}}(0)+O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|^{\frac{3}{2}}\right) \\
\mathbb{P}^{\prime} x(T, u)=u_{1}(T)+O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|^{2}\right)
\end{gathered}
$$

thus

$$
u_{1}(T)=O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|\right)
$$

We have proved

$$
\begin{gathered}
\mathbb{P} x(T ; u)=\int_{0}^{T} \frac{u_{1}^{2}}{2}+O\left(\left|u_{1}(T)\right|^{2}+\left(T+\left\|u_{1}\right\|_{L^{\infty}}\right) \int_{0}^{T} u_{1}^{2}+|x(T ; u)|^{\frac{3}{2}}\right), \\
u_{1}(T)=O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|\right)
\end{gathered}
$$

Thus

$$
\mathbb{P} x(T ; u)=\int_{0}^{T} \frac{u_{1}^{2}}{2}+O\left(\left(T+\left\|u_{1}\right\|_{L^{\infty}}\right) \int_{0}^{T} u_{1}^{2}+|x(T ; u)|^{\frac{3}{2}}\right)
$$

This estimate prevents motions of the form $x(T ; u)=-\epsilon f_{W_{1}}(0)$. because they would imply $-\epsilon \geq-C \epsilon^{\frac{3}{2}}$.

By refining/extending the previous proof, we obtain
(1) $W^{-1, \infty}-$ STLC $\Rightarrow f_{W_{1}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{1}^{\star}\right\}$
[Sussmann 1983]
(2) $W^{-1, \infty}$-STLC $\Rightarrow \operatorname{Ad}_{f_{1}}^{2 \ell}\left(f_{0}\right)(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1,2 \ell-1]}^{\star}\right\}$ for all $k \in \mathbb{N}^{*} \quad$ [Stefani 1986]

$$
\begin{aligned}
x(t ; u, 0) \approx \sum_{n_{1}(b)<2 \ell} \eta_{b}(t, u) f_{b}(0) & +\frac{1}{(2 \ell)!} \overbrace{\left(\int_{0}^{t} u_{1}^{2 \ell}\right)}^{\text {coercive }} f_{\operatorname{Ad}_{x_{1}}^{2 \ell}\left(x_{0}\right)}(0) \\
& +\mathcal{O}\left(t \int_{0}^{t} u_{1}^{2 \ell}+\int_{0}^{t}\left|u_{1}\right|^{2 \ell+1}\right) .
\end{aligned}
$$

Proof of the necessary condition on $W_{2}=\left[X_{1} 0, X_{1} 0^{2}\right]$

We assume

$$
f_{W_{2}}(0) \notin F:=\operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1,3]}^{\star} \backslash\left\{W_{2}\right\}\right\}
$$

Let $\mathbb{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a projection on $f_{W_{2}}(0)$ parallel to F.
We apply \mathbb{P} to our representation formula

$$
\begin{aligned}
x(T ; u) & =\sum_{b \in \mathcal{B}_{[1,3]}^{\star}} \eta_{b}(T, u) f_{b}(0)+O\left(\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right) \\
\mathbb{P} x(T ; u) & =\eta_{w_{2}}(T, u)+O\left(\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right) \\
& =\int_{0}^{T} \frac{u_{2}^{2}}{2}+\frac{1}{2}\left(u_{2} u_{3}-u_{1} u_{4}\right)(T)+O\left(\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right) \\
& =\int_{0}^{T} \frac{u_{2}^{2}}{2}+O\left(\left|\left(u_{1}, u_{2}\right)(T)\right|^{2}+T\left\|u_{2}\right\|_{L^{2}}^{2}+\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right)
\end{aligned}
$$

Closed loop estimate on $\left|\left(u_{1}, u_{2}\right)(T)\right|$ by higher order terms :
The assumption (\star) implies that $f_{M_{0}}(0), f_{M_{1}}(0)$ are linearly independent and $\operatorname{Span}\left\{f_{M_{0}}(0), f_{M_{1}}(0)\right\} \cap F^{\prime}=\{0\}$ where $F^{\prime}=\operatorname{Span}\left\{f_{M_{j}}(0) ; j \geq 2\right\}$. Let \mathbb{P}^{\prime} be a projection on $\operatorname{Span}\left\{f_{M_{0}}(0), f_{M_{1}}(0)\right\}$ parallel to F^{\prime}.
We apply \mathbb{P}^{\prime} to our representation formula

$$
\begin{gathered}
x(T, u)=\sum_{j=1}^{\infty} u_{j}(T) f_{M_{j-1}}(0)+O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|^{2}\right) \\
\mathbb{P}^{\prime} x(T, u)=u_{1}(t) f_{M_{0}}(0)+u_{2}(t) f_{M_{1}}(0)+O\left(\left\|u_{1}\right\|_{L^{2}}^{2}+|x(T, u)|^{2}\right)
\end{gathered}
$$

thus

$$
\left|\left(u_{1}, u_{2}\right)(t)\right|=O\left(|x(T, u)|+\left\|u_{1}\right\|_{L^{2}}^{2}\right)
$$

We have proved

$$
\begin{gathered}
\mathbb{P} x(T ; u)=\int_{0}^{T} \frac{u_{2}^{2}}{2}+O\left(\left|\left(u_{1}, u_{2}\right)(T)\right|^{2}+T\left\|u_{2}\right\|_{L^{2}}^{2}+\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right) \\
\left|\left(u_{1}, u_{2}\right)(t)\right|=O\left(|x(T, u)|+\left\|u_{1}\right\|_{L^{2}}^{2}\right)
\end{gathered}
$$

thus

$$
\mathbb{P} x(T ; u)=\int_{0}^{T} \frac{u_{2}^{2}}{2}+O\left(T\left\|u_{2}\right\|_{L^{2}}^{2}+\left\|u_{1}\right\|_{L^{4}}^{4}+|x(T ; u)|^{\frac{4}{3}}\right)
$$

Gagliardo-Nirenberg inequality : $\quad\left\|u_{1}\right\|_{L^{4}}^{4} \lesssim\|u\|_{L^{\infty}}^{2}\left\|u_{2}\right\|_{L^{2}}^{2} \quad$ implies

$$
\mathbb{P} x(T ; u)=\int_{0}^{T} \frac{u_{2}^{2}}{2}+O\left(\left(T+\|u\|_{L^{\infty}}^{2}\right)\left\|u_{2}\right\|_{L^{2}}^{2}+|x(T ; u)|^{\frac{4}{3}}\right)
$$

which prevents motions of the form $x(T ; u)=-\epsilon f_{W_{2}}(0)$.

Sharp necessary condition on W_{2} and extensions

By refining/extending the previous proof, we obtain

- L^{∞}-STLC $\Rightarrow f_{W_{2}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{1}^{\star} \cup\left\{\operatorname{Ad}_{X_{1}}^{3}\left(X_{0}\right) 0^{\nu}\right\}\right\}$ [Kawski 1987]
- L^{∞}-STLC $\Rightarrow f_{W_{3}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in\right.$ sharp list of $\left.\mathcal{B}_{[1,5]}^{\star}\right\}$
- L^{∞}-STLC $\quad \Rightarrow \quad f_{W_{k}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1,2 k-1] \backslash\{2\}}^{\star}\right\}$
[Kawski's conjecture 1986]
- $W^{m, \infty}{ }^{-S T L C} \Rightarrow f_{W_{k}}(0) \in \operatorname{Span}\left\{f_{b}(0) ; b \in \mathcal{B}_{[1, \pi(k, m)) \backslash\{2\}}^{\star}\right\}$ where $\pi(k, m)=1+\left\lceil\frac{2 k-2}{m+1}\right\rceil$ is optimal.
- necessary condition on quartic/sextic brackets for $W^{m, \infty}$-STLC
[KB, Marbach]

Necessary conditions : conclusion, perspectives

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

We have proposed methodology ingredients to prove NC for STLC :

- approximate formula for the state from the $f_{b}(0)$,
- a new Hall basis \mathcal{B}^{\star} of $\mathcal{L}(X)$, designed for this purpose,
- interpolation inequalities to absorb the remainder by the coercive signed drift and the smallness of the control

Perspectives :

- "splitting" between good/bad brackets $\mathcal{B}^{\star}=\mathcal{B}_{\text {good }}^{\star} \cup \mathcal{B}_{\text {bad }}^{\star}$
\longrightarrow OK at the level of $\left\{n_{1} \leq 4\right\}$ [KB-Marbach]
- multi-input systems [Gherdaoui]

Transfer to PDEs : the bilinear Schrödinger equation

Example of transfer to Schrödinger PDE

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u(t) \mu(x) \psi
$$

$$
\psi(t, 0)=\psi(t, 1)=0
$$

Ground state :
$\psi_{1}(t, x):=\sqrt{2} \sin (\pi x) e^{-i \pi^{2} t}$

Depending on the assumption on μ :

- linear test + smoothing effect [KB-Laurent 2010]
- 1 direction lost on the linearized syst and [Bournissou 2022]
- quadratic obstruction in some regimes
- STLC in complementary regimes : $A_{3} \int_{0}^{T} u_{3}^{2} d t+C \int_{0}^{T} u_{1}^{2} u_{2}$ This is the first positive STLC result for a PDE with a nonlinear competition.

Perspectives: Does it work for other equations? KdV ?
How behave the high order terms for multi-input syst? [Gherdaoui]

