Lie brackets and functional analysis for control

Karine Beauchard

ENS Rennes, IRMAR

Recent advances on control theory of PDE systems ICTS-TIFR, Bangalore, India, 20-21 February 2024

Scalar-input control affine systems : well-posedness

Let
$$f_0, f_1 \in C^1(\mathbb{R}^n,\mathbb{R}^n)$$
 with $f_0(0)=0$. We consider $\dot{x}(t)=f_0(x(t))+u(t)f_1(x(t)).$ (\star)

Proposition

• Let T > 0, $x_0 \in \mathbb{R}^n$ and $u \in L^1((0, T), \mathbb{R})$. There exists a unique maximal solution $x \in C^0([0, T'], \mathbb{R}^n)$ such that $x(0) = x_0$, i.e.

$$\forall t \in [0, T'], \quad x(t) = x_0 + \int_0^t \Big(f_0(x(s)) + u(s)f_1(x(s))\Big) \mathrm{d}s.$$

Moreover, if $x_0 = 0$ and $||u||_{L^1}$ is small enough, then T' = T.

• The end-point map $u \in L^1(0,T) \mapsto x(T;u,0)$ is C^1 .

Proof: Fixed point argument. Implicit function theorem.

Small time local controllability : $W^{m,\infty}$ -STLC

$$\dot{x} = f_0(x) + u(t)f_1(x)$$
 $f_0(0) = 0$

Definition ($W^{m,\infty}$ -STLC)

Let $m \in \mathbb{N}$. The system is $W^{m,\infty}$ -Small-Time Locally Controllable if for every $T, \eta > 0$, there exists $\delta > 0$ such that, for every $x_f \in B_{\mathbb{R}^n}(0, \delta)$, there exists $u : [0, T] \to \mathbb{R}$ such that $\|u\|_{W^{m,\infty}} \leq \eta$ and $x(T; u, 0) = x_f$.

- Nonlinear open mapping + continuity of $x_f \mapsto u$ at 0.
- Starting from x(0) = 0 is not restrictive (under LARC).
- The historical definition of STLC corresponds to m = 0.
- For nonlinear systems, the choice of norm influences the answer.

 $\forall m \in \mathbb{N}^*, (W^{m,\infty}\text{-STLC}) \Rightarrow (L^{\infty}\text{-STLC}) \Rightarrow \text{small-state-STLC}.$ Any resigns sall implication is false.

Any reciprocal implication is false.

• Specifying the norm prepares the transfer to PDEs.

Definition

smooth-STLC = $W^{m,\infty}$ -STLC for any $m \in \mathbb{N}$

• We are also interested in Hölder cost estimates $||u|| \le C|x_f|^{\alpha}$.

Example: influence of the time on the local controllability

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_1^2 - x_2^2 \end{cases}$$

Poincaré-Wirtinger : $\int_0^T \phi^2 \le \left(\frac{T}{\pi}\right)^2 \int_0^T (\phi')^2$ is = for $\phi(t) = \sin(\frac{\pi t}{T})$.

• The system is not controllable in time $T \le \pi$ because $(\phi \leftarrow x_2)$

$$x_3(T) \ge \left(1 - \left(\frac{T}{\pi}\right)^2\right) \int_0^T x_1^2 \ge 0.$$

• The system is controllable in any time $T>\pi$: if $u(t):=\dot{x}_1(t)$ where $x_1(t)=\rho^\epsilon(t)\cos(\frac{\pi t}{T})$ and ρ^ϵ is a cut-off, then

$$x_3(T) = \int_0^T \left(x_1(t)^2 - \left(\int_0^t x_1 \right)^2 \right) dt \underset{\epsilon \to 0}{\longrightarrow} \left(1 - \left(\frac{T}{\pi} \right)^2 \right) \frac{T}{2\pi} < 0$$

Example: influence of the norm on the local controllability

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_2^2 + x_1^3 \end{cases}$$

• The system is not $W^{1,\infty}\text{-STLC}:$ if $x_2(T)=0$ then $\int_0^T x_1^3 = -\int_0^T 2x_2x_1u = +\int_0^T \dot{u}x_2^2$ thus, if $\|\dot{u}\|_{L^\infty} \leq 1$ then

$$x_3(T) \ge (1 - \|\dot{u}\|_{L^{\infty}}) \int_0^T x_2^2 \ge 0$$

• The system is L^{∞} -STLC because : if $u(t) = \epsilon \phi''\left(\frac{t}{\lambda}\right)$ where $\phi \in C_c^2((0,1),\mathbb{R})$ and $T = \frac{1}{\lambda}$ then

$$x_3(T, u) = \lambda^5 \epsilon^2 \int_0^1 \phi^2 + \lambda^4 \epsilon^3 \int_0^1 (\phi')^3$$

With $\lambda << \epsilon$ then $x_3(T, u) < 0$.

Example: influence of the norm on the Hölder exponent

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_2^2 + x_1^3 \end{cases}$$

Hölder exponent : for $L^\infty ext{-STLC}=rac{1}{6}$, for $W^{-1,\infty} ext{-STLC}=rac{1}{3}$

• With $x_2(t) = \epsilon^3 \chi(t) \theta\left(\frac{t}{\epsilon}\right)$ where $\chi \in C_c^{\infty}(0,T)$ and θ is 1-periodic, we obtain a control $u \approx \epsilon \chi(t) \theta''\left(\frac{t}{\epsilon}\right)$ such that

$$x(T,u) \approx \epsilon^6 \left(\int_0^T \chi^2 \int_0^1 \theta + \int_0^T \chi^3 \int_0^1 (\theta')^2 \right) e_3.$$

By choosing χ such that $\int \chi^3 = 1$ and $\theta(s) = \overline{\theta}(ns)$ we get $x_3(T) < 0$. Moreover $\|u\|_{L^{\infty}} \approx \epsilon \le |x_f|^{\frac{1}{6}}$ and $\|u_1\|_{L^{\infty}} \approx \epsilon^2 \le |x_f|^{\frac{1}{3}}$.

• Let $\sigma>\frac{1}{6}$. Assume that, for $\lambda>0$ small, $\exists u^{\lambda}\in L^{\infty}(0,T)$ such that $x(T,u^{\lambda})=-\lambda e_3$ and $\|u^{\lambda}\|_{L^{\infty}}\leq C\lambda^{\sigma}$. By Gagliardo Nirenberg inequality

$$\|x_1^{\lambda}\|_{L^3}^3 \lesssim \|u^{\lambda}\|_{L^6}^{3/2} \|x_2^{\lambda}\|_{L^2}^{3/2} \lesssim \lambda^{\frac{3\sigma}{2}} \|x_2^{\lambda}\|_{L^2}^{3/2} \leq C' \lambda^{6\sigma} + \frac{1}{2} \|x_2^{\lambda}\|_{L^2}^2$$

$$\|\lambda + \|x_2^{\lambda}\|_{L^2}^2 = -\int_0^T (x_1^{\lambda})^3 \le C' \lambda^{6\sigma} + \frac{1}{2} \|x_2^{\lambda}\|_{L^2}^2 : \text{contradiction.}$$

Structure of this course

- Linear theory and Kalman rank condition
- 2 Linear test and linear cost-estimate
- Open Series expansion and Hölder-cost estimate
- 4 Lie brackets
- A new representation formula of the state
- Proof of necessary conditions to STLC
- Extension to a PDE: the bilinear Schrödinger equation

Linear theory and Kalman rank condition

Linear theory and Kalman rank condition

$$\dot{y} = Ay + u(t)b$$

where $y(t) \in \mathbb{R}^n$, $A \in M_n(\mathbb{R})$, $u(t) \in \mathbb{R}$ and $b \in \mathbb{R}^n$.

Theorem

Smooth-STLC: $\forall T > 0, y_f \in \mathbb{R}^n$, $\exists u \in C^{\infty}((0, T), \mathbb{R})$ such that $y(T; u, 0) = y_f$ and $||u||_{W^{m,\infty}} \leq C(m, T)|y_f|$. \Leftrightarrow **Kalman condition**: $\operatorname{rank} \{b, Ab, \dots A^{n-1}b\} = n$

Proof of \Leftarrow : For every T > 0, the Grammian matrix is invertible.

$$G:=\int_0^T e^{A(T-\tau)} b b^* e^{A^*(T-\tau)} d\tau$$

For $y_f \in \mathbb{R}^n$, the explicit control $u: t \in (0, T) \mapsto b^* e^{A^*(T-t)} G^{-1} y_f$ belongs to $C^{\infty}(0, T)$ and gives the conclusion.

Linear test and linear cost-estimate

Linear test and linear cost-estimate

Let $f_0, f_1 \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ such that $f_0(0) = 0$, $A := \partial_x f_0(0)$ and $b := f_1(0)$

$$\dot{x} = f_0(x) + u(t)f_1(x) \tag{*}$$

Theorem

- If the linearized system $\dot{y} = Ay + u(t)b$ is controllable then the nonlinear system (\star) is **smooth-**STLC.
- ② Moreover, $\forall m \in \mathbb{N}, T > 0, \exists C, \delta > 0, \text{ such that } \forall x_f \in B_{\mathbb{R}^n}(0, \delta),$ there exists $u : [0, T] \to \mathbb{R}$ with $\|u\|_{W^{m,\infty}} \le C|x_f|$ such that $x(T; u, 0) = x_f$.
- 3 Kalman is necessary for STLC **with** linear cost estimate.

Proof: Apply the inverse mapping theorem to the C^1 -end-point map $\Theta: u \in W^{m,\infty}(0,T) \mapsto x(T;u,0)$. The right inverse Θ^{-1} is locally lipschitz: $\|\Theta^{-1}(x_f)\|_{W^{m,\infty}} = \|\Theta^{-1}(x_f) - \Theta^{-1}(0)\|_{W^{m,\infty}} \le C|x_f|$.

$$\text{Kalman is not necessary for STLC}: \left\{ \begin{array}{l} \dot{x}_1 = u \\ \dot{x}_2 = x_1^3 \end{array} \right. \quad \left\{ \begin{array}{l} \dot{y}_1 = u \\ \dot{y}_2 = 0 \end{array} \right.$$

Local controllability with linear cost estimate ⇒ Kalman

$$\begin{cases} \dot{x} = f_0(x) + u(t)f_1(x), \\ x(0) = 0, \end{cases} \qquad \begin{cases} \dot{y} = Ay + u(t)b, \\ y(0) = 0 \end{cases}$$

Let T>0. We assume $\exists C, \delta>0, \forall x_f \in B_{\mathbb{R}^n}(0,\delta), \exists u \in L^{\infty}(0,T)$ such that $x(T;u)=x_f$ and $\|u\|_{L^{\infty}}\leq C|x_f|$.

Goal: $\forall y_f \in \mathbb{R}^n, \exists u \in L^{\infty}(0, T) \text{ such that } y(T; u) = y_f.$

Let $y_f \in \mathbb{R}^n$. For $\epsilon > 0$ small enough, there exists $u^\epsilon \in L^\infty(0,T)$ such that $x(T;u^\epsilon) = \epsilon y_f$ and $\|u^\epsilon\|_{L^\infty} \leq C\epsilon |y_f|$. There exists $u \in L^\infty(0,T)$ such that, up to an extraction, $\frac{u^\epsilon}{\epsilon} \stackrel{*}{\rightharpoonup} u$ in $\sigma(L^\infty,L^1)$. Then

$$|y_{f} - y(T; u)| = \left| \frac{x(T; u^{\epsilon}) - y(T; u^{\epsilon})}{\epsilon} + y(T; \frac{u^{\epsilon}}{\epsilon}) - y(T; u) \right|$$

$$\leq \frac{1}{\epsilon} \underset{\epsilon \to 0}{o} (\|u^{\epsilon}\|) + \left| \int_{0}^{T} e^{A(T-t)} b\left(\frac{u^{\epsilon}(t)}{\epsilon} - u(t)\right) dt \right|$$

$$= o(1)$$

Power series expansion and Hölder-cost estimate

When the linear test fails : power series expansion

$$\dot{x} = f_0(x) + uf_1(x), \qquad f_0(0) = 0, A = \partial_x f_0(0), b = f_1(0)$$

We assume that the linearized system misses one direction e_1

$$\mathbb{R}^n = \mathbb{R}e_1 \oplus S$$
 where $S := \text{Vect}\{A^k b; 0 \leqslant k \leqslant n-1\}$

that we try to recover at the quadratic order. We make a formal power series expansion of (x, u)

$$u = 0 + \epsilon u_1 + \epsilon^2 u_2 + \dots \qquad x = 0 + \epsilon y_1 + \epsilon^2 y_2 + \dots$$

$$\dot{y}_1 = \partial_x f_0(0) y_1 + u_1 f_1(0) = A y_1 + u_1 b$$

$$\dot{y}_2 = \partial_x f_0(0) y_2 + u_2 f_1(0) + \frac{1}{2} \partial_x^2 f_0(0) \cdot (y_1, y_1) + u_1 \partial_x f_1(0) \cdot y_1$$

$$= A y_2 + u_2 b + \frac{1}{2} \partial_x^2 f_0(0) \cdot (y_1, y_1) + u_1 \partial_x f_1(0) \cdot y_1$$

Assume there exists $u_1^\pm, u_2^\pm \in L^\infty(0,T)$ such that the associated solutions with $y_1^\pm(0) = y_2^\pm(0) = 0$ satisfy $y_1^\pm(T) = 0$ and $y_2^\pm(T) = \pm e_1$.

Then, the nonlinear system is locally controllable in time T, $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Power series expansion and Hölder cost-estimate

$\mathsf{Theorem}$

Let T > 0.

- If there exists u_1^{\pm} , $u_2^{\pm} \in L^{\infty}(0, T)$ that steer the linearized system from 0 to 0 and the quadratic system from 0 to $\pm e$, then the nonlinear system is STLC.
- ② Moreover, $\exists C_T, \delta_T > 0$, such that $\forall x_f \in B_{\mathbb{R}^n}(0, \delta_T)$, there exists $u : [0, T] \to \mathbb{R}$ such that $x(T) = x_f$ and

$$||u||_{\infty} < C_T |x_f|^{1/2}.$$

Controlling at the quadratic order the component along e₁ with controls leaving the linear order invariant is necessary for the ¹/₂-Holder cost estimate.

Proof : SC for STLC with $\frac{1}{2}$ -Hölder cost-estimate

We consider
$$\dot{x}=f_0(x)+u(t)f_1(x)$$
 where $\mathbb{R}^n=\mathbb{R}e_1\oplus S_1$ $S=\operatorname{Span}\{e_2,\ldots,e_n\}$ and $\exists u_1^\pm,u_2^\pm,v_2,\ldots,v_n$ such that

$$\begin{array}{ll} \dot{y}_1 = Ay + u_1(t)b, & \dot{y}_2 = Ay_2 + u_2(t)b + Q(y_1) + u_1L(y_1), \\ y_1(T, u_1^{\pm}) = 0, & y_2(T, u_1^{\pm}, u_2^{\pm}) = \pm e_1, \\ y_1(T, v_j) = e_j. & \end{array}$$

Goal : For x_f small enough, find u st $x(T; u) = x_f$ and $||u|| \le C|x_f|^{1/2}$.

For $b = \sum_{j=1}^n b_j e_j \in \mathbb{R}^n$, the control

$$u_b(t) := \sqrt{|b_1|} u_1^{\operatorname{sg}(b_1)}(t) + |b_1| u_2^{\operatorname{sg}(b_2)}(t) + \sum_{j=2}^n b_j v_j(t)$$

satisfies $x(T;u_b)=b+o(b)$. By applying the Brouwer fixed point theorem to the map $\mathcal{F}:b\mapsto b-x(T;u_b)+x_f$ we obtain b^* such that $x_f=x(T;u_{b^*})$. Then $b^*=\mathcal{F}(b^*)=o(b^*)-x_f$ proves $|b^*|\leq C|x_f|$ thus $\|u_{b^*}\|\leq C|b^*|^{1/2}\leq C|x_f|^{1/2}$.

NC for $\frac{1}{2}$ -Hölder cost-estimate

non linear linear quadratic
$$\dot{x} = f_0(x) + uf_1(x)$$
 $\dot{y}_1 = Ay + u_1b$ $\dot{y}_2 = Ay_2 + Q(y_1) + u_1L(y_1)$

Let T>0. We assume $\exists C, \delta>0, \forall x_f\in B_{\mathbb{R}^n}(0,\delta), \exists u\in L^\infty(0,T)$ such that $x(T;u)=x_f$ and $\|u\|_{L^\infty}\leq C|x_f|^{1/2}$.

Goal: $\exists u^{\pm} \in L^{\infty}$ that leaves the linear order invariant : $y_1(T, u^{\pm}) = 0$, and moves the second order along $\pm e_1 : \mathbb{P}_{e_1} y_2(T, u) = \pm 1$

$$\exists u^{\epsilon} \in L^{\infty}(0,T) \text{ such that } x(T;u^{\epsilon}) = \pm \epsilon e_{1} \text{ and } \|u^{\epsilon}\|_{L^{\infty}} \leq C\sqrt{\epsilon}.$$

$$\exists u \in L^{\infty}(0,T) \text{ such that } \frac{u^{\epsilon}}{\sqrt{\epsilon}} \stackrel{*}{\rightharpoonup} u \text{ in } \sigma(L^{\infty},L^{1}).$$

$$\begin{split} y_1^{\epsilon}(t) &:= y_1(t, \frac{u^{\epsilon}}{\sqrt{\epsilon}}) = \int_0^t e^{A(t-s)} b \frac{u^{\epsilon}(s)}{\sqrt{\epsilon}} ds \overset{\text{pointwise }\&L^2}{\longrightarrow} y_1(t, u), \\ y_1^{\epsilon}(T) &= \frac{1}{\sqrt{\epsilon}} \mathbb{P}_{S_1}(y_1 - x)(T, u^{\epsilon}) = \frac{1}{\sqrt{\epsilon}} O(\|u^{\epsilon}\|^2) = O(\sqrt{\epsilon}), \\ y_2(T, \frac{u^{\epsilon}}{\sqrt{\epsilon}}) &= \int_0^T e^{A(T-s)} \left(Q(y_1^{\epsilon}(s)) + \frac{u^{\epsilon}(s)}{\sqrt{\epsilon}} L y_1^{\epsilon}(s) \right) ds \longrightarrow y_2(T, u), \\ \mathbb{P}_e y_2(T, \frac{u^{\epsilon}}{\sqrt{\epsilon}}) - \pm 1 &= \frac{1}{\epsilon} \mathbb{P}_e(y_1 + y_2 - x)(T, u^{\epsilon}) = \frac{1}{\epsilon} o(\|u^{\epsilon}\|^2) = o(1). \end{split}$$

Examples

• Local controllability in time $T>\pi$ with $\frac{1}{2}$ -Hölder cost estimate

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_1^2 - x_2^2 \end{cases}$$

• STLC with $\frac{1}{3}$ -Hölder cost-estimate :

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1^3 \end{cases}$$

• $\frac{1}{3}$ -Hölder cost estimate does not hold for

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_2^2 + x_1^3 \end{cases}$$

Here, the optimal exponent for L^{∞} -STLC is $\frac{1}{6}$.

When 2 nonlinear terms are in competition, determining the optimal Holder exponent can be complicated.

Goal and structure of the 2nd course

$$\dot{x} = f_0(x) + u(t)f_1(x)$$

- Prove necessary conditions of STLC formulated in terms of Lie brackets of f₀ and f₁ evaluated at 0
- With a new strategy :
 - to go further on ODEs
 - to prepare the transfer to PDEs

- Linear theory and Kalman rank condition
- 2 Linear test and linear cost-estimate
- Open Series expansion and Hölder-cost estimate
- Lie brackets
- A new representation formula of the state
- Proof of necessary conditions to STLC
- Extension to a PDE: the bilinear Schrödinger equation

Lie brackets

An important tool : iterated Lie brackets

Definition

Let f and g be smooth vector fields on \mathbb{R}^n . The Lie bracket [f,g] of f and g is the smooth vector field defined by :

$$[f,g](x) := f'(x)g(x) - g'(x)f(x).$$

We define by induction on $k \in \mathbb{N}$:

$$\operatorname{Ad}_f^0(g) = g, \qquad \operatorname{Ad}_f^{k+1}(g) = [f, \operatorname{Ad}_f^k(Y)].$$

When f(x) = Ax and g(x) = Bx with $A, B \in \mathcal{M}_n(\mathbb{R})$, then

$$[f,g](x)=(BA-AB)x.$$

Lie brackets measure the lack of commutativity between motions.

Jacobi:
$$Ad_f([g, h]) = [Ad_f(g), h] + [g, Ad_f(h)]$$

Convenient notations for Lie brackets

- Let $X := \{X_0, X_1\}$ be non-commutative **indeterminates**
- Let $\mathcal{A}(X)$ be the **free algebra** over X i.e. the vector space of non-commutative polynomials $\underline{\text{ex}}: 7X_0^2 + 3X_1X_0 + 2X_0X_1 \in \mathcal{A}(X)$
- Let $\mathcal{L}(X)$ the **free Lie algebra** over X, i.e. the smallest vector subspace of $\mathcal{A}(X)$ containing X_0 , X_1 , and stable by the Lie bracket (commutator) operation [a,b]:=ab-ba $\underline{\mathrm{ex}}: X_0+2[X_0,X_1]+8[X_1,[X_1,X_0]]\in\mathcal{L}(X)$
- $n_j(b)$ is the nb of occurrences of X_j in b, for a Lie bracket $b \in \mathcal{L}(X)$ • \underline{ex} : for $b = [X_1, [X_1, X_0]]$ then $n_0(b) = 1$ and $n_1(b) = 2$.
- One can "evaluate" (although not injective)

$$b \in \mathcal{L}(X) \hookrightarrow f_b \in C^{\omega}(\mathbb{R}^n; \mathbb{R}^n) \hookrightarrow f_b(0) \in \mathbb{R}^n$$
$$[X_1, X_0] = X_1 X_0 - X_0 X_1 \to [f_1, f_0] = (Df_0) f_1 - (Df_1) f_0 \to [f_1, f_0](0)$$

Why Lie brackets? (# 1) The Lie Algebra Rank Condition

For analytic vector fields f_0 , f_1 on a neighborhood of 0, the LARC is

$$Lie(f_0, f_1)(0) := span \{f_b(0); b \in \mathcal{L}(X)\} = \mathbb{R}^n.$$
 (1)

- For driftless syst $\dot{x} = u_0(t)f_0(x) + u_1(t)f_1(x)$: LARC \Leftrightarrow smooth-STLC. (\Rightarrow uses piecewise cst controls with max 2n switches, smoothing OK) The solutions live in a submanifold M such that $T_xM = Lie(f_0, f_1)(x)$.
- For systems $\dot{x} = f_0(x) + u(t)f_1(x)$, small-state-STLC \Rightarrow LARC. [Hermann 1963, Nagano 1966].

The analyticity of f_0 , f_1 is necessary : $\dot{x} = ue^{-1/u^2}$.

• But for non-zero drift $f_0 \neq 0$, LARC is not sufficient.

$$\begin{cases} \dot{x}_1 = u, & f_{X_1}(0) = f_1(0) = e_1 \\ \dot{x}_2 = x_1^2, & f_{W_1}(0) = [f_1, [f_1, f_0]](0) = 2e_2 \end{cases}$$

The quadratic Lie bracket $W_1 := [X_1, [X_1, X_0]]$ looks like a 'bad' : associated with a signed motion in an oriented direction.

The goal is to determine good/bad brackets.

Why Lie brackets? (#2)

Consider analytic systems
$$\dot{x} = f_0(x) + u(t)f_1(x)$$
 with $f_0(0) = 0$ $\dot{y} = g_0(y) + u(t)g_1(y)$ with $g_0(0) = 0$

Theorem (Nagano 1968, Krener 1973, Sussmann 1974, 1985)

The systems are loc. diffeomorphic : $\exists \Phi, \forall u, y(t, u) = \Phi(x(t, u))$ \Leftrightarrow their Lie brackets at 0 have the same vectorial structure :

$${b \in \mathcal{L}(X); f_b(0) = 0} = {b \in \mathcal{L}(X); g_b(0) = 0}.$$

Proof of \Leftarrow : Let $b_1, \ldots, b_n \in \mathcal{L}(X)$ such that $\mathbb{R}^n = \operatorname{Span}\{f_{b_j}(0)\}$. Define loc. coordinates $(\alpha_1, \ldots, \alpha_n)$ of $x \in \mathbb{R}^n$ by $x = e^{\alpha_1 f_{b_1}} \ldots e^{\alpha_n f_{b_n}}(0)$. Then $\Phi(x) = e^{\alpha_1 g_{b_1}} \ldots e^{\alpha_n g_{b_n}}(0)$ gives the conclusion. If $\Psi(t, p) = e^{tf} p$ then $(\partial_p \Psi(t, p))^{-1} g(\Psi(t, p)) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} \operatorname{Ad}_f^k(g)(p)$.

Hence, the vectors $f_b(0)$ contain all the information for STLC.

A new representation formula of the state

Computing the state using Lie brackets

$$\dot{x} = f_0(x) + u(t)f_1(x)$$
 $x(0) = 0$

Theorem (Beauchard, Le Borgne, Marbach 2020)

$$x(t;u) = \sum_{b} \eta_b(t,u) f_b(0) + O(\text{"remainders"}) + o(x(t;u)).$$

The sum

- ranges over elements b of a basis of $\mathcal{L}(X)$
- ullet involves system-dependent vectors $f_b(0) \in \mathbb{R}^n$
- universal functionals $\eta_b(t, u)$

Caution : The full sum does not converge, even with analyticity. One has to consider (possibly infinite) truncations (wrt t, or u, or a parameter). And well chosen bases of $\mathcal{L}(X)$. **This is not a Taylor expansion, but a csq of a Magnus-type formula.**

Proof of necessary conditions for STLC

A naive strategy to prove obstructions

$$x(T; u) = \sum_{b \in \mathcal{B}_{[1,M]}} \eta_b(T, u) f_b(0) + O\left(\|u\|_{W^{-1,M+1}}^{M+1} + |x(T; u)|^{1+\frac{1}{M}}\right)$$

where $\mathcal{B}_{[1,M]}=\mathcal{B}\cap\{n_1\leq M\}$, $\|u\|_{W^{-1,p}}=\|u_1\|_{L^p}$ and $u_1(t)=\int_0^t u.$

- Choose $B \in \mathcal{B}$ st the functionnal $\eta_B(T,.)$ is signed for T small.
- Find $M \in \mathbb{N}$ st $||u||_{W^{-1},M+1}^{M+1} = o(\eta_B(T,u))$ when $(T,||u||_{W^{m,\infty}}) \to 0$.

Then a necessary condition for STLC is

$$f_B(0) \in \operatorname{\mathsf{Span}} \left\{ f_b(0); b \in \mathcal{B}_{[1,M]} \setminus \{B\} \right\}$$

Indeed otherwise, x(T; u) drifts along $f_B(0)$:

$$\mathbb{P}x(T,u) = \eta_B(T,u) + o(|\eta_B(T,u)| + |x(T,u)|).$$

Motions of the form $x(T, u) = -\epsilon f_B(0)$ are impossible.

 $\underline{\mathbf{Drawback}}$: The coordinates η_B are not signed in general

- a principal part ξ_B ("coordinates of the second kind") : easily computable by recursion, nice for \mathcal{B}^* i.e. obvious signs
- ullet cross terms of other $\xi_{b'}$

$$\underline{\text{ex}}: \quad \eta_{W_1}(t,u) = \int_0^t u_1^2 - u_1(t)u_2(t)$$

Our unified approach for obstructions to STLC

$$x(T; u) = \sum_{b \in \mathcal{B}_{[\mathbf{1}, M]}^{\star}} \xi_b(T, u) f_b(0) + \text{cross terms} + O\left(\|u\|_{W^{-\mathbf{1}, M+\mathbf{1}}}^{M+1} + |x(T; u)|^{1+\frac{1}{M}}\right)$$

- Choose $B \in \mathcal{B}^*$ such that the functional $\xi_B(T,.)$ is signed.
- Find $M \in \mathbb{N}$ st $\|u\|_{W^{-1,M+1}}^{M+1} = o(\xi_B(T,u))$ when $(T,\|u\|_{W^{m,\infty}}) \to 0$ using interpolation inequality.
- Prove cross terms = $o(|\xi_B(T, u)| + |x(T; u)|)$ when

$$f_B(0) \notin \operatorname{Span}\left\{f_b(0); b \in \mathcal{B}_{[1,M]}^{\star} \setminus \{B\}\right\}$$
 (*)

using closed loop estimates + interpolation

If (\star) and T, $||u||_{W^{m,\infty}}$ are small enough then x(T;u) drifts along $f_B(0)$.

Thus a NC for
$$W^{m,\infty}$$
-STLC is $f_B(0) \in \operatorname{Span}\left\{f_b(0); b \in \mathcal{B}^{\star}_{[1,M]} \setminus \{B\}\right\}$.

Elements of our Hall basis \mathcal{B}^* of $\mathcal{L}(X)$, coordinates $\xi_b(t,u)$

$$\begin{array}{lll} \mathcal{B}_{1}^{\star}: & M_{\nu}:=X_{1}0^{\nu} & u_{\nu+1}(t)=\int_{0}^{t}\frac{(t-\tau)^{\nu}}{\nu!}u(\tau)d\tau \\ \mathcal{B}_{2}^{\star}: & W_{j,\nu}:=(M_{j-1},M_{j})0^{\nu} & \int_{0}^{t}\frac{(t-\tau)^{\nu}}{\nu!}u_{j}(\tau)^{2}d\tau \\ & \text{where } b0^{\nu}=[\ldots[b,X_{0}],\ldots,X_{0}] \text{ and } X_{0} \text{ appears } \nu \text{ times.} \end{array}$$

Let us prove the following results.

Theorem

$$L^{\infty}\text{-}STLC \Rightarrow f_{W_1}(0) \in Span\{f_b(0); b \in \mathcal{B}^{\star}_{[1,2]} \setminus \{W_1\}\}$$
$$f_{W_2}(0) \in Span\{f_b(0); b \in \mathcal{B}^{\star}_{[1,3]} \setminus \{W_2\}\}$$

ex : The following systems are not L^{∞} -STLC

$$\begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_1^2 + x_1^3 \end{cases} \qquad \begin{cases} \dot{x}_1 = u \\ \dot{x}_2 = x_2 \\ \dot{x}_3 = x_2^2 - x_1^4 \end{cases}$$

Proof of the necessary condition on $W_1 = [X_1, [X_1, X_0]]$

We assume

$$f_{\mathcal{W}_{\mathbf{1}}}(0) \notin F := \mathsf{Span}\{f_b(0); b \in \mathcal{B}^{\star}_{[1,2]} \setminus \{\mathcal{W}_1\}\}$$
 (\star)

Let $\mathbb{P}: \mathbb{R}^n \to \mathbb{R}$ be a projection on $f_{W_1}(0)$ parallel to F. We apply \mathbb{P} to our representation formula

$$x(T; u) = \sum_{b \in \mathcal{B}_{[1,2]}^{\star}} \eta_b(T, u) f_b(0) + O\left(\|u_1\|_{L^3}^3 + |x(T; u)|^{\frac{3}{2}}\right)$$

$$\mathbb{P}x(T;u) = \eta_{W_{1}}(T,u) + O\left(\|u_{1}\|_{L^{3}}^{3} + |x(T;u)|^{\frac{3}{2}}\right)
= \int_{0}^{T} \frac{u_{1}^{2}}{2} + \frac{1}{2}u_{1}(T)u_{2}(T) + O\left(\int_{0}^{T} |u_{1}|^{3} + |x(T;u)|^{\frac{3}{2}}\right)
= \int_{0}^{T} \frac{u_{1}^{2}}{2} + O\left(|u_{1}(T)|^{2} + (T + \|u_{1}\|_{L^{\infty}})\int_{0}^{T} u_{1}^{2} + |x(T;u)|^{\frac{3}{2}}\right)$$

because $|u_2(T)|^2 = \left|\int_0^T u_1\right| \le T \int_0^T u_1^2$ by Cauchy-Schwarz.

Proof of the necessary condition on W_1

Proof of a closed loop estimate on $|u_1(T)|$ by higher order terms :

The assumption (\star) implies that $f_{M_0}(0) \notin F' = \operatorname{Span}\{f_{M_j}(0); j \geq 1\}$. Let \mathbb{P}' be a projection on $f_{M_0}(0)$ parallel to F'.

We apply \mathbb{P}' to our representation formula

$$x(T, u) = \sum_{j=1}^{\infty} u_j(T) f_{M_{j-1}}(0) + O\left(\|u_1\|_{L^2}^2 + |x(T, u)|^{\frac{3}{2}}\right)$$

$$\mathbb{P}'x(T, u) = u_1(T) + O\left(\|u_1\|_{L^2}^2 + |x(T, u)|^2\right)$$

thus

$$u_1(T) = O(||u_1||_{L^2}^2 + |x(T, u)|).$$

We have proved

$$\mathbb{P}x(T;u) = \int_0^T \frac{u_1^2}{2} + O\left(|u_1(T)|^2 + (T + ||u_1||_{L^{\infty}}) \int_0^T u_1^2 + |x(T;u)|^{\frac{3}{2}}\right),$$

$$u_1(T) = O(||u_1||_{L^2}^2 + |x(T,u)|).$$

Thus

$$\mathbb{P}x(T;u) = \int_0^T \frac{u_1^2}{2} + O\left((T + \|u_1\|_{L^{\infty}}) \int_0^T u_1^2 + |x(T;u)|^{\frac{3}{2}}\right)$$

This estimate prevents motions of the form $x(T; u) = -\epsilon f_{W_1}(0)$. because they would imply $-\epsilon \ge -C\epsilon^{\frac{3}{2}}$.

Sharp necessary condition on $\operatorname{Ad}_{X_1}^{2\ell}(X_0)$

By refining/extending the previous proof, we obtain

$$x(t; u, 0) pprox \sum_{n_1(b) < 2\ell} \eta_b(t, u) f_b(0) + \frac{1}{(2\ell)!} \underbrace{\left(\int_0^t u_1^{2\ell}\right)}_{\text{coercive}} f_{\operatorname{Ad}_{X_1}^{2\ell}(X_0)}(0) + \mathcal{O}\left(t \int_0^t u_1^{2\ell} + \int_0^t |u_1|^{2\ell+1}\right).$$

Proof of the necessary condition on $W_2 = [X_10, X_10^2]$

We assume

$$f_{W_2}(0) \notin F := \mathsf{Span}\{f_b(0); b \in \mathcal{B}^\star_{[1,3]} \setminus \{W_2\}\}$$
 (*)

Let $\mathbb{P}: \mathbb{R}^n \to \mathbb{R}$ be a projection on $f_{W_2}(0)$ parallel to F. We apply \mathbb{P} to our representation formula

$$x(T; u) = \sum_{b \in \mathcal{B}_{[1,3]}^{\star}} \eta_b(T, u) f_b(0) + O\left(\|u_1\|_{L^4}^4 + |x(T; u)|^{\frac{4}{3}}\right)$$

$$\mathbb{P}x(T;u) = \eta_{W_{2}}(T,u) + O\left(\|u_{1}\|_{L^{4}}^{4} + |x(T;u)|^{\frac{4}{3}}\right)
= \int_{0}^{T} \frac{u_{2}^{2}}{2} + \frac{1}{2}(u_{2}u_{3} - u_{1}u_{4})(T) + O\left(\|u_{1}\|_{L^{4}}^{4} + |x(T;u)|^{\frac{4}{3}}\right)
= \int_{0}^{T} \frac{u_{2}^{2}}{2} + O\left(|(u_{1}, u_{2})(T)|^{2} + T\|u_{2}\|_{L^{2}}^{2} + \|u_{1}\|_{L^{4}}^{4} + |x(T;u)|^{\frac{4}{3}}\right)$$

Closed loop estimate on $|(u_1, u_2)(T)|$ by higher order terms :

The assumption (\star) implies that $f_{M_0}(0), f_{M_1}(0)$ are linearly independent and $\operatorname{Span}\{f_{M_0}(0), f_{M_1}(0)\} \cap F' = \{0\}$ where $F' = \operatorname{Span}\{f_{M_j}(0); j \geq 2\}$. Let \mathbb{P}' be a projection on $\operatorname{Span}\{f_{M_0}(0), f_{M_1}(0)\}$ parallel to F'. We apply \mathbb{P}' to our representation formula

$$x(T,u) = \sum_{j=1}^{\infty} u_j(T) f_{M_{j-1}}(0) + O\left(\|u_1\|_{L^2}^2 + |x(T,u)|^2\right)$$

$$\mathbb{P}'x(T,u) = u_1(t)f_{M_0}(0) + u_2(t)f_{M_1}(0) + O\left(\|u_1\|_{L^2}^2 + |x(T,u)|^2\right)$$

thus

$$|(u_1, u_2)(t)| = O(|x(T, u)| + ||u_1||_{L^2}^2)$$

We have proved

$$\mathbb{P}x(T;u) = \int_0^T \frac{u_2^2}{2} + O\left(|(u_1, u_2)(T)|^2 + T||u_2||_{L^2}^2 + ||u_1||_{L^4}^4 + |x(T;u)|^{\frac{4}{3}}\right)$$
$$|(u_1, u_2)(t)| = O\left(|x(T, u)| + ||u_1||_{L^2}^2\right)$$

thus

$$\mathbb{P}x(T;u) = \int_0^T \frac{u_2^2}{2} + O\left(T\|u_2\|_{L^2}^2 + \|u_1\|_{L^4}^4 + |x(T;u)|^{\frac{4}{3}}\right)$$

Gagliardo-Nirenberg inequality : $\|u_1\|_{L^4}^4 \lesssim \|u\|_{L^\infty}^2 \|u_2\|_{L^2}^2$ implies

$$\mathbb{P}x(T;u) = \int_0^T \frac{u_2^2}{2} + O\left((T + \|u\|_{L^{\infty}}^2)\|u_2\|_{L^2}^2 + |x(T;u)|^{\frac{4}{3}}\right)$$

which prevents motions of the form $x(T; u) = -\epsilon f_{W_2}(0)$.

Sharp necessary condition on W_2 and extensions

By refining/extending the previous proof, we obtain

- L^{∞} -STLC \Rightarrow $f_{W_2}(0) \in \text{Span}\{f_b(0); b \in \mathcal{B}_1^{\star} \cup \{\text{Ad}_{X_1}^3(X_0)0^{\nu}\}\}$ [Kawski 1987]
- L^{∞} -STLC \Rightarrow $f_{W_{\mathbf{3}}}(0) \in \operatorname{Span}\{f_b(0); b \in \operatorname{sharp list of } \mathcal{B}_{[1,5]}^{\star}\}$
- L^{∞} -STLC \Rightarrow $f_{W_k}(0) \in \text{Span}\{f_b(0); b \in \mathcal{B}^{\star}_{[1,2k-1]\setminus\{2\}}\}$ [Kawski's conjecture 1986]
- $W^{m,\infty}$ -STLC $\Rightarrow f_{W_k}(0) \in \operatorname{Span}\{f_b(0); b \in \mathcal{B}^{\star}_{[1,\pi(k,m)]\setminus\{2\}}\}$ where $\pi(k,m) = 1 + \lceil \frac{2k-2}{m+1} \rceil$ is optimal.
- necessary condition on quartic/sextic brackets for $W^{m,\infty}$ -STLC

[KB, Marbach]

Necessary conditions: conclusion, perspectives

$$\dot{x} = f_0(x) + u(t)f_1(x)$$

We have proposed methodology ingredients to prove NC for STLC:

- approximate formula for the state from the $f_b(0)$,
- a new Hall basis \mathcal{B}^* of $\mathcal{L}(X)$, designed for this purpose,
- interpolation inequalities to absorb the remainder by the coercive signed drift and the smallness of the control

Perspectives:

- ullet "splitting" between good/bad brackets $\mathcal{B}^\star = \mathcal{B}^\star_{good} \cup \mathcal{B}^\star_{bad}$ \longrightarrow OK at the level of $\{n_1 \leq 4\}$ [KB-Marbach]
- multi-input systems [Gherdaoui]

Transfer to PDEs : the bilinear Schrödinger equation

Example of transfer to Schrödinger PDE

$$i\partial_t \psi = -\partial_x^2 \psi - u(t)\mu(x)\psi$$

$$\psi(t,0)=\psi(t,1)=0$$

Ground state:

$$\psi_1(t,x) := \sqrt{2}\sin(\pi x)e^{-i\pi^2t}$$

Depending on the assumption on μ :

- linear test + smoothing effect [KB-Laurent 2010]
- 1 direction lost on the linearized syst and [Bournissou 2022]
 - quadratic obstruction in some regimes
 - STLC in complementary regimes : $A_3 \int_0^T u_3^2 dt + C \int_0^T u_1^2 u_2$ This is the first positive STLC result for a PDE with a nonlinear competition.

Perspectives: Does it work for other equations? KdV? How behave the high order terms for multi-input syst? [Gherdaoui]

