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Generalities on local-global principles

Classical examples: Hasse Norm Theorem

We consider:

K = a number field
V = set of all places of K
Kv = completion of K at v ∈ V.

Hasse Norm Theorem

Let L/K be a cyclic extension. An element x ∈ K× is norm from

L (i.e. x ∈ NL/K(L×)) if and only if x as an element of K×
v is

a norm from Lv̄ (v̄|v) for all v ∈ V.

Equivalently: For a cyclic extension L/K, the natural map

K×/NL/K(L×) → ∏
v∈V

K×
v /NLv̄/Kv(L

×
v̄ )

is injective.
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Generalities on local-global principles

Classical examples: Albert-Brauer-Hasse-Noether theorem

Recall: For any field F and any cyclic extension T/F,

F×/NT/F(T×) ≃ Br(T/F) := ker (Br(F) → Br(T)) .

Thus, Hasse Norm Theorem implies that the natural map

Br(L/K) → ∏
v∈V

Br(Lv̄/Kv), [A] 7→ [A ⊗K Kv]

is injective for any cyclic extension L/K.

More generally, Albert-Brauer-Hasse-Noether Theorem (ABHN)

yields injectivity of the natural map

Br(K) → ∏
v∈V

Br(Kv).
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Generalities on local-global principles

Cohomological perspective

Recall: For any cyclic extension P/F, one has
F×/NP/F(P×) = Ĥ0(P/F, P×) (Tate cohomology)

and Ĥ0(P/F, P×) ≃ Ĥ2(P/F, P×) by periodicity of cohomology.

Thus, Hasse Norm Theorem implies global-to-local maps
Ĥ0(L/K, L×) → ∏

v∈V
Ĥ0(Lv̄/Kv, L×

v̄ ) and Ĥ2(L/K, L×) → ∏
v∈V

Ĥ2(Lv̄/Kv, L×
v̄ )

are injective.

Furthermore, since Br(F) ≃ H2(F, (Fsep)×) for any field F,
(ABHN) yields injectivity of global-to-local map

H2(K, (Ksep)×) → ∏
v∈V

H2(Kv, (Ksep
v )×).

Thus, Hasse Norm Theorem and (ABHN) can be interpreted
as cohomological local-global principles.
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Generalities on local-global principles

Cohomological perspective (cont.)

In fact, both results can be viewed in the general context of
the Galois cohomology of algebraic groups.

For any finite sep. extension P/F, there exists an algebraic
group T = R(1)

P/F(Gm) defined over F with the property that
T(F) = {s ∈ P× | NP/F(s) = 1} (norm torus).

Setting H1(F, T) = H1(Gal(Fsep/F), T(Fsep)), one shows that

H1(F, T) ≃ F×/NP/F(P×).

Thus, Hasse Norm Theorem means that global-to-local map

H1(K, T) → ∏
v∈V

H1(Kv, T)

is injective for any cyclic extension of number fields.

To go further, one needs to consider cohomology of
noncommutative algebraic groups.
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Generalities on local-global principles

Cohomological perspective (cont.)

Recall: For any field F and alg. F-gp G, one sets
H1(F, G) = {cont. 1-cocycles f : Gal(Fsep/F) → G(Fsep)}/ ∼

Note: H1(F, G) generally not a group, only a pointed set.

H1(F, G) can often be interpreted in terms of twisted forms.

For any field F, we have
AutF-alg.(Mn(F)) = PGLn(F) (Skolem-Noether Theorem).

Also, for any central simple F-algebra A with degFA = n, one
has

A ⊗F Fsep ≃ Mn(Fsep).
Using this, one shows

H1(F, PGLn) ↔ {F-isom. classes of CSA A/F | degFA = n}.
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Generalities on local-global principles

Cohomological perspective (cont.)

Thus, (ABHN) implies that for any number field K,

global-to-local map

H1(K, PGLn) → ∏
v∈V

H1(Kv, PGLn)

is injective for all n ⩾ 2.

Another example: Let f be n-dim non-deg. quadratic form
over F. Then

H1(F, On(f )) ↔ {F-equiv. classes of non-deg. f ′ | dimF f ′ = n}
Thus, Hasse-Minkowski Theorem implies that for any number
field K, global-to-local map

H1(K, On(f )) → ∏
v∈V

H1(Kv, On(f ))

is injective for any non-deg. quadratic form f over K.
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Generalities on local-global principles

General set-up and terminology

Let

K be a field
V a set of rank 1 valuations of K
Kv = completion of K at v
G an algebraic group over K.

One says that the Hasse principle holds if global-to-local map

θG,V : H1(K, G) → ∏
v∈V

H1(Kv, G)

is injective.

Kernel of θG,V is called Tate-Shafarevich set

X(G, V) := ker θG,V.
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Generalities on local-global principles

Some known cases of Hasse principle

K = number field, V = set of all places of K.

We have seen Hasse principle holds for G = R(1)
L/K(Gm)

(L/K cyclic), PGLn, On(f ).

In general, it is known that if G is simply-connected or
adjoint alg. K-group, then

θG,V : H1(k, G) → ∏
v∈V

H1(kv, G)

is injective (i.e. Hasse principle holds).

K = func. field of p-adic curve, V = set of all discr. vals of K.

Hasse principle known to hold for simply-connected
K-groups of classical types (by work of Parimala, Suresh,
Preeti, Hu).
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Generalities on local-global principles

Properness of θG,V

Hasse principle may fail for arbitrary alg. K-gps, even
over number fields.

However, over number fields, θG,V is always proper (i.e.
pre-image of finite set is finite); in particular, X(G, V) is
finite.

Our recent results suggest that properness should hold
for reductive groups over arbitrary finitely generated fields
with respect to divisorial sets of places.
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Generalities on local-global principles

Divisorial valuations

We consider the following situation.

Let K be a finitely generated field.

Pick a normal integral affine model X for K.

Let V = set of discrete valuations of K associated with
prime divisors on X (divisorial set).

Algebraically: We find R ⊂ K such that K = Frac(R) and

R is a finitely generated Z-algebra (or Fp-algebra);

R is integrally closed in K.

Then: V corresponds to height one prime ideals of R.
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Generalities on local-global principles

Divisorial valuations: Example

Take K = Q(x) and R = Z[x].

Height one primes in R are principal and are of two types:

p = (p(x)), with p(x) ∈ Z[x] irreducible of content 1;

p = (p), p ∈ Z a prime.

Two corresponding types of discrete valuations:

“geometric places” V0;

“arithmetic places” V1.

Then V = V0 ∪ V1 is divisorial set of discrete valuations
associated with the model X = Spec(R) of K.
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Generalities on local-global principles

Properness conjecture

Suppose
K a finitely generated field;
V a divisorial set of places of K.

Conjecture.

If G is a (connected) reductive algebraic K-group, then θG,V is

proper. In particular, the Tate-Shafarevich set X(G, V) is finite.

We have resolved conjecture for:

all algebraic tori over arbitrary finitely generated fields;

certain semisimple groups over 2-dim. global fields (i.e.
K = k(C) for number field k), and some other cases.

For semisimple adjoint groups, conjecture is closely related to
study of groups with good reduction.
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Local-global principles for algebraic tori

Theorem 1.
Suppose K is a finitely generated field and V is a divisorial set

of places. Then for any K-torus T, the global-to-local map

θT,V : H1(K, T) → ∏
v∈V

H1(Kv, T)

is proper. Equivalently, the Tate-Shafarevich group X(T, V) =

ker θT,V is finite.

Same result holds for any alg. K-group whose connected
component is a torus.

Classical proof for tori over number fields relies on
Tate-Nakayama duality, which is not available in general.

Our proof uses adelic methods. In particular, it shows
that finiteness of X(T, V) for a torus T over a number
field follows from finiteness of class number and finite
generation of group of S-units.
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Local-global principles for algebraic tori

Adelic set-up

Let
K be a field

V a set of discrete valuations of K such that
(*) for any a ∈ K×, set V(a) := {v ∈ V | v(a) ̸= 0} is finite.

For such V, we define Picard group Pic(V) = Div(V)/P(V),
Div(V) = free abelian group on v ∈ V,
P(V) = subgp of “principal divisors” ∑

v∈V
v(a)v, a ∈ K×.

Example: If K is a number field and V is set of all finite
places of K, then Pic(V) = Cl(OK).
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Local-global principles for algebraic tori

Adelic set-up (cont.)

The ring of adeles of K with respect to V is

AK(V) = ∏
v∈V

′Kv =

{
(xv) ∈ ∏

v∈V
Kv | xv ∈ Ov for almost all v ∈ V

}
.

Group IK(V) of invertible elements is idele group.

Let
A∞

K (V) = ∏
v∈V

Ov (subring of integral adeles)

I∞
K (V) = ∏

v∈V
O×

v (subgroup of integral ideles)

Observe that condition (*) yields diagonal embeddings
K ↪→ AK(V) and K× ↪→ IK(V).

Note: The map IK(V) → Div(V), (xv) 7→ ∑
v∈V

v(xv) · v induces

isom. IK(V)/(I∞
K (V) · K×)

∼−→ Pic(V).
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Local-global principles for algebraic tori

Adelic set-up (cont.)

Let

L/K finite field extension
V̄ = set of all extensions of valuations in V to L

Then AK(V)⊗K L ≃ AL(V̄).
⇒ for Galois L/K, AL(V̄) has natural Gal(L/K)-action.

Next:
T = a K-torus (thus, T ⊗K Ksep ≃ (Gm,Ksep)d)
for each v ∈ V, let T(Ov) ⊂ T(Kv) be the unique max.
bounded subgp.

Then

T(AK(V)) =

{
(xv) ∈ ∏

v∈V
T(Kv) | xv ∈ T(Ov) for almost all v

}
.
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Local-global principles for algebraic tori

Adelic set-up (cont.)

As before, we have

T(A∞
K (V)) = ∏

v∈V
T(Ov) (subgroup of integral adeles)

diagonal embedding T(K) ↪→ T(AK(V)).

Furthermore,

T(AL(V̄)) and T(A∞
L (V̄)) defined analogously for any

finite extension L/K;

for L/K Galois, Gal(L/K)-action on AL(V̄) induces
Gal(L/K)-action on T(AL(V̄));

in particular, diagonal embedding T(L) ↪→ T(AL(V̄))
induces hom.

λL/K : H1(L/K, T) → H1(L/K, T(AL(V̄))).
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Local-global principles for algebraic tori

Sketch of argument over number fields

Let

K a number field
V = set of all finite places of K
T a K-torus
L/K finite Galois splitting field of T (i.e. T ⊗K L ≃ (Gm,L)

d)

Our goal is to show that

X(T, V) := ker

(
H1(K, T) → ∏

v∈V
H1(Kv, T)

)
is finite.
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Local-global principles for algebraic tori

Sketch of argument over number fields (cont.)

Step 1: Show that

X(T, V) = X(L/K, T, V) := ker

(
H1(L/K, T) → ∏

v∈V
H1(Lv̄/Kv, T)

)
.

This follows from Hilbert’s Theorem 90.

Step 2: Show that

X(L/K, T, V′) = ker
(

H1(L/K, T)
λL/K,V′
−→ H1(L/K, T(AL(V̄′)))

)
for any set V′ ⊂ V.

Note: Both steps work for any field K.
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Local-global principles for algebraic tori

Sketch of argument over number fields (cont.)

Step 3: Show that there exists cofinite V′ ⊂ V such that

T(AL(V̄′)) = T(A∞
L (V̄′)) · T(L).

Since Cl(OL) is finite, we can find finite S ⊂ V such that for
S̄ = {all extensions of v ∈ S to L}, we have Cl(OL,S̄) = {e}.

Setting V′ = V \ S, we obtain

IL(V̄′)/(I∞
L (V̄′) · L×) ≃ Pic(L, V̄′) = Cl(OL,S̄) = {e}.

⇒ IL(V̄′) = I∞
L (V̄′) · L×

Since T is split over L, we have

T(AL(V̄′)) = T(A∞
L (V̄′)) · T(L).
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Local-global principles for algebraic tori

Sketch of argument over number fields (cont.)

Step 4: Let E(T, V′, L) = T(L) ∩ T(A∞
L (V̄′)) for V′ as in Step 3.

Show that X(T, V′) is contained in the image of the map

ν : H1(L/K, E(T, V′, L)) → H1(L/K, T).

This follows from a direct computation.

Step 5: Observe that E(T, V′, L) = T(L) ∩ T(A∞
L (V̄′)) is finitely

generated, hence H1(L/K, E(T, V′, L)) is finite.

We have E(T, V′, L) ≃ Ud (d = dim T), where

U = {x ∈ L× | v(x) = 0 for all v ∈ V̄′},

which is finitely generated by Dirichlet’s S-unit theorem.

Thus, H1(L/K, E(T, V′, L)) is a finitely generated torsion

abelian group, hence finite.
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Local-global principles for algebraic tori

Passing to arbitrary finitely generated fields

Suppose K is an arbitrary finitely generated field and V is
a divisorial set of places associated to a normal affine model
X = Spec A over Z.

We have two important facts:

The group of units A× is finitely generated (P. Samuel)

The Picard group Pic(V) ≃ Pic(X) is finitely generated
(B. Kahn)

Theorem 1.
Suppose K is a finitely generated field and V is a divisorial set

of places. Then for any K-torus T, the global-to-local map

θT,V : H1(K, T) → ∏
v∈V

H1(Kv, T)

is proper (equivalently, X(T, V) is finite.)

Igor Rapinchuk (Michigan State University) ICTS January 2024 25 / 45



Local-global principles for algebraic tori

Some modifications of the argument using Bertini-type
theorems yield:

Theorem 2.
Let X be a smooth geometrically integral variety over a number

field k and let V be the set of discrete valuations of function

field K = k(X) associated with prime divisors of X. Then

X(T, V) is finite for any k-defined torus T.

Remarks:
Case where X is a curve first studied by Harari and
Szamuely.

If T is not assumed to be k-defined, then finiteness of
X(T, V) is an open probem even when X is a curve.
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Local-global principles for algebraic tori

Serre introduced condition (F) for perfect fields to study

finiteness properties of Galois cohomology.

Recall: A perfect field k is of type (F) if

(F) For every m ⩾ 1, Gal(k̄/k) has finitely many open
subgroups of index m.

Examples: finite fields, p-adic fields, C((t)), etc.

Theorem 3.
Suppose k is a field of char. 0 that is of type (F). Let X be a

smooth geometrically integral variety over k and V be the set of

discrete valuations of function field K = k(X) associated with prime

divisors of X. Then X(T, V) is finite for any K-defined torus T.

Proof depends on purity results and finiteness statements for

étale cohomology.
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Local-global principles for semisimple groups

Since the Properness Conjecture is known for tori, a natural

problem is the following:

Problem.
For finitely generated fields of char. 0, reduce Properness

Conjecture from arbitrary reductive groups to (adjoint)

semisimple groups.

Conceptually, such a reduction is desirable due to the fact

that Properness Conjecture for adjoint semisimple groups is

closely related to analysis of groups with good reduction.
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Local-global principles for semisimple groups

Let K be a field equipped with discrete valuation v.

Definition

A reductive K-group G has good reduction at v if there exists

a reductive group scheme G (which is unique) over valuation

ring Ov ⊂ Kv such that

generic fiber G⊗Ov Kv is isomorphic to G ⊗K Kv.

Then special fiber (reduction)

G(v) = G⊗Ov K(v)

is a connected reductive group over residue field K(v).
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Local-global principles for semisimple groups

Examples.

0. If G is K-split then G has a good reduction at any v

(follows from Chevalley’s construction).

1. For a central simple K-algebra A, group G = SL1,A has
good reduction at v if there exists an Azumaya algebra A

over Ov such that

A ⊗K Kv ≃ A⊗Ov Kv

(in other words, A is unramified at v).

2. G = Spinn(q) has good reduction at v if (over Kv)

q ∼ λ(a1x2
1 + · · ·+ anx2

n) with λ ∈ K×
v , ai ∈ O×

v

(assuming that char K(v) ̸= 2).
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Local-global principles for semisimple groups

A K-group G′ is a K-form (or K/K-form) of G if

G′ ⊗K K ≃ G ⊗K K (where K is a sep. closure of K).

Examples.

1. If A is a central simple algebra of degree n over K, then

A ⊗K K ≃ Mn(K)

and G′ = SL1,A is a K-form of G = SLn.
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Local-global principles for semisimple groups

Examples (cont.).

2. If q is a nondegenerate quadratic form in n variables over

K (char K ̸= 2) and

G = Spinn(q),

then for any other nondegenerate quadratic form q′ in n

variables,

G′ = Spinn(q
′)

is a K-form of G.

If n is odd, then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.
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Local-global principles for semisimple groups

Main Finiteness Conjecture

Let:
K a finitely generated field;
V a divisorial set of places of K;
G a (connected) reductive K-group.

Main Conjecture for Groups with Good Reduction

If char K is “good,” then the set of K-isomorphism classes of

(inner) K-forms G′ of G having good reduction at all v ∈ V is

finite.

(If G is absolutely almost simple, char K = p is “good” for G if
p = 0 or p does not divide order of Weyl group of G. For non-

semisimple reductive groups only char. 0 is “good.”)
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Local-global principles for semisimple groups

Connection to Properness Conjecture

Suppose
K a finitely generated field;

V a divisorial set of places of K.

Recall that we have the global-to-local map

θG,V : H1(K, G) → ∏
v∈V

H1(Kv, G)

for any algebraic K-group G.

Proposition 4.

Assume Main Conjecture holds for an absolutely almost simple

simply connected K-group G and all divisorial sets of places of

K. Then θG,V is proper for corresponding adjoint group G and

any divisorial set V.
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Local-global principles for semisimple groups

Some results on the Main Conjecture

We have resolved the Main Conjecture in several cases.

For K an arbitrary finitely generated field:

Algebraic tori
Inner forms of type An (i.e. G = SL1,A) — uses finiteness
results for unramified Brauer group.

For K = k(C) a 2-dimensional global field:

G = Spinn(q) (n ⩾ 5), G of type G2;
G = SUn(L/K, h), L/K quadratic extension, h nondegenerate
hermitian form of dim ⩾ 2;
G = universal cover of SUn(D, h), D quaternion algebra
over K, h nondeg. skew-hermitian form over D (I.R.).

These results depend on finiteness of certain unramified
cohomology groups.
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Local-global principles for semisimple groups

Some results on the Properness Conjecture

Consider the global-to-local map
θG,V : H1(K, G) → ∏

v∈V
H1(Kv, G).

Several cases where we have established properness of θG,V:

PSL1,A over arbitrary finitely generated fields.

K a 2-dimensional global field and
G = SOn(q) (n ⩾ 5);
G of type G2;
G = SUn(L/K, h), L/K quadratic extension, h nondegenerate
hermitian form of dim ⩾ 2;
G = SL1,A, A a c.s.a/K of square-free degree.

K a purely transcendental extension or function field of
Severi-Brauer variety over number field and G of type
G2.
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Good reduction and the genus problem

The genus problem was inspired by Amitsur’s Theorem and

initially dealt with division algebras having the same

maximal subfields.

Definition.
Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ division algebra with same
maximal subfields as D}.

Key result: The genus gen(D) is finite for any central
division K-algebra D over a finitely generated field K.

Igor Rapinchuk (Michigan State University) ICTS January 2024 39 / 45



Good reduction and the genus problem

Genus of an algebraic group

• To define the genus of an algebraic group, we replace

maximal subfields with maximal tori in the definition of

genus of division algebra.

• Let G1 and G2 be semisimple groups over a field K.

We say: G1 & G2 have same isomorphism classes of maximal

K-tori if every maximal K-torus T1 of G1 is K-isomorphic

to a maximal K-torus T2 of G2, and vice versa.

• Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori as G.
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Good reduction and the genus problem

Question 1. When does genK(G) reduce to a single element?
Question 2. When is genK(G) finite?

Theorem 5. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1, or E6, then |genK(G)| = 1.

Conjecture.

(1) For K = k(x), k a number field, and G an absolutely almost
simple simply connected K-group with |Z(G)| ⩽ 2, we have
|genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic, then genK(G) is
finite.
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Good reduction and the genus problem

Connections to groups with good reduction

Theorem 6.
Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that residue field K(v) is finitely generated, and G

has good reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).

In particular, the Main Conjecture yields finiteness results for
the genus.
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Good reduction and the genus problem

A sampling of results

Theorem 7.
(1) Let D be a central division algebra of exponent 2 over

K = k(x1, . . . , xr) where k is a number field or a finite
field of characteristic ̸= 2. Then for G = SLm,D (m ⩾ 1),
we have |genK(G)| = 1.

(2) Let G = SLm,D, where D is a central division algebra over
a finitely generated field K. Then genK(G) is finite.

Theorem 8.
Let K = k(C) be a 2-dimensional global field for a number field
k, and set G = Spinn(q). Then for any n ⩾ 10, the genus
genK(G) is finite.

Remark: We previously showed this for odd n. My current
work establishes finiteness of genus for all n.
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Good reduction and the genus problem

Applications of the Main Finiteness Conjecture

The conjecture has close connections to:

Local-global principles for algebraic groups.

The genus problem for simple algebraic groups.

Finiteness properties of unramified cohomology.

Analysis of weakly commensurable Zariski-dense subgps
and applications to classical problems on locally
symmetric spaces.

Thus, study of groups with good reduction occupies a
central place in the emerging arithmetic theory of algebraic
groups over higher-dimensional fields.
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