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@ Disordered XX model — Anderson localization

@ Generally localization is indicated by lack of transport in the system.

@ If no longer isolated — typically breaks localization but effects slowed
down.

@ Open system — decoherence effects, here choose dephasing or Z
noise as an example.

@ Question:- How much slowing down can actually be seen? How do
the observables reach the steady state? Decoherence times are very
relevant in experiments to identify quantumness.

@ We choose to study staggered magnetization or Imbalance
I'=(1/L) Yj_1(—1)(0%), experimentally relevant!

@ Previous works put /(t) oc et but discrepancy over « value,
0.33,0.42,0.5 etc.

Levi, Heyl, Lesanovsky, Garrahan PRL (2016).
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down.

@ Open system — decoherence effects, here choose dephasing or Z
noise as an example.

@ Question:- How much slowing down can actually be seen? How do
the observables reach the steady state? Decoherence times are very
relevant in experiments to identify quantumness.

@ We choose to study staggered magnetization or Imbalance
I'=(1/L) Yj_1(—1)(0%), experimentally relevant!

@ Previous works put /(t) oc et but discrepancy over « value,
0.33,0.42,0.5 etc. What is going on?

Levi, Heyl, Lesanovsky, Garrahan PRL (2016).
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Model
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Lindblad master equation

Total System

(M, pr, Hr) Need to trace out dof of

environment. Approximations:-
System .
(H,p, H) @ weak system-env coupling,

@ No initial coupling,
Environment

(M, 5, He) @ Env is in thermal state

@ Sys-env correlations timescales
much smaller than relaxation

Von Neumann equation timescales, Markovian
d . . .
b= —i[HT,pT] approximation.

Interaction picture, perturbation theory to second order — Redfield
equation — not a positive map but trace preserving.

Want Positive trace preserving map in the space of density matrices ,
additional rotating wave approx and go back to Schrodinger picture —
Lindblad equation.% = i[p, Hl + L(p) = L(p)
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Disordered XX model :

L-1 L
H=—JY (07051 +0lo% )+ > hof (1)
j=1 j=1

Initial state:- Neel state.
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Initial state:- Neel state. Add dephasing, open system, density matrix
evolution!,

% = ilp, H] + L (p) = L(p) (2)
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Disordered XX model :

L-1 L
H=—JY (07051 +0lo% )+ > hof (1)
j=1 j=1

Initial state:- Neel state. Add dephasing, open system, density matrix
evolution!,

d{ = ilp, H] + L2 (p) = L(p) (2)

L% (p) = S, ([Lkp, LE] + [Lk, pLL]). Choose Ly = /%%, kills off
diagonal terms!
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Disordered XX model :

L-1 L
H=—JY (07051 +0lo% )+ > hof (1)
j=1 j=1

Initial state:- Neel state. Add dephasing, open system, density matrix
evolution!,

d{ = ilp, H] + L2 (p) = L(p) (2)

L% (p) = S, ([Lkp, LE] + [Lk, pLL]). Choose Ly = /%%, kills off
diagonal terms!
Quartic in fermion operators, typically solved using DMRG, but!!
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Relaxation of Imbalance
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How does /(t) actually relax?
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How does /(t) actually relax?

— | e
BVt / obc:Elnt _ 5 g =~ 1/2In[4atL? /7]
i non— = . o 1/21n[4at /7]
/ generic pbe :% Int _T . ,l/ ----- 3T
—L =50 —L = 3000
— L = 500 — L = 10000

)

—InI(t)

to ty ty t3 0.1 1 10 100

T = % As evident from the figure, five windows.

@ t<ty~Min(l/y,1/W): I(t) ~1—t2= —Inl(t) ~ t2. Off
diagonal correlations first develop in the system and then start
decaying after reaching a maxima. W <, to —~ 1/7.

W>~y—-t~1/W.

é€ee
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How does /(t) actually relax?

/1 [\l - . ==
BVt / obe ;3 Int . s / ----1/21n[4atL?/7]
i non— = e 1/21n[4at /7]
/ generic pbe :% Int A 7| - 3T
| /

— L =50 —L = 3000
— L =500 — L = 10000

)

—InI(t)

to ty ty t3 0.1 1 10 100

% As evident from the figure, five windows.

eeﬂ

to < t <ty ~0.1W2/(8vJ?): local relaxation of o7 starts.

—Inl(7) ~ —In(1 — B/T) ~ B+/T irrespective of the nature of disorder
chosen . Short time, linear regime of the stretched exponential
behavior of previous works, valid until 7 ~ 71 = (8yJ%t;)/W? = 0.1.
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How does /(t) actually relax?
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relaxation in the system.
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— L =50 —L = 3000
— L =500 — L = 10000

)

1 10 100

W2 As evident from the figure, five windows.

t1 < t < tp ~5W?2/(8vJ?): in this regime, which holds until
T ~ Ty = (8yJty)/W? =~ 5 a non generic decay dependent on the
choice of disorder distribution is seen. t> also marks the end of local
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How does /(t) actually relax?

() (b)
i i it v —LW-38
10 =
|l e
1 5 7 2
BVE obe ;3 Int . 7 ——r- 1/21n[4atL?/7)
= |t non— = I — 1/21n[4at /7]
= / generic pbe :% Int _T 7| - 3T
| ! / — L =50 —L=3000
05 — L =500 —L = 10000
2
to t ty ty 0.1 1 10 100

T= 8“ As evident from the figure, five windows.
()
(1]
Q
® t <t < t3: Power law decay due to a continuum of low magnitude
eigenvalues of Liouvillian, boundary conditions, dependent.

pbc-1(t) oc 1/t3/2, obc-1(t) oc 1/(Ly/t). I(t) ~ 1/t3/2 for large L,
obc transition /(t) oc 1/(L+/t) at a time 7 ~ L/2.
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How does /(t) actually relax?

T it

1
BVt / obe iz Int
3 non—
/ generic pbe :% Int

—InI(t)

8yt

T= 2 As evident from the figure, five windows.

€ e ee
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_____ 1/21n[4a’t* /7]
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Q t>t3~L2W?2/y: I(t) ~ exp(—|)\1]t) where )1 is the Liouvilian gap.

A~/ (LPW2), t3 ~ L2W2 ).
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Quartic nature but hierarchy of equations for observables!!
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t - 12,

M. Znidari¢, J. Stat. Mech. (2010)

M. Znidari¢ and M. Horvat, EPJB (2013)
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Quartic nature but hierarchy of equations for observables!!
We need /(t) only, quadratic in fermion operators, huge simplification!
4t — 12
dC(t ~ -
dl(t) +2i(PC(t) — C(t)PT) 4+ 2(FC(t) + C(£)F) = 0, (3)
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Quartic nature but hierarchy of equations for observables!!
We need /(t) only, quadratic in fermion operators, huge simplification!
4t — 12,

digt) +2i(PC(t) — C(t)PT) +2(FC(t) + C(t)F) =0, (3)
(1) = a* T (1) + b7 (2) for k > j, C(t) = al’)(t) and

Ci = G- C = C — diag(C), a and b — two fermion observable
expectations.
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t — 12,

P=W-T, Wy = hedjx, Tix = J(6j k-1 + &jk+1)
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t — 12,

d((:i(tf) +2i(PC(t) — C(¢)PT) + 2(r€(t) + C(£)r) =0, (3)

rjk = Y0jk
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t - 12,

digt) +2i(PC(t) - C(t)PT) +2(r€(e) + E(1)F) =0, (3)

1(t) = (1/0) 35 (-1Y "1 G5(1)
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t - 12,

digt) +2i(PC(t) - C(t)PT) +2(r€(e) + E(1)F) =0, (3)

1) = (1/0) 325 (=1Y 71 G5(1)

Initial state — Néel state — /(t = 0) = 1.
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Quartic nature but hierarchy of equations for observables!!

We need /(t) only, quadratic in fermion operators, huge simplification!
4t - 12,

digt) +2i(PC(t) - C(t)PT) +2(r€(e) + E(1)F) =0, (3)

I(t) = (1/L) (=1 Cy(2)
Initial state — Néel state — /(t = 0) = 1.
Solve using standard Runge Kutta methods, till L ~ 10% and t ~ 10*!
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Quartic nature but hierarchy of equations for observables!!
We need /(t) only, quadratic in fermion operators, huge simplification!
4t - 12,

dC(t)
dt
I(t) = (1/L) (=1 Cy(2)
Initial state — Néel state — /(t = 0) = 1.
Solve using standard Runge Kutta methods, till L ~ 10% and t ~ 10*!
Another way:-

+2i(PC(t) — C(t)PT) +2(FC(t) + C(¢)r) = 0, (3)

df

where f = (Cll’ C12, ey ClLa C21, ey CLL)
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Power series I(t) in t, the first nonzero term, /(t) ~ 1 — nt? behavior at
the smallest timescale .
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Region |

L=40,y=1W=0 L=8y=1W=0
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Correlations then spread rapidly throughout the system, reach a maxima

and start decaying around t ~ 1/\/|y2 — 4| ~ 1/~ for v > 1. This
behavior can be qualitatively extracted from a simple two-site model, we

get, for small t, /(t) ~ 1 —8t% 4+ O(t3).
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Region |
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disorder?Correlations can develop in the system either due to P, or due to
. = dominating term?
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Two site model gives will get ty < 1/~. If we approximate the width of
the distribution of ds as W, we can say that tp is around Min(1/~,1/W).
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Region |l and |I—Three-site model

Assumptions- W > +, take into account the influence of the neighboring
sites, j —1 and j + 1.
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Region |l and |I—Three-site model

Assumptions- W > +, take into account the influence of the neighboring
sites, j —1 and j + 1.

Further ignore Cj;'s where |j — i| > 1, We can then use the linearized
equation with

f=(Ci1, Co Ca, Go Cu, G, Gs), (5)
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Region |l and |I—Three-site model

Assumptions- W > +, take into account the influence of the neighboring
sites, j —1 and j + 1.

Further ignore Cj's where |j — i| > 1, We can then use the linearized
equation with

f=(Ci1, Co Ca, Go, Cu, G, Ga), (5)

O can be rearranged to a tractable form

O3x3 Bsxa
Q= < . 6
Cax3 Daxs (6)
Then using second order degenerate perturbation theory find the
perturbation to O sector to get

A 87(62 + 62 & (/64 + 6% — 6262)

0793
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Region |l and Il
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p(t) = e*tp(0). —\; — roots of Liouvillian £ (one-particle sector).
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Region V
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Region V
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Dashed lines from analytic computation via effective heisenberg
hamiltonian
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Region IV
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Region IV
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M. V. Medvedyeva, T. Prosen, M. Znidarig, PRB(2016).
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Various cases

A~ = Z0) ~ )7 (7)
Case disorder | « Ié] I(t) —In/(t)
pbc, even L 0 2 | nooverlap | et 4y
pbc, odd L 0 2 0 wl% 3 In(tL?) + 5 In(8n)
obc, any L 0 2 0 L\/;? 3 In(tL?) + 3 In(8m)
obc,any L | W |2 0 2= | 3In(teL?) +3in4
pbc, any L w 2 2 2(3@/2 %Int—k%ln%33
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Conclusion
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@ Studied the evolution of imbalance, /(t) for the disordered XX chain
with on-site dephasing, starting from the Néel initial state.
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@ Studied the evolution of imbalance, /(t) for the disordered XX chain
with on-site dephasing, starting from the Néel initial state.

@ Showed how to treat these kind of models generically+ found five
timescales, stretched exponential not asymptotic, valid during local
evolution.
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@ Studied the evolution of imbalance, /(t) for the disordered XX chain
with on-site dephasing, starting from the Néel initial state.

@ Showed how to treat these kind of models generically+ found five
timescales, stretched exponential not asymptotic, valid during local
evolution.

@ pbc behaviour true asymptotic? Totally new relaxation!

@ Asymptotics for quasiperiodic disorder? How does range of the model
affect it? What about interactions?(possibly limited effect but deeper
study needed). Non local dephasing can also be treated by same
technique ( M. Znidari¢ arXiv:2311.07375).
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THANK YOU

Physical Review B 107 (18), 184303
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How did we get expressions?

Three pieces,
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How did we get expressions?

Three pieces,
dpp _

@ Effective Heisenberg model, =22 = —H.gpp,

L

Hog = Z 5 (vj + vjs1)

= (= hia)? + (3 75

)2(1 —0j.0j41),  (8)
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How did we get expressions?

Three pieces,

© Effective Heisenberg model, c,I)tD = —HexpPD,
L
Ho = 2 () + 9541) (1-o0j.0/:1), (8)

= (= hia)? + (3 +754)?

@ 'Tri-diagonal’ approximation, clean systems, effective eigenvalues,
obc—)\j:2< 4cos( )—3—1) Jj=0...L—1 Forj/L<1,

obc- 22225. For pbc this gets multiplied by a factor of 4 and hence in

both cases o = 2.
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How did we get expressions?

Three pieces,

© Effective Heisenberg model, c,I)tD = —HexpPD,
L
Ho = 2 () + 9541) (1-o0j.0/:1), (8)

= (= hia)? + (3 +754)?

@ 'Tri-diagonal’ approximation, clean systems, effective eigenvalues,
obc—)\j:2< 4cos( )—3—1) Jj=0...L—1 Forj/L<1,

2:2

obc- 217_24 . For pbc this gets multiplied by a factor of 4 and hence in
both cases o = 2.

@ Eigenvectors? Z(j) only relevant elements — Free fermion

wavefunction with the corresponding boundary condition, i.e. for pbc,
they are ﬁ thl exp(2imjk/L)., obc—\@ ZIL<:1 cos(mjk/L)
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How did we get expressions?

Three pieces,
© Effective Heisenberg model, c,IJtD = —HexpPD,

L

(h = hix1)? + (v + vj+1)?

- Uj-Uj+1)a (8)
j=1

@ 'Tri-diagonal’ approximation, clean systems, effective eigenvalues,

obc—)\j:2< 4cos< )—3—1) Jj=0...L—1 Forj/L<1,

obc- 22;5. For pbc this gets multiplied by a factor of 4 and hence in
both cases o = 2.

@ Eigenvectors? Z(j) only relevant elements — Free fermion
wavefunction with the corresponding boundary condition, i.e. for pbc,

they are ﬁ Zi:l exp(2imjk/L)., obc—\@ ZIL<:1 cos(mjk/L)
@ Add disorder, combine 1 and 2 to get eigenvalues. Eigenvectors? Part
numerics part and part intuition.
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