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• Introduc@on  
thermaliza3on in isolated quantum systems 
physics of open quantum many-body systems 

• Main result on Floquet systems 
Liouvillian gap and thermaliza3on (hea3ng to infinite temperature) 

• Main result on sta@c systems 
Projected Liouvillian gap and thermaliza3on
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3mescale of thermaliza3on
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ETH does not tell us much about @mescale of the onset of thermaliza@on

long-3me average = ensemble average
long-3me fluctua3ons are negligible

finite-3me nonequilibrium dynamics 
(e.g. relaxa3on 3me)

J. von Neumann, Z. Phys. (1929); M. Srednicki, Phys. Rev. E (1994); J. M. Deutsch, Phys. Rev. A (1991)

theore3cally, eigenstate thermaliza3on hypothesis (ETH) explains thermaliza3on

eigenvalues of the 3me evolu3on operator

unit circle in complex plane

thermaliza3on proceeds via complicated 
dephasing process among energy eigenstates

local operator has random matrix structure Anm := ⟨n | ̂A |m⟩ Ĥ |n⟩ = En |n⟩

Anm = Aeq(εnm)δnm + e−S(εnm)/2f(ωnm, εnm)rnm
εnm =

En + Em

2N
ωnm = En − Em

: random variablesrnm

important problem: evalua3ng 3mescale of thermaliza3on



open quantum many-body systems
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cold-atom experiment: well-controlled dissipa3on in quantum many-body systems

in Markovian regime: Lindblad equa3on
dρ
dt

= − i[Ĥ(t), ρ] + γ
N

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ})

quantum many-body system
external periodic driving

dissipa@on to environment

dissipa&on engineering: create novel phases of maOer by u3lizing dissipa3on
novel physics usually emerges in the strong dissipa@on regime



mo3va3on of this work
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generic proper@es in the weak dissipa@on regime are not paid much a7en@on

beOer understanding of thermaliza3on dynamics of an isolated quantum system?

weak dissipa3on can be used as a probe of intrinsic proper3es of a quantum system

strong dissipa3on can be used to create a novel quantum material



theore3cal setup: model
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Lindblad equa@on describing a quantum many-body system under bulk dissipa@on

dρ
dt

= − i[Ĥ(t), ρ] + γ
L

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ}) =: ℒ(t)ρ

: Liouvillian or Lindbladianℒ(t) = ℒ(t + τ)

ℒ(t)ρ = − i[Ĥ(t), ρ] + γ
L

∑
i=1

( ̂σz
i ρ ̂σz

i − ρ)
bulk dephasing

specific model: kicked Ising chain under bulk dephasing

Ĥ(t) = −
L

∑
i=1

(Jσz
i σz

i+1 + hzσz
i ) +

∞

∑
k=−∞

δ(t − kτ) ̂V ̂V = − hx

L

∑
i=1

σx
i

Li = σz
i

J = 1, hz = 0.8090, hx = 0.9045 (quantum chao3c regime)



theore3cal setup: quan3ty of our interest
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Liouvillian gap g

𝒰Fρα = eλατρα

0 = λ0 > Re λ1 ≥ Re λ2 ≥ …

g = − Re λ1

3me evolu3on operator over one cycle 𝒰F = 𝒯e ∫τ
0 ℒ(t)dt

A finite Liouvillian gap implies exponen3al decay of spa3al 
correla3ons in the steady state

M. J. Kastoryano and J. Eisert, J. Math. Phys. 54, 102201 (2013)

Dissipa3ve phase transi3on is associated with the closing of the Liouvillian gap
F. Mingan3 et al., Phys. Rev. A 98, 042118 (2018)

Liouvillian gap has several important proper@es

: “Liouvillian eigenvalues”{λα}

∥ρ(t) − ρ0∥ ∼ e−gt

Liouvillian eigenvalues ( )L = 4

λ0 = 0−g
steady state

“first excited state”

real part
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Liouvillian gap gives the asympto3c decay rate

E. M. Kessler et al., Phys. Rev. A 86, 012116 (2012)
ρ(t) − ρ0 = ∑

α>0

Cαeλαtρα ∼ e−gt
t → ∞t = nτ



main result: singularity of the Liouvillian gap
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general behavior of the Liouvillian gap for small  (weak dissipa3on)γ

g ∼ {γL for γ ≲ v/L
ḡ + O(γ) for v/L ≲ γ ≪ v

: Lieb-Robinson velocity  
(local energy scale of the Hamiltonian)
v

The thermodynamic limit of the Liouvillian gap remains finite in the limit of γ → + 0
lim

γ→+0
lim

L→∞
g =: ḡ > 0 lim

L→∞
lim

γ→+0
g = 0

numerical evidence



operator spreading and Liouvillian gap
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γ γ γ γ γ γ γ γ γ
decay

Ôi → e−γΔt

Ôi−1ÔiÔi+1 → e−3γΔt

Ôi−2Ôi−1ÔiÔi+1Ôi+2 → e−5γΔt

instantaneous decay rate is propor@onal to γ × (operator size)
TM and T. Shirai, arXiv:2309.03485

3me evolu3on of an operator in the Heisenberg picture Ô(t) = eiĤtÔe−iĤt

t = 0

t

In a many-body system, weak dissipa3on is amplified by the operator spreading



operator spreading and Liouvillian gap
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For a small , the effect of dissipa3on can be ignored up to 3me γ( ≪ v) tγ ∼ γ−1

In the absence of dissipa3on, the operator size increases as vt

The operator size is saturated acer tγ
(operator size in the long-3me limit) ∼ min{vtγ, L} ∼ {L for γ ≲ v/L

vγ−1 for γ ≳ v/L

Liouvillian gap = asympto3c decay rate

γ × (operator size in the long-3me lmit) ∼ {γL for γ ≲ v/L
ḡ + O(γ) for v/L ≲ γ ≪ v

ḡ ∼ v

lim
γ→+0

lim
L→∞

g =: ḡ > 0



physical meaning of : Ruelle-PollicoO resonanceḡ
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conjecture:  corresponds to a quantum analog of the leading Ruelle-Pollico; 
resonance in classical chaos theory

ḡ

exponen@al decay rate hidden in the unitary @me evolu@on

@mescale of thermaliza@on

solid lines: numerical solu3on of the Schrödinger eq.
dashed lines: predicted exponen3al decays exp(−ḡt)

numerical result for the kicked Ising chain under bulk dephasing



Ruelle-PollicoO resonance in classical chaos
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trajectory in the phase space Γt = (q1(t), q2(t), …, qN(t), p1(t), p2(t), …, pN(t))

·qi(t) =
∂H
∂pi

, ·pi(t) = −
∂H
∂qi

probability distribu3on Pt(Γ) = P(Γ−t)

3me evolu3on operator (Frobenius-Perron operator) 𝒰t Pt(Γ) = 𝒰tP0(Γ) unitary

unit circle in complex plane

spectrum of the Frobenius-Perron operator is defined 
by singulari3es of the resolvent

R(z) =
1

z − 𝒰t

e.g. eigenvalues = poles of  
con3nuous spectrum = brunch cut of 

R(z)
R(z)

chao3c dynamics: con3nuous spectrum



Ruelle-PollicoO resonance in classical chaos
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2nd Riemann sheet

poles of  in the second Riemann sheetR(z)

eνit Re νi < 0

leading Ruelle-PollicoO resonance:  with the maximum value of νi Re νi

(closest to the unit circle)

“Ruelle-PollicoO resonances”{νi}
D. Ruelle, Phys. Rev. Lett. (1986) 
M. Pollicott, Invent. Math. (1985)

consider a chao3c system: con3nuous spectrum corresponds to a brunch cut of R(z)
H. H. Hasegawa and W. C. Saphir, Phys. Rev. A (1992)

analy3c con3nua3on of R(z)



Ruelle-PollicoO resonance in classical chaos
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express the 3me evolu3on as a sum of exponen3al decays

⟨A⟩t := ∫ A(Γ)Pt(Γ)dΓ ⟨A⟩t ≈ ∑
i

Cieνit ∼ eν*t (t → ∞)

: the leading RP resonanceν*

 are solely determined by the Frobenius-Perron operator{νi}
(independent of physical quan33es)

any physical quan3ty exhibits an exponen3al decay  
governed by the leading RP resonance

eν*t

RP resonances can describe exponen3al decays hidden in the Hamiltonian dynamics 

We can es3mate the 3mescale of thermaliza3on



weak noise limit and Ruelle-PollicoO resonance
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Hamilton equa3ons of mo3on ·qi =
∂H
∂pi

, ·pi = −
∂H
∂qi

add random Gaussian noise (Langevin eq) ·qi =
∂H
∂pi

, ·pi = −
∂H
∂qi

+ ξi(t)

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′ )⟩ = ϵδijδ(t − t′ )

3me evolu3on of the probability distribu3on: Kramers equa3on

∂P
∂t

= ∑
i ( ∂H

∂qi

∂P
∂pi

−
∂H
∂pi

∂P
∂qi

+
ϵ
2

∂2P
∂p2

i ) =: ℒKP

some eigenvalues of the 3me evolu3on operator  are inside the unit circle even in 
the weak-noise limit ; they are nothing but RP resonances!

eℒKt

ϵ → + 0

Ruelle-PollicoO resonances can be obtained by introducing weak stochas3c noise, 
instead of directly performing the analy3c con3nua3on of the resolvent

P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E (1995)
J. Kurchan, arXiv:0901.1271



analogy
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quantum chao@c systems

dρ
dt

= − i[Ĥ, ρ] + γ
L

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ}) =: ℒρ
(our conjecture) RP resonances 
appear as eigenvalues of  in the 
weak dissipa3on limit 

ℒ
γ → + 0

classical chao@c systems

∂P
∂t

= ∑
i ( ∂H

∂qi

∂P
∂pi

−
∂H
∂pi

∂P
∂qi

+
ϵ
2

∂2P
∂p2

i ) =: ℒKP RP resonances appear as eigenvalues 
of  in the weak noise limit ℒK ϵ → + 0

P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E (1995)
J. Kurchan, arXiv:0901.1271

bulk dissipa3on + thermodynamic limit (before ) is crucial in quantum caseγ → + 0

con3nuous spectrum is important for Ruelle-PollicoO resonances

quantum spin-1/2 system has con3nuous spectrum only in the thermodynamic limit



summary up to here
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Thermodynamic limit of the Liouvillian gap is discon3nuous at γ = 0
ḡ := lim

γ→+0
lim

L→∞
g > 0

 corresponds to the leading quantum Ruelle-PollicoO resonance: it determines the 
exponen3al decay rate of the isolated system
ḡ

This result is explained by the operator spreading

(decay rate under bulk dissipa3on) ∝ γ × (operator size)

These results are numerically verified in the kicked-Ising chain under bulk dephasing



sta3c systems
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In sta@c systems, the Liouvillian gap simply vanishes in the weak dissipa3on limit

lim
γ→+0

lim
L→∞

g = 0

N. Shibata and H. Katsura, Phys. Rev. B 99, 174303 (2019)

1D quantum compass model + bulk dephasing lim
L→∞

g = 2γ for γ < γc

N. Shibata and H. Katsura, Phys. Rev. B 99, 224432 (2019)

quantum Ising chain + bulk dissipa3on lim
L→∞

g = 4γ for γ < γ′ c

γ γ γ γ γ γ γ γ γ

large decay rates  emerge as a consequence of the operator spreading∝ Lγ

Hamiltonian is conserved under unitary evolu3on: 
no operator spreading

Liouvillian gap describes the relaxa3on of the energy 
due to dissipa3on  
(not related with the intrinsic relaxa3on)



idea of extrac3ng RP resonances in sta3c systems
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In sta3c systems, the Liouvillian gap does not correspond to an intrinsic decay rate 
of the system because of the local conserva3on law in the isolated system

We might be able to extract intrinsic decay rates (i.e. RP resonances) by discarding 
all the diagonal elements

Conserva3on laws in the isolated system are fully encoded in the diagonal matrix 
elements in the energy basis

idea: project out the diagonal elements

𝒫ρ = ρ − ∑
n

ρnn |n⟩⟨n | Ĥ |n⟩ = En |n⟩

projected Liouvillian ℒP := 𝒫ℒ𝒫

projected Liouvillian gap gP = − min
n

{Re λn : ∃ρn s.t. ℒPρn = λnρn, 𝒫ρn = ρn}



comparison between eigenvalues of  and ℒ ℒP
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−gP −g

L = 4, γ = 0.05

spectrum of spectrum of ℒP ⊂ ℒ
pick up selec@ve eigenstates which are related to the intrinsic relaxa@on

eigenvalues of ℒ eigenvalues of ℒP

model: quantum Ising chain under bulk dephasing

Ĥ = − J
L−1

∑
i=1

̂σz
i ̂σz

i+1 − hz

L

∑
i=1

̂σz
i − hx

L

∑
i=1

̂σx
i

J = 1, hz = 0.8090, hx = 0.9045

L̂i = ̂σz
i



numerical results: size-dependent RP resonances
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size-dependent value  that is obtained by extrapola3ng the data to ḡP γ = 0

numerical data suggest  (size-dependent Ruelle-PollicoO resonance)ḡP ∝ 1/L

numerical es3mate: ḡP = 0.247/L

gP vs γ LgP vs γ

(fimng a quadra3c func3on to data of )γ ≥ 0.05



projected Liouvillian gap as a RP resonance
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solid line: numerical solu3on of the Schrödinger equa3on for L = 28

dashed line: exponen3al decay predicted by the projected Liouvillian gap exp (−ḡPt)
ini3al state: all-down state

 is es3mated by using numerical data for ḡP L = 9-13



conclusion

• The intrinsic decay rate of the isolated system (quantum Ruelle-PollicoO 
resonance) is obtained from an open-system analysis in the weak dissipa3on limit 

• In bulk-dissipated Floquet systems, the Liouvillian gap in the thermodynamic limit 
is discon3nuous at , and a nonzero limit  corresponds to the 

leading Ruelle-PollicoO resonance 

• In bulk-dissipated sta3c systems, the leading Ruelle-PollicoO resonance is 
iden3fied not with the Liouvillian gap but with the projected Liouvillian gap 

• take-home message: open-system analysis deepens our understanding of isolated 
systems

γ = 0 ḡ = lim
γ→+0

lim
L→∞

g
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