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• Introduction  
thermalization in isolated quantum systems 
physics of open quantum many-body systems


• Main result on Floquet systems 
Liouvillian gap and thermalization (heating to infinite temperature)


• Main result on static systems 
Projected Liouvillian gap and thermalization
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timescale of thermalization
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ETH does not tell us much about timescale of the onset of thermalization

long-time average = ensemble average
long-time fluctuations are negligible

finite-time nonequilibrium dynamics 
(e.g. relaxation time)

J. von Neumann, Z. Phys. (1929); M. Srednicki, Phys. Rev. E (1994); J. M. Deutsch, Phys. Rev. A (1991)

theoretically, eigenstate thermalization hypothesis (ETH) explains thermalization

eigenvalues of the time evolution operator

unit circle in complex plane

thermalization proceeds via complicated 
dephasing process among energy eigenstates

local operator has random matrix structure Anm := ⟨n | ̂A |m⟩ Ĥ |n⟩ = En |n⟩

Anm = Aeq(εnm)δnm + e−S(εnm)/2f(ωnm, εnm)rnm
εnm =

En + Em

2N
ωnm = En − Em

: random variablesrnm

important problem: evaluating timescale of thermalization



open quantum many-body systems
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cold-atom experiment: well-controlled dissipation in quantum many-body systems

in Markovian regime: Lindblad equation
dρ
dt

= − i[Ĥ(t), ρ] + γ
N

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ})

quantum many-body system
external periodic driving

dissipation to environment

dissipation engineering: create novel phases of matter by utilizing dissipation
novel physics usually emerges in the strong dissipation regime



motivation of this work
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generic properties in the weak dissipation regime are not paid much attention

better understanding of thermalization dynamics of an isolated quantum system?

weak dissipation can be used as a probe of intrinsic properties of a quantum system

strong dissipation can be used to create a novel quantum material



theoretical setup: model
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Lindblad equation describing a quantum many-body system under bulk dissipation

dρ
dt

= − i[Ĥ(t), ρ] + γ
L

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ}) =: ℒ(t)ρ

: Liouvillian or Lindbladianℒ(t) = ℒ(t + τ)

ℒ(t)ρ = − i[Ĥ(t), ρ] + γ
L

∑
i=1

( ̂σz
i ρ ̂σz

i − ρ)
bulk dephasing

specific model: kicked Ising chain under bulk dephasing

Ĥ(t) = −
L

∑
i=1

(Jσz
i σz

i+1 + hzσz
i ) +

∞

∑
k=−∞

δ(t − kτ) ̂V ̂V = − hx

L

∑
i=1

σx
i

Li = σz
i

J = 1, hz = 0.8090, hx = 0.9045 (quantum chaotic regime)



theoretical setup: quantity of our interest
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Liouvillian gap g

𝒰Fρα = eλατρα

0 = λ0 > Re λ1 ≥ Re λ2 ≥ …

g = − Re λ1

time evolution operator over one cycle 𝒰F = 𝒯e ∫τ
0 ℒ(t)dt

A finite Liouvillian gap implies exponential decay of spatial 
correlations in the steady state

M. J. Kastoryano and J. Eisert, J. Math. Phys. 54, 102201 (2013)

Dissipative phase transition is associated with the closing of the Liouvillian gap
F. Minganti et al., Phys. Rev. A 98, 042118 (2018)

Liouvillian gap has several important properties

: “Liouvillian eigenvalues”{λα}

∥ρ(t) − ρ0∥ ∼ e−gt

Liouvillian eigenvalues ( )L = 4

λ0 = 0−g
steady state

“first excited state”

real part

im
ag

in
ar

y 
pa

rt
Liouvillian gap gives the asymptotic decay rate

E. M. Kessler et al., Phys. Rev. A 86, 012116 (2012)
ρ(t) − ρ0 = ∑

α>0

Cαeλαtρα ∼ e−gt
t → ∞t = nτ



main result: singularity of the Liouvillian gap
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general behavior of the Liouvillian gap for small  (weak dissipation)γ

g ∼ {γL for γ ≲ v/L
ḡ + O(γ) for v/L ≲ γ ≪ v

: Lieb-Robinson velocity 

(local energy scale of the Hamiltonian)
v

The thermodynamic limit of the Liouvillian gap remains finite in the limit of γ → + 0
lim

γ→+0
lim

L→∞
g =: ḡ > 0 lim

L→∞
lim

γ→+0
g = 0

numerical evidence



operator spreading and Liouvillian gap
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γ γ γ γ γ γ γ γ γ
decay

Ôi → e−γΔt

Ôi−1ÔiÔi+1 → e−3γΔt

Ôi−2Ôi−1ÔiÔi+1Ôi+2 → e−5γΔt

instantaneous decay rate is proportional to γ × (operator size)
TM and T. Shirai, arXiv:2309.03485

time evolution of an operator in the Heisenberg picture Ô(t) = eiĤtÔe−iĤt

t = 0

t

In a many-body system, weak dissipation is amplified by the operator spreading



operator spreading and Liouvillian gap
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For a small , the effect of dissipation can be ignored up to time γ( ≪ v) tγ ∼ γ−1

In the absence of dissipation, the operator size increases as vt

The operator size is saturated after tγ
(operator size in the long-time limit) ∼ min{vtγ, L} ∼ {L for γ ≲ v/L

vγ−1 for γ ≳ v/L

Liouvillian gap = asymptotic decay rate

γ × (operator size in the long-time lmit) ∼ {γL for γ ≲ v/L
ḡ + O(γ) for v/L ≲ γ ≪ v

ḡ ∼ v

lim
γ→+0

lim
L→∞

g =: ḡ > 0



physical meaning of : Ruelle-Pollicott resonanceḡ
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conjecture:  corresponds to a quantum analog of the leading Ruelle-Pollicott 
resonance in classical chaos theory

ḡ

exponential decay rate hidden in the unitary time evolution

timescale of thermalization

solid lines: numerical solution of the Schrödinger eq.
dashed lines: predicted exponential decays exp(−ḡt)

numerical result for the kicked Ising chain under bulk dephasing



Ruelle-Pollicott resonance in classical chaos
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trajectory in the phase space Γt = (q1(t), q2(t), …, qN(t), p1(t), p2(t), …, pN(t))

·qi(t) =
∂H
∂pi

, ·pi(t) = −
∂H
∂qi

probability distribution Pt(Γ) = P(Γ−t)

time evolution operator (Frobenius-Perron operator) 𝒰t Pt(Γ) = 𝒰tP0(Γ) unitary

unit circle in complex plane

spectrum of the Frobenius-Perron operator is defined 
by singularities of the resolvent

R(z) =
1

z − 𝒰t

e.g. eigenvalues = poles of  
continuous spectrum = brunch cut of 

R(z)
R(z)

chaotic dynamics: continuous spectrum



Ruelle-Pollicott resonance in classical chaos
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2nd Riemann sheet

poles of  in the second Riemann sheetR(z)

eνit Re νi < 0

leading Ruelle-Pollicott resonance:  with the maximum value of νi Re νi

(closest to the unit circle)

“Ruelle-Pollicott resonances”{νi}
D. Ruelle, Phys. Rev. Lett. (1986)

M. Pollicott, Invent. Math. (1985)

consider a chaotic system: continuous spectrum corresponds to a brunch cut of R(z)
H. H. Hasegawa and W. C. Saphir, Phys. Rev. A (1992)

analytic continuation of R(z)



Ruelle-Pollicott resonance in classical chaos
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express the time evolution as a sum of exponential decays

⟨A⟩t := ∫ A(Γ)Pt(Γ)dΓ ⟨A⟩t ≈ ∑
i

Cieνit ∼ eν*t (t → ∞)

: the leading RP resonanceν*

 are solely determined by the Frobenius-Perron operator{νi}
(independent of physical quantities)

any physical quantity exhibits an exponential decay  
governed by the leading RP resonance

eν*t

RP resonances can describe exponential decays hidden in the Hamiltonian dynamics


We can estimate the timescale of thermalization



weak noise limit and Ruelle-Pollicott resonance
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Hamilton equations of motion ·qi =
∂H
∂pi

, ·pi = −
∂H
∂qi

add random Gaussian noise (Langevin eq) ·qi =
∂H
∂pi

, ·pi = −
∂H
∂qi

+ ξi(t)

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′￼)⟩ = ϵδijδ(t − t′￼)

time evolution of the probability distribution: Kramers equation

∂P
∂t

= ∑
i ( ∂H

∂qi

∂P
∂pi

−
∂H
∂pi

∂P
∂qi

+
ϵ
2

∂2P
∂p2

i ) =: ℒKP

some eigenvalues of the time evolution operator  are inside the unit circle even in 
the weak-noise limit ; they are nothing but RP resonances!

eℒKt

ϵ → + 0

Ruelle-Pollicott resonances can be obtained by introducing weak stochastic noise, 
instead of directly performing the analytic continuation of the resolvent

P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E (1995)
J. Kurchan, arXiv:0901.1271



analogy
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quantum chaotic systems

dρ
dt

= − i[Ĥ, ρ] + γ
L

∑
i=1

(L̂iρL̂†
i −

1
2 {L̂†

i L̂i, ρ}) =: ℒρ
(our conjecture) RP resonances 
appear as eigenvalues of  in the 
weak dissipation limit 

ℒ
γ → + 0

classical chaotic systems

∂P
∂t

= ∑
i ( ∂H

∂qi

∂P
∂pi

−
∂H
∂pi

∂P
∂qi

+
ϵ
2

∂2P
∂p2

i ) =: ℒKP RP resonances appear as eigenvalues 
of  in the weak noise limit ℒK ϵ → + 0

P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E (1995)
J. Kurchan, arXiv:0901.1271

bulk dissipation + thermodynamic limit (before ) is crucial in quantum caseγ → + 0

continuous spectrum is important for Ruelle-Pollicott resonances

quantum spin-1/2 system has continuous spectrum only in the thermodynamic limit



summary up to here
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Thermodynamic limit of the Liouvillian gap is discontinuous at γ = 0
ḡ := lim

γ→+0
lim

L→∞
g > 0

 corresponds to the leading quantum Ruelle-Pollicott resonance: it determines the 
exponential decay rate of the isolated system
ḡ

This result is explained by the operator spreading

(decay rate under bulk dissipation) ∝ γ × (operator size)

These results are numerically verified in the kicked-Ising chain under bulk dephasing



static systems
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In static systems, the Liouvillian gap simply vanishes in the weak dissipation limit

lim
γ→+0

lim
L→∞

g = 0

N. Shibata and H. Katsura, Phys. Rev. B 99, 174303 (2019)

1D quantum compass model + bulk dephasing lim
L→∞

g = 2γ for γ < γc

N. Shibata and H. Katsura, Phys. Rev. B 99, 224432 (2019)

quantum Ising chain + bulk dissipation lim
L→∞

g = 4γ for γ < γ′￼c

γ γ γ γ γ γ γ γ γ

large decay rates  emerge as a consequence of the operator spreading∝ Lγ

Hamiltonian is conserved under unitary evolution: 
no operator spreading

Liouvillian gap describes the relaxation of the energy 
due to dissipation 

(not related with the intrinsic relaxation)



idea of extracting RP resonances in static systems
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In static systems, the Liouvillian gap does not correspond to an intrinsic decay rate 
of the system because of the local conservation law in the isolated system

We might be able to extract intrinsic decay rates (i.e. RP resonances) by discarding 
all the diagonal elements

Conservation laws in the isolated system are fully encoded in the diagonal matrix 
elements in the energy basis

idea: project out the diagonal elements

𝒫ρ = ρ − ∑
n

ρnn |n⟩⟨n | Ĥ |n⟩ = En |n⟩

projected Liouvillian ℒP := 𝒫ℒ𝒫

projected Liouvillian gap gP = − min
n

{Re λn : ∃ρn s.t. ℒPρn = λnρn, 𝒫ρn = ρn}



comparison between eigenvalues of  and ℒ ℒP
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−gP −g

L = 4, γ = 0.05

spectrum of spectrum of ℒP ⊂ ℒ
pick up selective eigenstates which are related to the intrinsic relaxation

eigenvalues of ℒ eigenvalues of ℒP

model: quantum Ising chain under bulk dephasing

Ĥ = − J
L−1

∑
i=1

̂σz
i ̂σz

i+1 − hz

L

∑
i=1

̂σz
i − hx

L

∑
i=1

̂σx
i

J = 1, hz = 0.8090, hx = 0.9045

L̂i = ̂σz
i



numerical results: size-dependent RP resonances
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size-dependent value  that is obtained by extrapolating the data to ḡP γ = 0

numerical data suggest  (size-dependent Ruelle-Pollicott resonance)ḡP ∝ 1/L

numerical estimate: ḡP = 0.247/L

gP vs γ LgP vs γ

(fitting a quadratic function to data of )γ ≥ 0.05



projected Liouvillian gap as a RP resonance
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solid line: numerical solution of the Schrödinger equation for L = 28

dashed line: exponential decay predicted by the projected Liouvillian gap exp (−ḡPt)
initial state: all-down state

 is estimated by using numerical data for ḡP L = 9-13



conclusion

• The intrinsic decay rate of the isolated system (quantum Ruelle-Pollicott 
resonance) is obtained from an open-system analysis in the weak dissipation limit


• In bulk-dissipated Floquet systems, the Liouvillian gap in the thermodynamic limit 
is discontinuous at , and a nonzero limit  corresponds to the 

leading Ruelle-Pollicott resonance


• In bulk-dissipated static systems, the leading Ruelle-Pollicott resonance is 
identified not with the Liouvillian gap but with the projected Liouvillian gap


• take-home message: open-system analysis deepens our understanding of isolated 
systems

γ = 0 ḡ = lim
γ→+0

lim
L→∞

g

23

arXiv: 2311.10304


